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Abstract—In this work multiple depot vehicle routing problem
is considered in case of variable travel times between nodes on
a metropolis network. This variant of the classic multiple depot
vehicle routing problem is motivated by the fact that in urban
contexts variable traffic conditions play an essential role and
can not be ignored in order to perform a realistic optimization.
Time-travel matrices corresponding to each period of planning
horizon were formed by solving the traffic assignment problem
in conjunction with shortest path problem. Routing problem
instances include from 20 to 100 customers randomly chosen from
a road network of Saint-Petersburg. The results demonstrate that
taking into account traffic flow information can reduce route time
by 8-37% depending on number of customers in the problem
instance.

I. INTRODUCTION

The present article is devoted to possible ways of reducing
costs of freight forwarding companies by taking into account
road networks traffic load while planning delivery route. Bas-
ing upon research results of Russian leading specialists one
can draw a conclusion that constantly increasing level of traffic
congestion is becoming as essential reason of economic losses.
Shorter transportation time would make transportation more
efficient and increase the probability of improving the service
level.

Routing problems on a megapolis network can be solved
by constructing routes in terms of mathematical modelling.
Generated routing plans will provide the minimum travel time
and shortest-time path for vehicles travelling between given
depot and customers at different times of the day. The main
obstacle in applying such methods is that most of the models
assume that the travel speeds are constant, and ignore the
fact that travel speeds can change throughout the day. But in
practice, solutions become not optimal, and non-feasible in
some cases. It causes late arrivals at customers and additional
hiring costs for the truck drivers.

Proposed in this article approach of planning delivery
routes can reduce costs as it considers traffic information and
avoids well-predictable traffic congestion in off-line vehicle
routing. We focus on delays caused by traffic congestion during
peak hours since they constitute a large part (from 70 up to
87%) of all traffic congestion delays [1].

We consider both traffic assignment and vehicle routing
problems. By modelling traffic flow assignment on road net-

works, travel time matrices for 7 periods of a day are formed.
Information on travel times is be used while constructing
routes in the time-dependent variant of multiple depot vehicle
routing problem. Road network of the Saint Petersburg is
considered as an example to test the impact of our approach
and show that the time-dependent model provides significant
improvements over the model with fixed travel times.

The rest of the paper is organised as follows. In the
next section, there is a literature review on time dependent
models in vehicle routing. Sections 3 is devoted to descrip-
tion of general model of the time-dependent multiple depot
vehicle routing problem (TD-MDVRP). We briefly describe
Wardrop’s principles of equilibrium assignment of traffic flows
on road network and consider the formulation of the traffic
assignment problem (TAP) in section 4. Section 5 reports
experimental results on the road network of Saint-Petersburg.
Firstly, the traffic assignment problem is solved by Frank-Wolf
algorithm and travel time matrices are obtained by Dijkstra’s
algorithm. Secondly, we consider randomly generated TD-
MDVRP instances and demonstrate the effectiveness of time-
dependent approach in vehicle routing in comparison with
static formulation. Section 6 concludes research and proposes
future avenues of our study.

II. LITERATURE REVIEW

Time Dependent Vehicle Routing problem (TDVRP) is
the variant of the classic Vehicle Routing Problem (VRP)
motivated by the fact that in a congested urban environment
variable traffic conditions play an essential role and should
not be ignored in order to perform a realistic optimization.
Vehicle routing problem consists in finding a set of routes for
identical vehicles based at the depot, such that each of the
customers is visited exactly once minimizing the total routing
cost. Since the introduction of VRP in work [2] developing
real life applications of the routing problems have led to the
emergence of a wide range of VRP flavors. This paper is
focused on problems in which speeds are not constant and
the travel time between two points is not a function of only
the distance travelled.

Time dependent vehicle routing problems have
received considerably little attention among researchers.
Although these problems represent an urban
congested environment more accurately than do their



nontemporal counterparts. The time dependent vehicle routing
problem formulation was first introduced in study [3].
Randomly generated small-sized instances were solved by
nearest neighbour heuristics for the time-dependent vehicle
routing problem without time windows. Travel times were
represented by step functions of two or three time periods and
defined by uniform distribution for each period. In work [4]
authors developed a restricted dynamic programming approach
based on heuristic algorithm for solving the time-dependent
traveling salesman problem. The algorithm was extended to
handle with a special case of travel time step functions for
which the principle of optimality holds, i.e. partial path of
minimum arrival time necessarily leads to a minimum tour.

