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1. Introduction

The Boundary Control method can be used to solve several coeffi-
cient determination problems for wave equations. The method origi-
nates from [5], and it allows for building a rather comprehensive theory
of inverse problems of coefficient determination type. Indeed, many
such problems can be reduced to inverse boundary spectral problems,
which again can be reduced to coefficient determination problems for
wave equations. This is the case for inverse problems for heat and
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non-stationary Schroödinger equations [6], as well as for several time-
fractional [7] and space-fractional [8] equations. Inverse problems for
linear elliptic equations on a wave guide [9], and some (very special)
non-linear elliptic equations [10] are also covered by this theory.

The method has been generalized for symmetric systems of wave
equations with scalar leading order [11] and for wave equations on
Lorentzian manifolds satisfying a curvature bound [12].

The purpose of these lecture notes is to give an introductory expo-
sition of the method. For an in-depth presentation, we refer to the
monograph [3].

2. A model problem in 1 + 1 dimensions

Consider the following initial-boundary value problem

(1)


(∂2

t − ∂2
x + q)u = 0; on R+ × (0, 1);

u|x=0 = f ;

u|x=1 = 0;

u|t=0 = ∂tu|t=0 = 0,

where f is a boundary source, q is a potential, and R+ stands for the
interval (0,∞). We denote its solution by uf = u(t, x). Define the
Dirichlet-to-Neumann map

(2) Λf = ∂xu
f
∣∣
x=0

.

Then the inverse problem is stated as follows: recover the potential q,
given the operator Λ.

2.1. Finite speed of propagation in the case q = 0. The finite
speed of propagation property for the acoustic wave equation plays a
central role in both direct and inverse theory. To illustrate the property
in the simplest possible case, let us consider (1) with q = 0, that is,

(∂2
t − ∂2

x)u = 0.(3)

We set

E(t, x) = |∂tu(t, x)|2 + |∂xu(t, x)|2.

Theorem 1 (Conservation of energy). Suppose that u ∈ C2(R+ × (0, 1))
satisfies {

(∂2
t − ∂2

x)u = 0 on R+ × (0, 1)

u |x=0 = u |x=1 = 0.
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Then the global energy

E(t) =
1

2

∫ 1

0

E(t, x)dx

satisfies ∂tE(t) = 0 for all t > 0.

Proof. We write,

∂tE(t) =
1

2

∫ 1

0

∂tE(t, x)dx

=

∫ 1

0

(
∂tu(t, x)∂

2
t u(t, x) + ∂xu(t, x)∂t∂xu(t, x)

)
dx.

By integration by parts, we obtain

∂tE(t) = [∂xu(t, x)∂tu(t, x)]
1
0

+

∫ 1

0

(
∂2
t u(t, x)− ∂2

xu(t, x)
)
∂tu(t, x)dx.

The first term is zero since u(t, 0) = u(t, 1) = 1 and the last integral is
zero since u satisfies the wave equation. □

Theorem 2 (Finite speed of propagation). Suppose that u ∈ C2(R+ × (0, 1))
satisfies {

(∂2
t − ∂2

x)u = 0 on R+ × (0, 1)

u |x=1 = 0.

Then the local energy

E(t) =
1

2

∫ 1

t

E(t, x)dx

satisfies ∂tE(t) ≤ 0 for all t > 0.

Proof. We write, by using Leibniz integral rule,

∂tE(t) = −1

2
E(t, t) + 1

2

∫ 1

t

∂tE(t, x)dx

= −1

2
E(t, t) +

∫ 1

t

(
∂tu(t, x)∂

2
t u(t, x) + ∂xu(t, x)∂t∂xu(t, x)

)
dx.

An integration by parts gives

∂tE(t) = −1

2
E(t, t) + [∂xu(t, x)∂tu(t, x)]

1
t

+

∫ 1

t

(
∂2
t u(t, x)− ∂2

xu(t, x)
)
∂tu(t, x)dx.
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Since u is the solution of the wave equation the last integral is 0. More-
over, since u(t, 1) = 0, the second term is 0 at 1, so that

∂tE(t) = −1

2
E(t, t)− ∂tu(t, t)∂xu(t, t) = −1

2
(∂tu(t, t) + ∂xu(t, t))

2 ≤ 0.

□

In particular, if E(0) = 0 then E(t) = 0 for all t > 0. So if u and
∂tu vanish initially on the right half line {x > 0} then at time t they
vanish on the half line {x > t}. To see that this statement is optimal,
observe that u(t, x) = f(x− t) is a solution to (3) for any f ∈ C2(R),
and choose f(r) vanishing for r > 0 but not near r = 0.

2.2. Finite speed of propagation for general q. Let us now con-
sider a wave equation with a potential as in (1), and prove a finite speed
of propagation result in the very natural setting of a diamond, see the
set K in Theorem 3 below. It is also possible to study the case where
boundary conditions are posed, say at x = 0 and x = 1 as before, and
where the diamond intersects the boundary of R+ × (0, 1). However,
we leave this case to the reader.

Theorem 3 (Finite speed of propagation). Let X > 0 and define

K := {(t, x) ∈ R× R : |x| ≤ X − |t|}.
Let q ∈ L∞(K) and let u ∈ C2(K) be a solution of the equation{

(∂2
t − ∂2

x + q(t, x))u = 0, on K;

u |t=0 = ∂tu |t=0 = 0, on (−X,X).

Then u|K = 0.

Proof. We will consider the case t > 0. The case t < 0 is analogous
and we omit its proof. Let us set I(t) = [−X + t,X − t] and define the
energy

E(t) :=
1

2

∫
I(t)

E(t, x)dx.

