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1 Introduction

Though we will later focus on inverse problems in integral geometry, these problems sit inside the
larger field of inverse problems, which prescribes an agenda of questions that one may address.
Some examples may then not be directly related to integral geometry, though they are part of the
inverse problems folklore (some of them still open to this day).

Reading material: [Bal12, Chapter 1], [Ilm17, §1]

1.1 What is an inverse problem ?

Given a continuous map M : X → Y and y ∈ Y, find x ∈ X such that M(x) = y.

� M can be linear or non-linear.

� X and Y can be finite-dimensional normed spaces or, most often, infinite-dimensional topo-
logical vector spaces (Banach, Hilbert, Fréchet spaces of functions and distributions) or topo-
logical manifolds.

� The spaces above often reflect a notion of smoothness, typically embodied by a scale of
Hilbert or Banach spaces (e.g. Sobolev spaces), whose intersection gives a Fréchet space
(e.g. smooth functions, rapidly-decaying functions or both). A scale of spaces is a family of
Banach or Hilbert spaces {(Hs, ‖·‖s}s∈N0 with continuous injections Hs ↪→ Ht, s ≥ t, and the
intersection may be given a Fréchet topology defined by the countable family of seminorms
‖ · ‖s, s ∈ N0. Important examples include Sobolev spaces (f ∈ Hk(R) iff ∂αf ∈ L2 for
all 0 ≤ α ≤ k, with norm ‖f‖2

Hk =
∑k

α=0 ‖∂αf‖2L2) and the classical Ck(R) Banach spaces
(equipped with the sup norm ‖f‖Ck := max0≤α≤k supx∈R |∂αf(x)|), with intersection space
C∞(R). Another way to quantify smoothness is by means of decay in the Fourier domain,
which may motivate other scales of spaces of the formBk = {f ∈ L2(R); (1+x2)k/2f ∈ L2(R)},
k ≥ 0.

� M may be not injective and not surjective. What, then, does it mean, to ’invert’ M ?

� It could be that the problem may be formulated as “recover x from M(x)”, and part of the
job is to find a ’good’ pair of spaces as well.

Some examples:

� Finite-dimensional, linear inverse problems.

� Recovering f : R→ R from its antiderivative F (x) =
∫ x

0 f(t) dt.

� Recovering f from its Fourier transform f̂(ξ) =
∫
R e
−ixξf(x) dx, or its Hilbert transform

Hf(x) = 1
π

∫
R

1
x−yf(y) dy.
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� Inverse diffusion: to recover the initial temperature distribution u0(x) from the observation
of the temperature distribution at a later time uT (x) = u(x, T ), where u(x, t) solves the heat
equation

∂tu = ∂2
xu, x ∈ R, t > 0 (heat equation)

u(x, 0) = u0(x). (initial condition)

� X-ray/Radon transform (see below).

� Calderon’s problem, boundary rigidity, inverse spectral problem.

1.2 The inverse problems agenda

Two practically motivated philosophical points may help approach what follows:

� The forward operator M is generally ’smoothing’ and therefore, undoing that process will
require ’unsmoothing’ the data, a process which is in itself ill-conditioned (or unstable) in the
sense that M−1 : Y → X may not be continuous in general.

� The data y may be corrupted by noise, in the sense that we want to find x ∈ X measuring
M(x) + η, where η models a noise realization which we have little control over. Two issues
naturally arise out of this: first, the measurement M(x) + η might no longer live in Y
(depending on how smoothing the problem is, M(x) may be smoother than η, so M(x) + η
lives in the space where η lives, not where M(x) lives); second, M(x) + η might not even be
in the range of M !

With that in mind, here are some of the important questions to be addressed:

Injectivity: DoesM(x) characterize x uniquely (equivalently, doesM(x1) =M(x2) imply x1 =
x2) ? If not, can one describe obvious obstructions to injectivity (for example, is there a “gauge”
group action G × X → X such that M(x1) = M(x2) if and only if x1 = g · x2 for some g ∈ G)
? If yes, the lack of injectivity is well-understood, and one could in principle replace the initial,
non-injective operator M : X → Y by the injective one M : X/G → Y.

Stability: Suppose injectivity has been settled. Stability is a quantification of how ’well-behaved’
the inversion process will be.

One way to think of stability is to ask what is the form of the modulus of continuity of M−1 :
Y → X , if any ? i.e., for which function ω : [0,∞)→ [0,∞) with limx→0 ω(x) = 0 do we have1

‖M−1(y1)−M−1(y2)‖X . ω(‖y1 − y2‖Y).