Authors in [5] formulated node-based time dependent ve-
hicle routing problem. In this formulation, constant speed r
is assigned to each location for each time period. Thus, rijt
is an average travel speed for a move from i to j starting at
period t. But in fact such definitions as time-dependent travel
time and time-dependent travel speed are equivalent since it
is always possible to deduce these values from each other.
The time-dependent travel speed model has been validated in
a vehicle scheduling package used to schedule bank couriers
in a number of large metropolitan cities in the United States,
but no details are provided in the article.

The major weakness of the above models is that they do
not satisfy the FIFO property firstly mentioned in [6]. This
is intuitive and desirable property that guarantees if a vehicle
leaves a node i for a node j at a given time t, any identical
vehicle with the same destination leaving customer i at a time
t + e, where e > 0 , will always arrive later. To overcome
this weakness, authors in study [4] forced vehicles to wait at
a node to smooth the travel time function. But this suggestion
can hardly ever be carried out in real-life applications. In
work [6], the scheduling horizon is divided into three time
periods and the travel times change from one period to the
next. Travel speed is defined by continuous linear function.
This approach can not correctly represent peaks sharpness
because travel speed is supposed to linearly vary. To avoid this
inconvenient, polynomial travel time functions were introduced
in [7]. Multi-start metaheuristic procedure developed in the
latter study is applied on Torino road network. Intelligent
Transport Systems and Infomobility society provided data
with the current speed and real time information on traffic
congestion on the main streets of Torino with 5 minutes time
intervals. Example presented in [7] deals only with ten points
from Torino network.

Authors in work [8] report on computational tests with the
travel time data obtained from the traffic information system
LISB of the city Berlin. The travel time data are available for
every edge of the road network and 214 five-minute intervals.
Real-life time-dependent vehicle routing problems were solved
by proposed approach based on savings, sequential insertion
and 2-opt local search algorithms. In study [9] multi ant colony
system method for TDVRPTW is illustrated in details. Authors
define travel times on the arcs by step-like speed distribution
which induces a partition of the time into several periods.
Presented algorithm was tested on the Padua road network. The
data collected by the automated traffic control system Cartesio
consists in a set of 1522 nodes and 2579 arcs. Measurements
of traffic data were held for all arcs in rush hours and for 50

of these, every hour.

A case study from a well-known 3C warehousing company
in Taiwan resulted in 22% improvement over the companys
current strategy as it reported in [10]. Problem instance in-
cluded a distribution center located in the south of Taiwan
with the aim to satisfy the requests from 25 nearby retail
stores. Five time intervals in a day were defined for time-
dependent modelling. According to the experimental results,
the proposed method produces better vehicle routing with
shorter transportation time but longer transportation distances.
However, longer transportation distances would increase fuel
cost. As a result, authors suggested to consider a tradeoff
between operation time and transportation distance for future
research.

The benefits of time-dependent vehicle routing and
scheduling systems were also demonstrated in [11] by using
real-world data for the road network in the north west of
England. In the UK, the ITIS Floating Vehicle Data provides a
national road network monitoring system. The system can be
used to update journey times based on current road conditions,
but also provides a record of past conditions so that travel times
can be related to the time of the day, the day of the week and
the season of the year. The case study in [12] was based on
the distribution system of an electrical goods wholesaler. For
its operation in the South West of the UK, the number of
customers served per day ranged between 40 and 64 and the
number of vans required was normally up to seven.

Recent theoretical studies of TD routing problems are
focused on new models, including pollution control [12], [13],
pickup and delivery [14], inventory management [15] and
applying new algorithms such as a hybrid ant colony/tabu
search algorithm [14], an adaptive genetic algorithm [15] or a
local search with the time improvement phase [16]. A stand-
alone review on time-dependent routing problems could be
found in [17].