Using Leibniz integral rule, we obtain

∂tE(t) =− 1

2

(
|∂tu(t,X − t)|2 + |∂xu(t,X − t)|2

)
− 1

2

(
|∂tu(t,−(X − t))|2 + |∂xu(t,−(X − t))|2

)
+

∫
I(t)

(
∂tu(t, x)∂

2
t u(t, x) + ∂xu(t, x)∂t∂xu(t, x)

)
dx.
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An integration by parts gives

∂tE(t) =− 1

2

(
|∂tu(t,X − t)|2 + |∂xu(t,X − t)|2

)
− 1

2

(
|∂tu(t,−(X − t))|2 + |∂xu(t,−(X − t))|2

)
+ ∂tu(t,X − t)∂xu(t,X − t)− ∂tu(t,−(X − t))∂xu(t,−(X − t))

+

∫
I(t)

∂tu(t, x)
(
∂2
t u(t, x)− ∂2

xu(t, x)
)
dx.

Therefore,

∂tE(t) =− 1

2

(
|∂tu(t,X − t)| − |∂xu(t,X − t)|

)2

− 1

2

(
|∂tu(t,−(X − t))|+ |∂xu(t,−(X − t))|

)2

+

∫
I(t)

∂tu(t, x)
(
∂2
t u(t, x)− ∂2

xu(t, x)
)
dx.

Since the first two terms are non-positive, it follows

∂tE(t) ≤ −
∫
I(t)

∂tu(t, x)q(t, x)u(t, x)dx

+

∫
I(t)

∂tu(t, x)
(
∂2
t u(t, x)− ∂2

xu(t, x) + q(t, x)u(t, x)
)
dx.

Let us use notation

P := ∂2
t − ∂2

x + q.

The Cauchy-Schwarz inequality imply

E(t) = E(0) +

∫ t

0

∂tE(s)ds

≤ E(0)+2

∫ t

0

∫
I(s)

(
|∂tu(s, x)|2 + |q(s, x)u(s, x)|2 + |Pu(s, x)|2

)
dxds.

Hence,
(4)

E(t) ≤ E(0)+C

(∫ t

0

E(s)ds+

∫ t

0

∫
I(s)

(
|u(s, x)|2 + |Pu(s, x)|2

)
dxds

)
,

where C is a constant depending on q and X, which will change from
line to line.
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Let us now take care of the |u|2 term caused by the potential q. We
will use arguments close to the proof in [2, Sec. 4.2]. For x ∈ R fixed,
we know

u(t, x) = u(0, x) +

∫ t

0

∂tu(s, x)ds.

Let us square it, and then, use Cauchy’s inequality and the Cauchy-
Schwarz inequality to obtain

|u(t, x)|2 ≤ 2|u(0, x)|2 + 2t

∫ t

0

|∂tu(s, x)|2ds.(5)

Next, we define

z(t) := E(t) +

∫
I(t)

|u(t, x)|2dx.

Using (4) and (5), we estimate

z(t) ≤ E(0)+C

(∫ t

0

E(s)ds+

∫ t

0

∫
I(s)

(
|u(s, x)|2 + |Pu(s, x)|2

)
dxds

)
+ 2

∫
I(t)

|u(0, x)|2dx+ 2t

∫
I(t)

∫ t

0

|∂tu(s, x)|2dsdx.

Since we consider t ∈ [0, X], and since I(t) ⊂ I(s) for s ∈ [0, t], the

last term can be estimated from above by 2X
∫ t

0
E(s)ds. Therefore, we

have

z(t) ≤ Cz(0) + C

∫ t

0

z(s)ds+ C

∫ t

0

∫
I(s)

|Pu(s, x)|2dxds.

Using the Gronwall’s inequality in the integral form1, we obtain

z(t) ≤ C

(
z(0) +

∫ t

0

∫
I(s)

|Pu(s, x)|2dxds
)
.(6)

Since z(0) = 0 and Pu = 0, we conclude that z(t) = 0 for t ∈ [0, X].
Recalling the definition of the function z, we see that u(t, x) = 0 for
t ∈ [0, X] and x ∈ I(t). □

Theorem 4 (Unique continuation). Let T > 0 and define

K := {(t, x) ∈ [−T, T ]× R : |x| ≤ T − |t|}.
Let q ∈ L∞(K) and let u ∈ C2(K) be a solution of the equation{

(∂2
t − ∂2

x + q(t, x))u = 0, on R× R;
u |x=0 = ∂xu |x=0 = 0, on [−T, T ].

1[1, Appendix B.2.k]
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∂tu |t=0 = u |t=0 = 0

u = 0
x

t

−X X

u |x=0 = ∂xu |x=0 = 0

u = 0

t

x

a) Finite speed of the wave propagetion

1 + 1 dimensional case

b) Unique continuation

1 + 1 dimensional case

T

−T

Figure 1.

Then u|K = 0.

Proof. By interchanging the roles of t and x, we see that the theorem
coincides with Theorem 3; see Figure 1. □

2.3. Homework: direct problem for the wave equation. We con-
sider the equation

(∂2
t −∆+ q(x))u(t, x) = f(t, x), in (0, T )× Rn,(7)

u|t=0 = ∂tu|t=0 = 0,

where q ∈ C∞
0 (Rn). The proof of finite speed of propagation generalizes

to higher dimensions (but the proof of unique continuation does not).

Theorem 5 (Finite speed of propagation, nD). Let Ω ⊂ Rn be an open
set. Assume that u ∈ C2(R× Rn) is a solution of the equation{

(∂2
t −∆+ q(x))u = 0, on R× Rn;

u |t=0 = ∂tu |t=0 = 0, on Ω.

Then

u|C = 0,

where

C := {(t, x) ∈ R× Rn : d(x,R \ Ω) > |t|}.
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Homework 1. Write □ = ∂2
t −∆,

I(s) = {(t, x) ∈ C : t = s},
and define z analogously to the 1D case. Show that

z(t) ≤ C

(
z(0) +

∫ t

0

∫
I(s)

|(□+ q)u(s, x)|2dxds
)
.(8)

Hint: The case q = 0 is proven in [1].

Homework 2. Prove Theorem 5.

2.3.1. Existence of solutions. Let f ∈ C∞
0 ((0, T )×Rn). Then there are

R, ϵ > 0 such that

supp(f) ⊂ (ϵ, T )×B(0, R).

We use the shorthand notation

B = B(0, R), K =
⋃

t∈(ϵ,T )

B(0, R + t).

