Ajankohtaista

Väitös: 2.9. Lisätietoa fononikiderakenteista (Tian)

Alkamisaika: perjantai 02. syyskuuta 2016, 12.00

Päättymisaika: perjantai 02. syyskuuta 2016, 15.00

Paikka: Ylistönrinne, FYS1

Yaolan Tian
M.Sc. Yaolan Tianin fysiikan väitöskirjan ”Studies of Two-Dimensional and Three-Dimensional Phononic Crystal Structures” tarkastustilaisuus. Vastaväittäjänä professori Karl Joulain (Université de Poitiers, France) ja kustoksena professori Ilari Maasilta (Jyväskylän yliopisto).

Yaolan Tian keskittyi väitöstyössään ns. fononikiteiden tutkimukseen, erityisesti kaksiulotteisten periodisten mikrorakenteiden lämmönjohtumisominaisuuksien tutkimiseen sekä kolmiulotteisten periodisten nanorakenteiden valmistamiseen. Fononikiteet ovat niin sanottuna "metamateriaaleja", joiden avulla voidaan muuttaa normaalin materiaalin fysikaalisia ominaisuuksia. Väitöstyössä muutettiin aineen lämmönjohtumista jopa yli satakertaisesti. Siitä on hyötyä säteilyn havainnoinnissa sekä tulevaisuudessa ehkä myös sähkön tuotannossa lämpöenergiasta.

Työssä kuvataan kaksiulotteisten periodisten reikärakenteiden valmistusmenetelmä. Valmistettiin piinitridistä kolme erilaista kaksiulotteista neliöhilaa jaksoilla 4, 8 ja 16 mikrometriä siten, että reikien osuus oli 70 %. Kaikkien rakenteiden lämmönjohtavuus mitattiin alle 1 kelvinin lämpötiloissa käyttäen suprajohtavia tunneliliitoksia lämpömittareina, ja tuloksia verrattiin rei'ittämättömiin kalvoihin. Kaikki fononikiderakenteet johtivat paljon huonommin lämpöä kuin kalvo. Alin lämmönjohtavuus saatiin 8 µm periodilla, osoittaen että on olemassa optimimaalisen huonon lämmönjohtavuuden omaava rakenne jossain periodin 4 µm ja 16 µm välillä. Lisäksi tutkittiin erilaisten lämpömittareiden vaikutusta, ja todettiin että lämpömittarin rakenteen tulee olla sama, jotta tulokset ovat vertailukelpoisia.

Kolmiulotteisia fononikiteitä valmistettiin itsejärjestäytymismenetelmällä polystyreeni-nanopalloista, ns. kastamismenetelmällä. Niiden kolloidisen kiteytymisen ominaisuuksia tutkittiin muuttamalla valmistusparametrejä, kuten kastamisnopeutta, nanopallojen konsentraatiota sekä kastamiskulmaa. Osoittautui, että matala kastamisnopeus, korkea konsentraatio sekä pystysuora kastaminen tuotti suurimmat ja paksuimmat kolloidikiteet. Myös laatikkorakenteita kastettiin, valmistettuina joko etsaamalla piistä taikka polymeeristä käyttäen kolmiulotteista litografiaa. Laatikkojen syvyys ja koko vaikuttivat suoraan nanopallojen kiteytymiseen. Vaikka polystyreeni käsiteltiin vielä siten että se kestää litografiset kemialliset prosessit, näille rakenteille lämmönjohtumiskokeiden teko oli vielä liian haastavaa.

Lisätietoja:

Yaolan Tian, yaolan.y.tian@jyu.fi, puh. +358 45 176 3864
Viestintäharjoittelija Petra Toivanen, tiedotus@jyu.fi, puh. 040 805 3638

Julkaistu sarjassa Department of Physics, University of Jyväskylä Research Report numerona 10/2016, Jyväskylä 2016, ISSN 0075-465X, ISBN 978-951-39-6701-7, ISBN 978-951-39-6702-4 (pdf). Kirjaa myy yliopistokauppa Soppi ja yliopiston verkkokauppa, puh. 040 805 3825 tai myynti@library.jyu.fi.