Only some papers handle with well-known Solomon’s
benchmark instances introduced in [18]. In study [6] authors do
not consider capacity constraints and fleet size from Solomon
instances. Solomon instances are also reported in [9], never-
theless, the results cannot be compared with previous ones
since a different time speed function is used. Authors in [16]
formulated new test problems based on Solomon instances
that capture the typical speed variations of congested urban
settings. The comparison of results on Solomon instances
could be found in [19]. The authors used genetic algorithm
for constructing routes.

III. MD-TDVRP FORMULATION

Let us consider oriented graph G = (V,E), where V =
{1, ..., N + M} is the nodes array, and E = {(i, j) | i, j ∈
V } is the arcs array. The nodes array consists of two arrays:
Vcust represent the customers, Vdepot stands for the array of
depots and V = Vcust ∪ Vdepot, where Vcust = {1, ..., N} and
Vdepot = {1, ...,M}.

Let us consider the set of heterogeneous vehicles K =
{1, ..., L}. Assume, each vehicle could perform one trip to
deliver goods to a number customers, but total amount of these
goods could not exceed the vehicle capacity Qk.



Each customer j ∈ Vcust has a demand level dj that should
be met. We assume that each vehicle visit should fully satisfy
the demand of the customer, so each customer could be visited
only once. We also assume that there are enough stock in the
depot to satisfy all demand.

We consider the time-dependent version of the routing
problem, which means that, first, we take into account time
durations of routing processes, and second, arc travel times
might change during the day.

Each arc (i, j) ∈ E is associated with travel time function
tij(bi) of departure time bi from node i. We consider departure
times as variables. We use the notation bi, i ∈ Vcust for the
departure times from customers, and bk0 for the start time of
vehicle k ∈ K.

The goal of optimization is to find a routing plan for
vehicles (set of routes, or visiting sequences), that would fully
satisfy demands of the customers, would not violate capacity
restrictions and be the fastest, i.e. have the least possible total
travel time.

Above formulated problem could be formalized in the form
of integer programming problem. Let {xij}i,j∈V be a binary
variable, that equals one, if customer i is directly followed
by customer j in the routing plan, and zero otherwise. Let
{yik}i∈V,k∈K be a binary variable, that equals one, if customer
i is visited by vehicle k, and zero otherwise. Thus, we now
present an integer linear programming formulation of the MD-
TDVRP:

∑
i∈V

∑
j∈V

tij(bi)xij → min, (1)

subject to: ∑
i∈V

xij =
∑
i∈V

xji ∀j ∈ V ; (2)

∑
i∈V

xij = 1 ∀j ∈ Vcust; (3)

∑
i∈Vcust

diyik ≤ Qk ∀k ∈ K; (4)

bj ≥
∑

i∈Vcust

xij(bi + tij(bi)) + x0j

∑
k∈K

yjv(b
k
0 + tij(b

k
0)),

∀j ∈ Vcust (5)

Target function (1) represents the total travel time by
all routes. Constraints (2) express the continuity property of
the routes. Constraints (3) ensure that each customer visited
exactly ones. Constraints (4) guarantee capacity restrictions
to be held. The last group of constraints (5) represent low
boundaries for departure time from each customer.

As it was mentioned earlier, bi, i ∈ V stands for the
departure time from customer i. We assume that continuous
piecewise function is defined as

tij(bi) =


chij , zh−1 +△ij,h−1 ≤ bi ≤ zh −△ijh

chij +
(ch+1

ij −chij)(bi−zh+△ijh)

2△ijh
,

zh −△ijh < bi < zh +△ijh,
(6)

where h = 1, . . . , H; △ij0 = △ijH = 0 .

This function firstly was introduced in work [8].