Choose χ ∈ C∞
0 ((0,∞)× Rn) such that χ = 1 near K, and define the

spaces

X0 = C∞
0 ((−∞, T )× Rn), Y0 = {χ(□+ q)w; w ∈ X0}.

Homework 3. By considering the function u(t) = w(T − t), verify
that the finite speed of propagation estimate (8) implies

∥w(t)∥H1(B)+∥∂tw(t)∥L2(B) ≤ C∥(□+q)w∥L2(K), t ∈ (ϵ, T ), w ∈ X0.

In particular,

∥w∥L2(supp(f)) ≤ C∥χ(□+ q)w∥L2(R1+n), w ∈ X0.

We define a linear map L0 : Y0 → R by

L0(χ(□+ q)w) = ⟨f, w⟩.
Here ⟨·, ·⟩ = ⟨·, ·⟩L2(R1+n) is the inner product in L2(R1+n), and we write
∥·∥ for the associated norm. Note that L0 is well-defined, since

|L0(χ(□+ q)w)| ≤ ∥f∥∥w∥L2(supp(f)) ≤ C∥f∥∥χ(□+ q)w∥.
The Hahn-Banach theorem2 implies that there is a continuous linear

functional L on L2(R1+n) that coincides with L0 on Y0. The Riesz
representation theorem3 implies that there is v ∈ L2(R1+n) such that

L(ϕ) = ⟨v, ϕ⟩, ϕ ∈ L2(R1+n).

2https://en.wikipedia.org/wiki/Hahn%E2%80%93Banach_theorem
3https://en.wikipedia.org/wiki/Riesz_representation_theorem

https://en.wikipedia.org/wiki/Hahn%E2%80%93Banach_theorem
https://en.wikipedia.org/wiki/Riesz_representation_theorem
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Thus for w ∈ X0,

⟨v, χ(□+ q)w⟩ = L(χ(□+ q)w) = L0(χ(□+ q)w) = ⟨f, w⟩,
We define u = χv. Then u = 0 near t = 0.

Homework 4. Verify that (□ + q)u = f in the sense of distributions
on (0, T )× R1+n.

Note that we can not right away use (8) to conclude that u is the
unique solution of (7), since at this point we have shown (8) only for
functions in C2(R1+n). For this reason we need to show that u has
better regularity properties than just L2.

2.3.2. Regularity. A very highbrow way to show that the solution u
obtained above is actually smooth is to use propagation of singularities
for the wave equation. We will outline a more elementary proof though.

Define

X = {v ∈ C∞((0, T )×R1+n); supp(v) ⊂ (0, T ]×Rn, supp((□+q)v) ⊂ (0, T ]×B}.
Homework 5. Show that (8) implies for all v ∈ X that supp(v) ⊂
(0, T ]×B(0, R + T ) and that

∥v∥C(0,T ;H1(Rn)) + ∥v∥C1(0,T ;L2(Rn)) ≤ C∥(□+ q)v∥L2((0,T )×B).(9)

Homework 6. By using the Plancherel theorem4 show the following
lemma:

Lemma 1. Let ϕ ∈ L2(Rn) and suppose that ∆ϕ ∈ L2(Rn). Then
ϕ ∈ H2(Rn) and

∥ϕ∥H2(Rn) ≤ C∥(1−∆)ϕ∥L2(Rn).

Let f ∈ C∞
0 ((0, T ) × Rn) and let u ∈ L2(R1+n) satisfy (7) in the

sense that (□+ q)u = f as distributions and u = 0 near t = 0. By the
discussion in the previous section, such u exists.

Set uj = η1/j ∗ u, that is,

uj(t) =

∫
R
η1/j(t− s)u(s)ds, j = 1, 2, . . . ,

where ηϵ is the mollifier as in [1, Appendix C.5]. Then uj ∈ C∞(R;L2(Rn))
and uj = 0 near t = 0 for large j. Define also fj = η1/j ∗ f .
Homework 7. Show that (□+ q)uj = fj.

Then
∆uj(t) = ∂2

t uj(t) + quj(t)− fj(t) ∈ L2(Rn),

and therefore Lemma 1 implies that uj ∈ C∞(R;H2(Rn)).

4https://en.wikipedia.org/wiki/Plancherel_theorem

https://en.wikipedia.org/wiki/Plancherel_theorem
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Homework 8. Use an induction to show that uj ∈ C∞(R;H2k(Rn))
for all k = 1, 2, . . . .

Then the Sobolev embedding theorem5 implies that uj ∈ C∞(R1+n).
In particular, uj ∈ X for large j.

Homework 9. Apply (9) to the difference uj−uk and show that (uj)
∞
j=1

is a Cauchy sequence in the Banach space

H1 = C(0, T ;H1(Rn)) ∩ C1(0, T ;L2(Rn)).(10)

Thus it converges, say to u∞, in this space. But uj → u in the larger
space L2(0, T ;L2(Rn)), and therefore u = u∞. In particular u is in the
space H1.

Homework 10. Apply (9) to uj and let j → ∞ to show that (9) holds
with v = u. Conclude that (7) has a unique solution in H1.

Define the linear map

W0 : C
∞
0 ((0, T )×B) → H1, W0f = u,

where u is the solution of (7).

Homework 11. Show that (9) implies that W0 has a unique continuous
extension

W : L2((0, T )×B) → H1.(11)

2.3.3. Higher regularity. Without higher regularity results we are forced
to work with solutions in the sense of distributions, and this can be
cumbersome.

Homework 12. Show that v ∈ X implies ∂k
t v ∈ X for all k = 1, 2, . . . .

Use this and Lemma 1 to show

m+1∑
k=0

∥v∥Ck(0,T ;Hm+1−k(Rn)) ≤ C

m∑
k=0

∥∂k
t (□+ q)v∥L2(0,T ;Hm−k(Rn)), v ∈ X.

(12)

Homework 13. Show that W0 : C
∞
0 ((0, T )× B) → C∞((0, T )× Rn).

A similar proof can be found in [1, Th. 7.2.3.6].

2.4. An integration by parts trick for the inverse problem.
We begin by recalling that uf and uh are solutions of (1), when the
boundary source are given by f and g, respectively. Let us define the
function

Wf,h(t, s) := (uf (t, ·), uh(s, ·))L2(0,1).