1We will write a . b if there is a constant C such that a ≤ Cb. Unless important, we will not keep track of
constants.
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Since M−1 might not even make sense, we prefer writing

‖x1 − x2‖X . ω(‖M(x1)−M(x2)‖Y). (1)

Equation (1) is a stability estimate, which quantifies how error on data (measured with ‖ · ‖Y)
translates into error on the reconstruction (measured with ‖ · ‖X ). It helps answer the question:
suppose I want a reconstruction error no greater than ε, what precision on my measurements do I
need ?

The problem is then said Lipschitz-stable in (X ,Y) if one has equality (1) with ω(x) = x, the
best-case scenario2; Hölder-stable in (X ,Y) if ω(x) = xα for some 0 < α < 1; worse moduli of
continuity include ω(x) = 1

| log x| (log-stable, or exponentially ill-posed).

A problem may be made Lipschitz-stable for some specific choice of norm, in spite of the fact
that it is objectively badly-behaved. But then, this Lipschitz estimate is probably practically
unusable because the space Y is too small for the noise to live in it. Although we mentioned above
that there is some leeway in choosing the spaces X and Y, a first constraint is to use a space Y
where the noise lives.

Another way to define stability is with respect to Hilbert scales Xk and Yk such thatM : Xk →
Yk is continuous for all k. Then the inverse problem is

� well-posed if ‖x− x′‖k . ‖M(x)−M(x′)‖k for all k

� mildly ill-posed of order α > 0 if there is α > 0 such that ‖x−x′‖k . ‖M(x)−M(x′)‖k+α for
all k. One then seeks the smallest α and calls it the order of ill-posedness of M (it depends
on the choice of scales)

� severely ill-posed otherwise.

When the grading of the Hilbert scales at play describes order of differentiability, the α above
quantifies by how many derivatives the operatorM is smoothing (as a result, reconstructing x will
involve differentiating the data α times). A severely ill-posed problem typically corresponds to an
operator which is smoothing by an infinite degree.

What is the link between the above two notions ? When the second one is well-understood,
one can cook up appropriate moduli of continuity for the inverse, provided that one adds a prior
smoothness assumption on the unknown x (see Exercise 3).

Range characterization: The operator M : X → Y is most likely not surjective, so how does
M(X ) sit inside Y ? Given y ∈ Y, can one find “consistency conditions” which imply that y is in
the range of M ? If M is linear, then M(X ) is a linear subspace of Y; can one easily describe the
supplementary (sometimes, orthocomplement) of M(X ) ?

For example,

Consider the operator A : `2(N0) → `2(N0) given by Au =
(

1−(−1)n

n un

)
n
, u = (un)n. Equip

`2(N0) with the orthonormal family {en}n≥0 where for n ≥ 0, en = {δjn}j≥0.

2Recall from one-variable calculus: a function with superlinear modulus of continuity is constant.
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A is not surjective for two fundamentally different reasons: any basis vector e2k is not achieved
in the range of A, and if we were to restrict A to the span 〈e1, e3, e5, . . . 〉, where it becomes injective,
it is still not surjective because elements in the range have faster decay than `2. In particular, the

sequence u =
{

1+(−1)n

n

}
n
∈ `2(N0) seems to have a preimage by A, but that preimage does not

belong to `2(N0).

Reconstruction: What are the ways that we can recover x fromM(x) ? (explicit reconstruction
formulas, Fredholm equations, regularized inversions, Markov Chain Monte Carlo)

Partial Data problems: What if we only have partial knowledge ofM(x) (e.g. discrete samples,
or a restriction of the full data) ? How are injectivity, stability and reconstruction impacted ?

Parameter dependence: Similarly to the previous question: how do the answers to injectivity,
stability and reconstruction depend on some parameter in the system considered ? Examples:

� Injectivity and stability of the geodesic X-ray transform on a Riemannian surface depend on
whether that surface has conjugate points.

� Injectivity of the attenuated X-ray transform over vector fields degenerates as the attenuation
vanishes.

� In an inverse wave problem (TAT/PAT), injectivity and stability depend on the observation
time.

Practical questions: What is the nature of the noise in the measurement ? (in what space does
it live ?) how to use the stability estimate to understand how errors will magnify ? How much do
we have to regularize the inversion in order to obtain a meaningful reconstruction ?

1.3 Some prototypes

� Finite-dimensional, linear inverse problems. Singular Value Decomposition. Recall that for a
linear operator A : Cp → Cq, setting r = min(p, q), there exists orthonormal bases (u1, . . . , up)
and (v1, . . . , vq) and non-negative numbers σ1, . . . , σr such that

Auj = σjvj , A∗vj = σjuj , 1 ≤ j ≤ r.