IV. TRAFFIC ASSIGNMENT PROBLEM

The traffic assignment problem, in short TAP, consists in
determining which routes to assign to the drivers who travel
on a transportation network from some origins and some
destinations. It is known that any traffic system holds user
equilibrium after some time. In 1952, Wardrop introduced
two principles that formalize different notions of network
equilibrium [20]. The first principle states that the journey
times in all routes actually used are equal and less than
those which would be experienced by a single vehicle on any
unused route. It explains that after the moment when network
became equilibrium, no user has any incentive to change it’s
path choice because it would increase their travel costs in
the network. The second principle states that the assignment
should minimize the total travel times of all users. In the
first case the assignment is named a user equilibrium, and, in
the second case, one talks of system optimum. More detailed
information on the user equilibrium problem (flow assignment
with equal journey time by alternative routes) and system
optimum (flow assignment with minimal average journey time)
one can find in study [21]. We will consider user equilibrium
as it is the result of a dynamical process of drivers route choice
behavior.

Let G = (N,A) be an oriented graph, where N is the set
of nodes and A is the set of arcs. We denote R the set of origin
nodes and S the set of destination nodes. We introduce Krs

which stands for the set of routes between origin node r ∈ R
and destination node s ∈ S, xa — route flow on arc a ∈ A;
da — travel time on a ∈ A. We denote the link flow on route
k ∈ Krs as frs

k and total link flow between r ∈ R and s ∈ S
— F rs.

We assume boolean function which indicates if arc a is
included into the route k ∈ Krs:

δrsak =

{
1, if arc a a is in route k ∈ Krs,
0, else.

The user optimum equilibrium can be found by solving the
following nonlinear programming problem

min
x

∑
a∈A

∫ xa

0

da(u)du, (7)

subject to

∑
k∈Krs

frs
k = F rs, ∀r ∈ R, s ∈ S, (8)

frs
k > 0, ∀k ∈ Krs, r ∈ R, s ∈ S, (9)

xa =
∑
r∈R

∑
s∈S

∑
k∈Krs

frs
k δrsa,k, ∀a ∈ A. (10)

where da(f) — delay function of volume f on arc a ∈ A.



Many different types of volume-delay functions have been
proposed and used in practice. However, the most widely used
volume-delay functions is BRP-function (Bureau of Public
Roads) [22] which is defined as

di(fi) = t0i

(
1 + αi

(
fi
pi

)βi
)
,

where t0i — time of free movement along link i, fi —
volume of traffic on a link i per unit of time and pi — capacity
of link i per unit of time. The value of di(fi) stands for the
journey time for a one vehicle on a link i depending on flow
volume fi on this link.

Nonlinear programming problem (7)–(10) can be reformu-
lated in terms of:

T (f) = min
f

|A|∑
i=1

∫ fi

0

t0i

(
1 +

u

pi

)
du,

subject to (8)–(10).

V. EXPERIMENTAL RESULTS

A. Traffic assignment problem

For a numerical experiment we consider Saint-Petersburg
road network. The graph G of network in presented at Fig 1.
There are 109 nodes in it and 310 arcs. The nodes were chosen
at the intersection of main highways and streets of the Saint-
Petersburg and defined by geographical coordinates — latitude
and longitude. Each arc is defined by it’s BRP-function with
parameters α = 0,15, β = 4 set by experimental approach.
Time of free movement was calculated as the ratio of the length
of an arc to average speed equaled 40 kilometres per hour.

Fig. 1: Saint-Petersburg road network

Capacity of link i per unit of time pi was calculated as:

pi = kµp0i , (11)

where p0i — capacity of one traffic lane per unit of time [23].
Coefficient k in formula (11) indicates how many traffic lanes
the arc has: k equals 1 if there is one lane, 1.9 — in case
of two lanes, 2.7 — in case of three lanes, 3.5 — in case
of four or more. Coefficient µ ∈ [0, 1] in formula (11) shows
the dependance of the capacity of an arc on the traffic-light
conditions and is defined as follows:

µ =
l

l + v2

2 ( 1a + 1
b + v

Tall−Tgreen

2 )
,

where l — arc length, m; a — acceleration during speed
increase (1,0 m/s2), b — deceleration during braking (1,5
m/s2); Tall — the duration of the fixed cycle of traffic light,
s; tgreen — the duration of green phase, s. For highways µ
equals 1 and opposite – it is about 0.5 for streets with heavy
traffic. The capacity of one traffic lane per unit of time p0i is
defined by (12).

p0i =
3600v

(v + 0,7 + 0,13v2)
, (12)

where v — the average speed. Formula (12) considers several
parameters such as the safety distance between vehicles, the
average length of a vehicle, the average braking distance,
coefficient of adhesion, longitudinal gradient and others.