Then the following holds

5https://en.wikipedia.org/wiki/Sobolev_inequality#Sobolev_

embedding_theorem

https://en.wikipedia.org/wiki/Sobolev_inequality#Sobolev_embedding_theorem
https://en.wikipedia.org/wiki/Sobolev_inequality#Sobolev_embedding_theorem


INTRODUCTION TO THE BOUNDARY CONTROL METHOD 11

Lemma 2. Let f , h ∈ C∞
0 (R+). The operator Λ determines Wf,h.

Proof. Since uf , and uh are solutions of (1), it follows

(∂2
t − ∂2

s )Wf,h(t, s) =
(
∂2
xu

f (t, ·)− quf (t, ·), uh(s, ·)
)
L2(0,1)

−
(
uf (t, ·), ∂2

xu
h(s, ·)− quh(s, ·)

)
L2(0,1)

.

Further, using the integration by parts, we obtain

(∂2
t − ∂2

s )Wf,h(t, s) = ∂xu
f (t, 1)uh(s, 1)− ∂xu

f (t, 0)uh(s, 0)

− uf (t, 1)∂xu
h(s, 1) + uf (t, 0)∂xu

h(s, 0).

Boundary conditions for uf and uh give

(13) (∂2
t − ∂2

s )Wf,h(t, s) = f(t)Λh(s)− Λf(t)h(s).

Let us denote the right-hand side of (13) by F (t, s), then Wf,h is the
solution of the equation{

(∂2
t − ∂2

s )Wf,h(t, s) = F (t, s) on R+ × R+,

Wf,h(0, s) = ∂tWf,h(0, s) = 0.

Hence, Wf,h is determined by F , and consequently, it is determined by
Λ. □

2.5. Approximate controllability. The following result is obtained
by transposing unique continuation.

Lemma 3 (Approximate controllability). Let 0 ≤ s < T ≤ 1, then the
set

B(s, T ) :=
{
uf (T, ·) : f ∈ C∞

0 ((T − s, T ))
}

is a dense subset of L2(0, s).

Note that due to finite speed of propagation the function uf (T, ·) is
supported on [0, s]. Hence it is natural to view B(s, T ) as a subspace
of L2(0, s).

Proof. To show density, it is enough to prove that B(s, T )⊥ = {0},
where

B(s, T )⊥ :=
{
v ∈ L2((0, s)) : (v, u)L2((0,s)) = 0 for all u ∈ B(s, T )

}
.

Let h ∈ B(s, T )⊥. Let ω be the solution of the equation
(∂2

t − ∂2
x + q(t, x))ω(t, x) = 0 on (0, T )× (0, 1);

ω |x=0,1 = 0;

ω |t=T = 0;

∂tω |t=T = h.
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Let f ∈ C∞
0 ((T − s, T )). An integration by parts, together with the

boundary and initial conditions for uf and ω, give

0 =
((
∂2
t − ∂2

x + q
)
uf , ω

)
L2((0,T )×(0,1))

−
(
uf ,

(
∂2
t − ∂2

x + q
)
ω
)
L2((0,T )×(0,1))

= −
∫ 1

0

uf (T, x)∂tω(T, x)dx−
∫ T

0

uf (t, 0)∂xω(t, 0)dt.

Since h ∈ B(s, T )⊥, the first term of the right-hand side is zero, so that

0 =

∫ T

0

f(t)∂xω(t, 0)dt,

which is true for arbitrary f ∈ C∞
0 ((T − s, T )). Hence, ∂xω(t, 0) = 0

on (T − s, T ).
Let ω̃ be the odd extension of ω to (T, 2T )× (0, 1), more precisely,

ω̃(t, x) :=

{
ω(t, x) if t ∈ t ≤ T

−ω(2T − t, x) otherwise.

Then ω̃ satisfies
(∂2

t − ∂2
x + q(t, x)) ω̃(t, x) = 0 on (0, 2T )× (0, 1);

ω̃ |x=0 = 0 on (0, 2T );

∂xω̃ |x=0 = 0 on (T − s, T + s).

By unique continuation Theorem 4, we obtain that ω̃ = 0 on

{(t, x) ∈ (T − s, T + s)× (0, 1) : |x| ≤ s− |T − t|}.
In particular, ∂tω(T, x) = h(x) = 0 on (0, s), so that B(s, T )⊥ = {0}.

□

2.6. Homework: geometric optics. We will need the following lemma

Lemma 4. Let T ≥ 1, then for any x0 ∈ (0, 1) there is f ∈ C∞
0 (0, T )

such that uf (T, x0) ̸= 0.

Geometric optics can be used to prove the below lemma as outlined
in this homework. They also give a method alternative to the Boundary
Control method to solve inverse problems6.

The idea is to find first an approximate solution of the form

eiσϕ(t,x)(a0(t, x) + σ−1a1(t, x) + σ−2a2(t, x) + . . . ), σ >> 1,

and then an actual solution u = eiσϕ(a0+ . . . )+rσ where the remainder
rσ converges to zero as σ → ∞. We will begin with the single term
approximation eiσϕa0 and write a0 = a.

6see e.g. /https://www.mv.helsinki.fi/home/lsoksane/leipzig.pdf

https://www.mv.helsinki.fi/home/lsoksane/leipzig.pdf
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2.6.1. Single term ansatz. The equation

(∂2
t − ∂2

x + q)u = 0

is equivalent with

(14) (∂2
t − ∂2

x + q)rσ = −(∂2
t − ∂2

x + q)(eiσϕa),

and we want to choose ϕ and a so that

(∂2
t − ∂2

x)(e
iσϕa) = eiσϕ(∂2

t − ∂2
x)a.(“C”)

The rationale is that in this case the absolute value of the right-hand
side of (14) is independent from σ, and therefore rσ is at least not
blowing up as σ → ∞.