 

Abstract

This thesis focuses on studying phononic crystal structures. More specifically, it is aimed at fabrication and measurement of thermal properties of two-dimensional (2D) periodic microstructures and three-dimensional (3D) nanostructures. There is great interest in understanding, manipulating and considering application perspective of minimizing of thermal transport in periodic structures. Periodic structures have been studied more on their optical properties, but this thesis places emphasis on their application of manipulating heat. A process of fabricating two-dimensional hole array phononic (2D PnC) structures is described here. It consists of membrane preparation, superconductor-insulatornormal metal-insulator-superconductor (SINIS) tunnel junction fabrication and etching of 2D PnC structures. Simple square array geometries of periods 4, 8, 16 µm were fabricated, keeping filling factor of holes as 0.7. Thermal conductance of phononic structures with the three different periods were measured and compared with uncut membranes at temperatures from 50 mK to 1.2 K. All PnC structures gave a lower thermal conductance than membrane. In addition, thermal conductance was measured on membranes by different types of SINIS junction pairs. The variables were the geometry, the normal metal material and the normal metal length, which all affected the measured result. It is thus important to keep the SINIS heaters and thermometers the same when studying thermal conductance and its dependence on the period of the PnC structure. Additionally, sometimes superconductor-normal metal-superconductor (SNS) junction pairs were accidentally made. Thermal conductance measured using a SNS structure as a heater and SINIS structure as a thermometer is also shown. We also address the fabrication of 3D colloidal polystyrene(PS) nano-sphere PnC structures on plain chips and the statistics of the deposition process, selfassembly by vertical dipping. Combinations of dipping angle of 45 and 90, withdrawal speed of 0.01 mm/min to 0.05 mm/min and nano-sphere colloidal solution concentration of 0.02%, 0.2%, 2%, 5% and 10% were studied. Colloidal 3D PnC structure of face-centered cubic (fcc) crystal domains were self-assembled. Silicon chips with etched microscale boxes were fabricated and dipped vertically into 10% concentration PS colloidal solution at withdrawal at speed of 0.01 mm/min to 0.04mm/min. Lower speed, higher concentration and 90_ vertical dipping produce larger 3D PnC domain sizes on average. It was found that one big domain could fill a 20 µm deep confined box no larger than 200 µm length. However, there were always cracks between the domains and the edges of the box. Therefore, a polymer box was developed and used instead as a confinement box. It was fabricated by three dimensional lithography (3DL), using two types of resist: IPL 780 and IPDIP. Glass substrates with 10 µm high IPL780 resist polymer boxes of hollow area of 100 µm by 100 µm were dipped into a solution of 0.5%, 1% and 2% concentration of 260 nm diameter polystyrene nano-spheres at withdrawal speed of 0.01 and 0.02 mm/min. Only the sample with 1% concentration at withdrawal speed of 0.01 mm/min gave good results. There were no PS nano-sphere self-assembled on top of IPL780 box. However, there were several domains inside one box. So, a 20 µm high polymer box of 50 µm by 50 µm area was fabricated on silicon chips. They were dipped into a PS nano-sphere solution of 1%, 2 % and 5 % concentration at the speed of 0.01mm/min. Finally, a method was also developed to protect PS colloidal PnC structures from deformation and dissolution. As expected, there was only one domain inside the box formed from the concentration of 1%. Unexpected, there were PS nano-spheres also on top of the sides of IPDIP boxes. PnC structures were treated by e-beam irradiation and protected by a capping layer of AlOx. Aluminum wires were successfully deposited on top of the PnC structures, which is promising for mounting thermal conductance measurement devices on top.



Lisätietoja

Yaolan Tian
yaolan.y.tian@student.jyu.fi
+358408054441
kuuluu seuraaviin kategorioihin: ,