We divide time horizon into periods Zh = [zh−1; zh],
h = 2, . . . ,H . Total link flow F rs for each origin-destination
pair (r, s) was defined for every period Zk by experts of the
Center of Intellectual logistics of St. Petersburg State Univer-
sity in collaboration with specialists of Solomenko Institute of
Transport Problems of the Russian Academy of Sciences.

The user equilibrium flow distribution was found by using
the Frank-Wolfe algorithm [24]. In conjunction with Dijkstra’s
algorithm [25] of finding shortest path we calculate the set of
travel time matrices Ch corresponding to each of the periods
of planning horizon:

1) 8.00 – 10.00, matrix C1;
2) 10.00 – 12.00, matrix C2;
3) 12.00 – 14.00, matrix C3;
4) 14.00 – 16.00, matrix C4;
5) 16.00 – 18.00, matrix C5.
6) 18.00 – 20.00, matrix C6;
7) 20.00 – till the end of routing, matrix C7.

For further solving routing problems we define continuous
piecewise function (6) for every arc on the graph G of Saint-
Petersburg’s road network and form resulting matrix Cdf . We
also introduce matrix Cff in which values correspond to travel
time on the free-flow road network.

B. Vehicle routing problem

In this subsection we will demonstrate the effectiveness
of taking into account traffic load information for planning
delivery routes.



For a numerical experiment we generated the set of TD-
MDVRP problem instances of various dimensions with 10
to 109 clients in each example randomly chosen from Saint-
Petersburg road network. We chose two depots which were in
the 2-nd and 90-th nodes of the graph at Fig. 1. Service time
for each client was taken to be 10 minutes. Time limit for
each route did not vary during the working day and was equal
to 480 minutes (8 hours). Problem instances were solved by
genetic heuristics. The algorithm is described in details in [26].
Number of generation for constructing one solution equaled 20
and there were 100 individuals in population. The results of
routing are presented in Table 1.

TABLE I: TD-MDVRP solutions by genetic heuristics

Num. of
customers

Number of cars Total time, min
Depot 1 Depot 2 Total Depot 1 Depot 2 Total

20 1 3 4 34,14 391,31 425,45
30 1 4 5 34,14 493,69 527,83
40 2 4 6 170,84 502,12 672,96
50 2 6 8 169,11 698,24 867,35
60 6 6 12 533,87 737,26 1271,13
70 7 8 15 713,33 748,51 1461,84
80 4 8 12 385,6 919,48 1305,08
90 5 9 14 497,92 958,71 1456,63
100 8 9 17 874,69 1092,4 1967,09

Numerical experiments were also held on travel time matrix
with constant values. In this case the values in this matrix
stand for the travel time on the free-flow road network. To
perform comparison between results of MDVRP and TD-
MDVRP formulations we assume notation as follows: let
s be the solution of a problem instance on the free-flow
network, and s∗ — on the delay network. We introduce two
functions lenff (s) and lendf (s) which define the travel time
on a route s according to matrices Cff and Cdf respectively.
Table 2 contains the comparison of MDVRP and TD-MDVRP
solutions on the same set of problem instances.

TABLE II: Comparison of TD-MDVRP and MDVRP solutions

Num. of
customers

TD-MDVRP
solution, min.

MDVRP
solution, min Improvement

percent., %.
Avg. delay
of car, min.Expected Real

20 425,45 292,14 565,03 24,7 68,22
30 527,83 432,44 843,71 37,44 82,25
40 672,96 480,33 807,79 16,69 54,58
50 867,35 660,8 1241,51 30,14 72,59
60 1271,13 953,99 1615,52 21,32 55,13
70 1461,84 1089,92 1806,12 19,06 47,75
80 1305,08 986,07 1794,55 27,28 67,37
90 1456,63 1140,33 1730,71 15,84 42,17
100 1967,09 1372,19 2130,24 7,66 44,59