It is a simple matter to expand the left-hand side of (“C”) but a useful
computational technique is to consider the conjugated wave operator

e−iσϕ(∂2
t − ∂2

x)e
iσϕ = e−iσϕ∂2

t e
iσϕ + · · · = e−iσϕ∂te

iσϕe−iσϕ∂te
iσϕ + . . . .

Now, as an operator, e−iσϕ∂t(e
iσϕ·) = ∂t ·+iσ(∂tϕ)· and

(e−iσϕ∂t(e
iσϕ·))2 = ∂2

t ·+2iσ(∂tϕ)∂t · −σ2|∂tϕ|2 ·+iσ(∂2
t ϕ) · .

Treating the spacial derivatives in the same way we get

e−iσϕ(∂2
t − ∂2

x)
(
eiσϕ·

)
= (∂2

t − ∂2
x)·

+ iσ
(
2∂tϕ∂t · −2∂xϕ∂x ·+(∂2

t − ∂2
x)ϕ·

)
− σ2

(
|∂tϕ|2 − |∂xϕ|2·

)
.

Therefore for a ̸= 0, (“C”) is equivalent with the following two equa-
tions

|∂tϕ|2 − |∂xϕ|2 = 0,(E)

2∂tϕ∂ta− 2∂xϕ∂xa+ (∂2
t ϕ− ∂2

xϕ)a = 0.(T)

It is natural to normalize ϕ so that (E) becomes |∂tϕ|2 = |∂xϕ|2 = 1.
There is some freedom when choosing a solution to (E), but for our
purposes it suffices to use the linear solution ϕ(t, x) = t− x.
The transport equation (T) simplifies now to

∂ta+ ∂xa = 0.

The solutions to this are of the form a(t, x) = χ(t− x).

2.6.2. Two-term ansatz. Let us consider the two term approximation,

eiσϕA, A = a0 + σ−1a1,

and choose ϕ and a0 = a as above. As we are using a more complicated
amplitude, we can ask for more than (“C”), namely

(∂2
t − ∂2

x + q)(eiσϕA) = O(σ−1), σ >> 1.
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We use the conjugation formula (E), to obtain

e−iσϕ(∂2
t − ∂2

x + q)
(
eiσϕA

)
= (∂2

t − ∂2
x + q)A+ 2i(∂t + ∂x)a1.

This is of order σ−1 whenever a1 solves the transport equations

∂ta1 + ∂x1a1 −
i

2
(∂2

t − ∂2
x + q)a0 = 0, j = 1, 2,

or after the change of variables,

s =
t+ x1

2
, r =

t− x1

2
,

equivalently ∂sa1 =
i
2
(∂2

t − ∂2
x + q)a0. Therefore we may choose

a1(s, r, x
′) =

i

2

∫ s

−r

(∂2
t − ∂2

x + q)a0(s
′, r, x′)ds′.

Note that t = 0 is equivalent with s = −r. The choice of the lower
limit −r in the integration implies that a1 = 0, when t = 0.

2.6.3. Solving for the remainder. When χ ∈ C∞
0 (R) and η ∈ C∞

0 (Rn−1),
the restrictions of all the amplitudes aj, j = 0, 1, 2, are compactly sup-
ported in [0, T ]× Rn. We recall that the wave equation

□u+ qu = F, in (0, T )× Rn,

u|t=0 = ∂tu|t=0 = 0.

has a unique solution u satisfying

∥u∥C(0,T ;H1(Rn)) + ∥u∥C1(0,T ;L2(Rn)) ≤ C∥F∥L2((0,T )×Rn),

see e.g. [1, Theorem 7.6]. We solve

□rσ + qrσ = −(□+ q)(eiσϕA), in (0, T )× Rn,

rσ|t=0 = ∂trσ|t=0 = 0.

As the right-hand side is pointwise of order σ−1 and compactly sup-
ported, we see that rσ|t=T = O(σ−1) in H1(Rn).

Homework 14. Prove Lemma 4. Hint: Use the Sobolev embedding
H1(R) ⊂ C(R), see [4]. The idea is that rσ is small pointwise and
thus a0 dominates pointwise along the ray t = x assuming that χ in its
definition satisfies χ(0) ̸= 0.

Remark 1. In the arguments above, we consider two terms approx-
imation, however, we also could derive a longer expansion. This is
useful for obtaining better regularity for the solution, which again is
important if we consider the higher dimensional case, where the cor-
responding Sobolev embedding theorem becomes Hk(Rn) ⊂ C(Rn) for
k > n/2.
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2.7. Solution to the inverse problem. Consider two potentials q1
and q2. Let us write uf

1 , u
f
2 for the solutions of (1) with q replaced

by q1 and q2, respectively. The corresponding Dirichlet-to-Neumann
operators, see (2), are denoted by Λ1 and Λ2. We will show that Λ1 =
Λ2 implies q1 = q2.

Lemma 5. Assume that Λ1 = Λ2. Let 0 < x < T and let

fj ∈ C∞
0 (T − x, T ), j = 1, 2, . . . ,

be a sequence such that

(15) u
fj
1 (T, ·) → 1(0,x)(·)uf

1(T, ·) in L2(0, 1).

Then
u
fj
2 (T, ·) → 1(0,x)(·)uf

2(T, ·) in L2(0, 1).

Proof. Let f̃ ∈ C∞
0 (T − x, T ) and let k = 1, 2. We compute∥∥∥uf̃

k(T, ·)− uf
k(T, ·)

∥∥∥2

L2(0,1)
=

∥∥∥uf̃
k(T, ·)− 1(0,x)(·)uf

k(T, ·)
∥∥∥2

L2(0,1)

+
∥∥∥(1(0,x)(·)− 1

)
uf
k(T, ·)

∥∥∥2

L2(0,1)

(16)

+ 2
(
uf̃
k(T, ·)− 1(0,x)(·)uf

k(T, ·),
(
1(0,x)(·)− 1

)
uf
k(T, ·)

)
L2(0,1)

.

Due to finite speed of propagation, we know that uf̃
k(T, ·) is supported

in (0, x). Therefore, the functions

uf̃
k(T, ·)− 1(0,x)(·)uf

k(T, ·)
(
1(0,x)(·)− 1

)
uf
k(T, ·)

have disjoint supports, so that (16) becomes

(17)
∥∥∥uf̃

k(T, ·)− uf
k(T, ·)

∥∥∥2

L2(0,1)
=

∥∥∥uf̃
k(T, ·)− 1(0,x)(·)uf

k(T, ·)
∥∥∥2

L2(0,1)

+
∥∥∥(1(0,x)(·)− 1

)
uf
k(T, ·)

∥∥∥2

L2(0,1)
.

In particular,

inf
f̃∈C∞

0 (T−x,T )

∥∥∥uf̃
k(T, ·)− uf

k(T, ·)
∥∥∥2

L2(0,1)
=

∥∥∥(1(0,x)(·)− 1
)
uf
k(T, ·)

∥∥∥2

L2(0,1)
.

(18)

Let fj ∈ C∞
0 (T − x, T ) satisfy (15). Then

lim
j→∞

∥∥∥ufj
1 (T, ·)− uf

1(T, ·)
∥∥∥2

L2(0,1)
= inf

f̃∈C∞
0 ((T−x,T ))

∥∥∥uf̃
1(T, ·)− uf

1(T, ·)
∥∥∥2

L2(0,1)
.
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Due to Lemma 2,

lim
j→∞

∥∥∥ufj
2 (T, ·)− uf

2(T, ·)
∥∥∥2

L2(0,1)
= inf

f̃∈C∞
0 ((T−x,T ))

∥∥∥uf̃
2(T, ·)− uf

2(T, ·)
∥∥∥2

L2(0,1)
.

Using (17) and (18) we see that∥∥∥ufj
2 (T, ·)− 1(0,x)(·)uf

2(T, ·)
∥∥∥2

L2(0,1)

=
∥∥∥ufj

2 (T, ·)− uf
2(T, ·)

∥∥∥2

L2(0,1)
−

∥∥∥(1(0,x)(·)− 1
)
uf
2(T, ·)

∥∥∥2

L2(0,1)
→ 0.

□

Corollary 1. Assume that Λ1 = Λ2. Let f , g ∈ C∞
0 (R+), let T, s ∈ R+

and let x ∈ (0, T ). Then

(
1(0,x)(·)uf

1(T, ·), uh
1(s, ·)

)
L2(0,1)

=
(
1(0,x)(·)uf

2(T, ·), uh
2(s, ·)

)
L2(0,1)

.

(19)

Proof. By Lemma 3, there is a sequence {fj} ⊂ C∞
0 (T − x, T ) such

that

u
fj
k (T, ·) → 1(0,x)(·)uf

k(T, ·)
in L2 for k = 1. By Lemma 5 this holds also for k = 2. In view of
Lemma 2, we have(

1(0,x)(·)uf
1(T, ·), uh

1(s, ·)
)
L2(0,1)

= lim
j→∞

(
u
fj
1 (T, ·), uh

1(s, ·)
)
L2(0,1)

= lim
j→∞

(
u
fj
2 (T, ·), uh

2(s, ·)
)
L2(0,1)

=
(
1(0,x)(·)uf

2(T, ·), uh
2(s, ·)

)
L2(0,1)

.

□

Now we are ready to prove the main result of this section

Theorem 6. If Λ1 = Λ2, then q1 = q2.

Proof. Assume that Λ1 = Λ2, then (19) holds. We consider T > 1 and
let x ∈ (0, 1). Let us differentiate the left-hand side of (19):

∂x

(
1(0,x)(·)uf

1(T, ·), uh
1(s, ·)

)
L2((0,1))

= ∂x

∫ x

0

uf
1(T, y)u

h
1(s, y)dy = uf

1(T, x)u
h
1(s, x).

Therefore, by (19), we obtain

(20) uf
1(T, x)u

h
1(s, x) = uf

2(T, x)u
h
2(s, x).
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Due to Lemma 4, for each x ∈ (0, 1) there is f ∈ C∞
0 (R+) such that

uf
1(T, x) ̸= 0. Choosing such f we may define

w(x) =
uf
2(T, x)

uf
1(T, x)

.

We emphasize that the choice of f depends on x, and it may appear
that w could be non-smooth. However, it is smooth. Indeed,

uh
1(s, x) = w(x)uh

2(s, x),(21)

and for each x0 ∈ (0, 1) there is h ∈ C∞
0 (R+) such that uh

2(T, x0) ̸= 0.
Thus, for x near x0,

w(x) =
uh
1(T, x)

uh
2(T, x)

.

As the right-hand side is smooth for x near x0, and as x0 ∈ (0, 1) is
arbitrary, we see that w is smooth.

Let us now take f = h and s = T in (20) and use (21),

(uh
2(T, x))

2 = (uh
1(T, x))

2 = w2(x)(uh
2(T, x))

2.

Choosing again x ∈ (0, 1) and h ∈ C∞
0 (R+) such that uh

2(T, x) ̸= 0, we
see that w2(x) = 1. The smoothness of w implies that it is a constant
function taking the value 1 or −1. To summarize

uh
1(s, x) = ±uh

2(s, x),

for all s > 0, x ∈ (0, 1) and h ∈ C∞
0 (R+).

There holds

0 = (∂2
t − ∂2

x + q1)u
h
1 = ±(∂2

t − ∂2
x + q1)u

h
2 = ±(q1 − q2)u

h
2 .

Choosing such h ∈ C∞
0 (R+) that uh

2(T, x) ̸= 0, we get q1(x) = q2(x).
□

3. A geometric inverse problem

The main advantage of the Boundary Control method is that it works
in general geometric settings. Let (M, g) be a Riemannian manifold
with boundary and q ∈ C∞(M). Consider the wave equation

∂2
t u−∆gu+ qu = 0 on R+ ×M,

u |x∈∂M = f,

u |t=0 = ∂tu |t=0 = 0.

(22)
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Here ∆g is the Laplacian. In local coordinates, it is given as follows

∆g · =
1√

det(g)

n∑
i,j=1

∂i

(√
det(g)gi,j∂j ·

)
.