First column of Table 2 corresponds to the size of problem
instance. In the second column the overall travel time of TD-
MDVRP-solution is presented. These values can be also found
in Table 1. Column of MDVRP-solution consists of two sub-
columns: expected and real time. The notation of expected
time means the time lenff (s), which vehicles are going to
spend according to the route of the MDVRP-solution. As the
formulation of MDVRP doesn’t consider traffic information
while generating routes, real time on road will differ from
planned one. For estimation of real time on constructed route,
we should combine the route s and travel time matrix Cdf

in case of delay-flow network. Therefore, we form the sub-

(a) VRP route (b) TD-VRP route

Fig. 2: Comparison of VRP and TD-VRP solutions in problem
instance with 5 customers

column Cdf (s), signed in the Table 2 as real time on road
according to the MDVPR-solution.

As a result, travel time in TD-MDVRP solution needed for
serving all customers is less than this value in case of MDVRP
formulation. In the Table 2 one can also see the percentage of
improvement calculated as the ratio of difference between time
travel of real MDVRP- and TD-MDVRP- solution to travel
time of MDVRP-route on delay flow network. Last column
of Table 2 represents the average delay of the route of one
car, i.e on how much minutes (in average) the travel time of
one vehicle increases on delay network in comparison with
planned time.

Let us consider the VRP-problem instance with the depot
in the 90-th node on a graph at Fig. 1 and five clients at
nodes 60, 62, 77, 85, 102. The service time of one client
equaled ten minutes. Generated by genetic heuristics the VRP-
solution lasts 253 minutes and TD-VRP — 232 minutes.
Routes corresponding to two solutions are showed at Fig. 2.
TD-VRP does not include well-predictable traffic congestions
and chooses to route through Saint-Petersburg Ring Road.

In some cases, one of the aims of freight forwarding
companies is the reducing the overall time on road of vehicle
or the reducing the fuel consumption. For this it is useful to
choose beforehand the period of a day to start the routing at.
The comparison of travel time of constructed routes in cases
of various departure time is presented in Table 3.

TABLE III: TD-MDVRP routing in case of different departure
times

Num. of
cust.

Departure time
8:00 10:00 12:00 14:00 16:00 18:00 20:00

TD-MDVRP solution, min.
20 425 456 460 469 440 483 390
30 527 543 541 552 542 536 503
40 672 714 686 724 675 742 693
50 867 938 909 971 874 1001 855
60 1271 1254 1408 1417 1468 1698 1416
70 1461 1519 1449 1564 1503 1619 1545
80 1305 1308 1413 1525 1477 1427 1316
90 1456 1737 1676 2007 1764 1928 1711

100 1967 2037 2113 2239 2349 2139 2093

One can note, there is one strongly marked rush hour —
at 18:00. In the morning and afternoon (from 8:00 to 14:00)
travel time differs a bit from each other. Most suitable time for
staring routing is the 16:00, it will save about 100 minutes and
some fuel respectively. It’s worth mentioning that travel time



on route depends on topology of nodes (addresses of clients in
problem instance) on city graph. In this way, the most useful
departure time for various problem instances can differ. This
value should be chosen individually, for example if car visits
the same set of customers daily or weekly.

VI. CONCLUSION

The purpose of this paper was to give an introduction to
solve the routing problems in a real network after assignment
traffic flows. Time-dependent model was chosen in order to
perform a realistic optimization in urban contexts. Experiments
were performed on a road network of Saint-Petersburg to
evaluate the model in a static and a dynamic environment.
As a result, taking into account current traffic flow information
leads to considerably better results in solving routing problems.
The percent of improvement is up to 37% for some problem
instances.

The main obstacle in applying such methods is a low
accuracy of traffic information. The traffic assignment in this
study took into account only the length of the roads and
the number of lanes on them. Other parameters were set
to be equal. For better results it would be great to analyze
more factors such as traffic-light conditions for each road and
intersection, changing velocity, and some mechanics factors
by calculating lane capacity. Moreover, transport flows were
defined by experts and can not represent an urban congested
environment accurately. Processing of obtained data should
be performed with the help of specialized software to model
traffic flow assignment on road networks. Systems of traffic
monitoring which nowadays are being widely implemented can
provide data to construct origin-destination matrices for nodes
of a road network.
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