We define the Dirichlet-to-Neumann map

Λ : C∞
0 (R+ × ∂M) → C∞(R+ × ∂M)

as follows

Λf = ∂νu
f |R+×∂M ,

where uf is the solution in of (22). We will consider the inverse prob-
lem: Determine the potential q given (M, g) and Λ.

It turns out that the speed of propagation is given in terms of the
natural distance function dg on (M, g). That is, it takes the time
dg(x, y) for a wave to propagate from a point x ∈ M to a point y ∈ M .
We recall the definition of the distance on Riemannian manifold.

If (M, g) is is a connected Riemannian manifold and p, q ∈ M , the
(Riemannian) distance between p and q, denoted by dg(p, q), is defined
as follows

dg(p, q) := inf{l(γ) : γ ∈ Cp,q},
where

Cp,q := {γ : [0, b] → M : γ is a piecewise smooth, continuous curve and

γ(0) = p, γ(b) = q}
and

l(γ) :=

∫ b

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

Before entering into the multidimensional geometric case, let us see
how non-constant speed of sound gives the speed of propagation in
1 + 1d.

3.1. Finite speed of propagation with nonconstant speed of
sound. Let c ∈ C∞([0, 1]) and suppose that c(x) > 0 for all x ∈ [0, 1].
Consider a solution u to

(∂2
t − c2∂2

x)u = 0 on R+ × (0, 1),(23)

which satisfies

u |x=1 = 0.

We set

E(t, x) := c−2(x)|∂tu(t, x)|2 + |∂xu(t, x)|2.
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We want to find an increasing function r ∈ C∞(R) with r(0) = 0 such
that the energy

E(t) =
1

2

∫ 1

r(t)

E(t, x)dx

satisfies

(24) ∂tE(t) ≤ 0.

The slower r increases, the better finite speed of propagation result we
will get.

We write, by using Leibniz integral rule,

∂tE(t) = −1

2
r′(t)E(t, r(t)) + 1

2

∫ 1

r(t)

∂tE(t, x)dx

= −1

2
r′(t)E(t, r(t)) +

∫ 1

r(t)

(
c−2(x)∂tu(t, x)∂

2
t u(t, x) + ∂xu(t, x)∂txu(t, x)

)
dx.

Integration by parts gives

∂tE(t) = −1

2
r′(t)E(t, r(t)) + [∂xu(t, x)∂tu(t, x)]

1
r(t)

+

∫ 1

r(t)

(
c−2∂2

t u(t, x) + ∂2
xu(t, x)

)
∂tu(t, x)dx.

Since u is the solution of the wave equation the last integral is 0. More-
over, due to the boundary condition, the second term is 0 at x = 1, so
that

∂tE(t) = −1

2
r′(t)E(t, r(t))− (∂tu(t, x)∂xu(t, x))|x=r(t) .

Note that r′ > 0 since r is increasing. Therefore, using a simple in-
equality

2
√
xy ≤ αx2 +

1

α
y2, for α, x, y > 0,

we know that (24) holds if

1

r′(t)
= r′(t)c−2(r(t)),

or equivalently,

(25) r′(t) = c(r(t)).

This equation is solvable. Indeed, consider the following function

ρ(x) =

∫ x

0

1

c(y)
dy.
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Since ρ is a strictly increasing function, its inverse function exists, so
we can set

r(t) = ρ−1(t)

It is easy to check that this function indeed satisfies (25). Observe that
if c = 1 identically, we obtain r(t) = t.

The function ρ is the travel time between 0 and x: the time necessary
for perturbation at 0 to reach x. It also can be interpreted as the
distance from 0 to x. Indeed, let us consider the metric

g = c−2dx,

on [0, 1]. Then, for x ∈ [0, 1], we get

dg(0, x) = inf
γ∈C0,x

∫ b

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

Let γ be a minimizer curve. Then γ : [0, b] → [0, x] needs to be a
bijection. By changing the coordinates τ = γ(t), we obtain

dg(0, x) =

∫ b

0

γ̇(t)
1

|c(γ(t))|dt =
∫ x

0

1

|c(τ)|dτ = ρ(x).

3.2. Main tools. As in the one dimensional case, the main ingredients
of solving the inverse problem we are considering here are the finite
speed of propagation and unique continuation.

Theorem 7 (Finite speed of propagation, nD). Let Ω ⊂ M be an open
set, and define

C := {(t, x) ∈ R×M : dg(x,M \ Ω) > |t|}.
Assume that u is a solution of the equation{

(∂2
t −∆g + q(x))u = 0, on R×M ;

u |t=0 = ∂tu |t=0 = 0, on Ω.

Assume, furthermore, that u|C∩(R×∂M) = 0. Then u|C = 0.

We omit the proof and refer to [3, Theorem 2.47].

Theorem 8 (Unique continuation, nD). Let u ∈ H1([−T, T ] × M)
satisfy the equation

∂2
t u−∆gu+ qu = 0 on R+ ×M.

Assume that
u |[−T,T ]×Γ = ∂νu |[−T,T ]×Γ = 0,

where Γ ⊂ ∂M is open. Then

u |K = 0,
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Ω

|{0}×Ω =u |{0}×Ω =0

u=0

Ω

u=0

u |[�T,T]×�� = �u |[�T,T]×�� =0

tt

a) Finitespeed of thewavepropagetion
1+n dimensional case

b) Uniquecontinuation
1+n dimensional case

Figure 2.

where

K := {(t, x) ∈ [−T, T ]×M : dg(x,Γ) ≤ T − |t|}.
We omit the proof and refer to [3, Theorem 3.16].
Applying Theorem 8 onM \Ω, where Ω ⊂ M is a small open set with

smooth boundary satisfying ∂Ω∩∂M = ∅, allows us to compare unique
continuation to finite speed of propagation, see Figure 2. Clearly these
two results are genuinely different in the higher dimensional case, in
contrast to the one dimensional case. (Recall that in the dimension
one, finite speed of propagation and unique continuation differ only by
interchanging space and time.)

Let Γ ⊂ ∂M be an open set. We define the domain of influence

M(Γ, T ) := {x ∈ M : dg(x,Γ) ≤ T}
and the set

L2(M(Γ, T )) := {ϕ ∈ L2(M) : supp(ϕ) ⊂ M(Γ, T )}
equipped with the L2 norm.

Similarly, as we derived Lemma 3 from Theorem 4, Theorem 8 gives
us the following approximate controlability:

Lemma 6. Let T > 0, then the set

B(T,Γ) := {uf (T, ·) : f ∈ C∞
0 ((0, T )× Γ)}

is a dense subset of L2(M(Γ, T )).

Homework 15. Prove the theorem above.

Lemma 4 can be generalized for the multidimensional case:
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Lemma 7. Let T > 0, then for any point x0 in the interior of M(Γ, T )
there is f ∈ C∞

0 ((0, T )× Γ) such that uf (T, x0) ̸= 0.

Homework 16. Prove the lemma above.

Remark 2. To obtain the lemma above, higher regularity estimates
and longer ansatz are needed to get hold of point values, since more
regularity is needed in higher dimensional Sobolev embedding.

3.3. Solution to the inverse problem. Let T > 0. We define for
functions f , h ∈ C∞

0 (R+ × ∂M)

Wf,h(t, s) = (uf (t, ·), uh(s, ·))L2(M).

The following lemma is the higher dimensional analogue of Lemma 2.

Lemma 8. Let T > 0 and f , h ∈ C∞
0 (R+ × ∂M). Then the Dirichlet-

to-Neumann map Λ determines Wf,h.

Proof. We write

(∂2
t − ∂2

s )Wf,h(t, s) =
(
∆gu

f (t, ·)− quf (t, ·), uh(s, ·)
)
L2(M)

−
(
uf (t, ·),∆gu

h(s, ·)− quh(s, ·)
)
L2(M)

.

Further, by Green’s identity, we obtain

(∂2
t−∂2

s )Wf,h(t, s) =

∫
∂M

∂νu
f (t, x)uh(s, x)dS(x)−

∫
∂M

uf (t, x)∂νu
h(s, x)dS(x)

= (Λf(t, ·), h(s, ·))L2(∂M) − (f(t, ·),Λh(s, ·))L2(∂M) .

Let us denote the right-hand side by F (t, s), then Wf,h is the solution
of the equation{

(∂2
t − ∂2

s )Wf,h(t, s) = F (t, s) on (0, T )× (0, T ),

Wf,h(0, s) = ∂tWf,h(0, s) = 0.

Hence, Wf,h is determined by F , and consequently, it is determined by
Λ. □

We have the analogue of Lemma 5.

Lemma 9. Assume that Λ1 = Λ2. Let 0 < s < T , let Γ ⊂ ∂M be open
and let {fj} ⊂ C∞

0 ((T − s, T )× Γ) be a sequence such that

u
fj
1 (T, ·) → 1M(Γ,s)(·)uf

1(T, ·) in L2(M).

Then

u
fj
2 (T, ·) → 1M(Γ,s)(·)uf

2(T, ·) in L2(M).
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We omit the proof as it coincides with that in the one dimensional
case. As before, we have also the following corollary

Corollary 2. Assume that Λ1 = Λ2. Let 0 < s < T , t > 0 and let
Γ ⊂ ∂M be open, then for any f , h ∈ C∞

0 (R+ × ∂M), it follows(
1M(Γ,s)(·)uf

1(T, ·), uh
1(t, ·)

)
L2(M)

=
(
1M(Γ,s)(·)uf

1(T, ·), uh
1(t, ·)

)
L2(M)

.

Now we deviate from the one dimensional proof.

Corollary 3. Assume that Λ1 = Λ2. Let s, s̃ ∈ (0, T ), let t > 0
and consider two open Γ, Γ̃ ⊂ ∂M . Then we have for any f , h ∈
C∞

0 (R+ × ∂M)(
1M(Γ,s)1M(Γ̃,s̃)u

f
1(T, ·), uh

1(t, ·)
)
L2(M)

=
(
1M(Γ,s)1M(Γ̃,s̃)u

f
1(T, ·), uh

1(t, ·)
)
L2(M)

.

Proof. By Lemmas 6 and 9, there is a sequence {fj} ⊂ C∞
0 ((T−s, T )×

Γ) such that

u
fj
1 (T, ·) → 1M(Γ,s)u

f
1(T, ·) and u

fj
2 (T, ·) → 1M(Γ,s)u

f
2(T, ·).

Therefore, using Corollary 2, we obtain(
1M(Γ,s)1M(Γ̃,s̃)u

f
1(T, ·), uh

1(t, ·)
)
L2(M)

= lim
j→∞

(
1M(Γ̃,s̃)u

fj
1 (T, ·), uh

1(t, ·)
)
L2(M)

= lim
j→∞

(
1M(Γ̃,s̃)u

fj
2 (T, ·), uh

2(t, ·)
)
L2(M)

=
(
1M(Γ,s)1M(Γ̃,s̃)u

f
1(T, ·), uh

1(t, ·)
)
L2(M)

.

□

Theorem 9. If Λ1 = Λ2, then q1 = q2.

Proof. Let x0 be an interior point of M and s := dg(x0, ∂M). We
choose T > s. Let y ∈ ∂M such that

dg(x, y) = s.

Let Γ, Γ̃ ⊂ ∂M be open subsets and y ∈ Γ̃ ⊂ Γ. In fact, we can take
Γ = ∂M . Let also s̃ > s and set

Z := M(Γ̃, s̃) \M(Γ, s).
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Then,

1

|Z|

((
1M(Γ̃,s̃)u

f
1(T, ·), uh

1(t, ·)
)
L2(M)

−
(
1M(Γ̃,s̃)1M(Γ,s)u

f
1(T, ·), uh

1(t, ·)
)
L2(M)

)
→ uf

1(T, x0)u
h
1(t, x0)

as s̃ → s and Γ̃ → {y}. The same holds for uf
2 and uh

2 , so that by
Corollaries 2 and 3, we know that

uf
1(T, x0)u

h
1(t, x0) = uf

2(T, x0)u
h
2(t, x0).

This is the analogue of (20), and we conclude as in the proof of Theorem
6. □
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