If p > q, then we also have Auj = 0 for q < j ≤ p and if q > p, we have A∗vj = 0 for
p ≤ j < q. The uj ’s are the eigenvectors of A∗A : Cp → Cp (a symmetric operator), the vj ’s
are the eigenvectors of AA∗ : Cq → Cq, and σ2

j are the eigenvalues of either operator.

In the case where p = q and all singular values are non-zero and arranged in decreasing order
σ1 ≥ · · · ≥ σp, then we have

σp‖x‖ ≤ ‖Ax‖ ≤ σ1‖x‖, ∀x ∈ Cp, (2)

which gives us both continuity and stability constants.
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� Infinite-dimensional linear inverse problems involving compact3 operators. Suppose A is now
a linear, bounded operator between two Hilbert spaces A : H1 → H2. Can we use the SVD
picture again ? Well, not always. The operator A∗A : H1 → H1 will be bounded, self-adjoint,
but its spectrum may not be discrete4. However, if A∗A is compact, then indeed, we can find
two Hilbert orthonormal bases un, vn of H1,H2 and a decreasing sequence of non-negative
numbers σj such that

Auj = σjvj , A∗vj = σjuj , j ≥ 0.

This is the spectral theorem for self-adjoint, compact operators. Moreover, since A∗A is
compact, the sequence σj necessarily decreases to zero, so infj σj = 0 and there will be no
room to write a stability estimate as in (2). Having an SVD is however extremely relevant to
understand stability, inversion and regularization purposes.

� Recover f ∈ L2([0, 2π]) from its Fourier coefficients

an[f ] =
1

2π

∫ 2π

0
e−inθf(θ) dθ, n ∈ Z.

� Suppose f ∈ L2([0, 2π]) satisfies
∫ 2π

0 f(θ) dθ = 0. Recover f from the functional

F (θ) =

∫ θ

0
f(θ′) dθ′, θ ∈ [0, 2π].

� Consider the measurement operator as follows: Given f ∈ L2([0, π]), Let M(f) = u|t=T ,
where u(x, t) solves the heat equation

∂tu = ∂xxu (0, π)× (0, T ), u|t=0 = f,

with Neuman boundary conditions ∂xu(0, t) = ∂xu(π, t) = 0.

1. Expand f and u as Fourier cosine series to make appear an explicit form of the measure-
ment operator. In the Fourier cosine series identification f ↔ {an}n≥0 such that f(x) =∑∞

n=0 an cos(nx), the operator M is diagonal and its action looks like an 7→ ane
−n2T .

In particular, the operator M (or, rather FMF−1 with F the cosine series transform)
is bounded and injective from `2(N0) into itself.

2. On the other hand, the inverse is not `2 → `2 continuous, nor is it hp → `2 bounded for

any p ≥ 0 (study the ratio
‖f‖`2

‖M(f)‖hp
with f(x) = cos(nx)). This is an example of an

exponentially ill-posed problem.

3. Yet we can still find a space H where M : `2 → H is an isometry (i.e. with bounded
inverse in particular). This space can be easily found to be

H =

(an) ∈ `2,
∑
n≥0

|an|2e2n2T <∞

 .

3A linear operator between Hilbert spaces A : H1 → H2 is compact if it maps bounded sequences to sequences
with convergent subsequences.

4See the spectral theorem for bounded, self-adjoint operators
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It corresponds to Fourier series which decay at an exponential rate. For such series, the
corresponding Fourier cosine series

∑∞
k=0 ak cos(kx) is smooth on [0, π]. Then M maps

rough functions into smooth ones. Undoing that process would then require “differenti-
ating infinitely many times”, one of the interpretations of severe ill-posedness.

Exercise 1. For k ≥ 0, define the scale of Hilbert spaces

hk :=

u = {un}n≥0 ∈ CN0 , ‖u‖2k :=
∑
n≥0

n2k|un|2 <∞

 . (3)

and denote `2 := h0. Consider a sequence of complex numbers {λn}n≥0, and consider the ’diagonal’
operator

A : `2 → `2, A({un}n) = {λnun}n.

1. Under what condition is the operator A bounded (=continuous) ?

2. Suppose λn 6= 0 for all n. Is A invertible ? Is A−1 : `2 → `2 always continuous ?

3. Fix p ≥ 0 and suppose λn = 1
np . With A defined as above, what is the order of ill-posedness

of A in the scale hk defined in (3) ?

4. Same question with the sequence λn = e−n.

5. Can you describe the intersection space h∞ := ∩k≥0h
k ?

Exercise 2. Consider the following measurement operator: given f ∈ L2([0, π]), define Mf =
u|t=T where u(x, t) solves the wave equation

∂ttu− ∂xxu = 0, x ∈ (0, π), t ∈ (0, T ),

u(x, 0) = f, ∂tu(x, 0) = 0, 0 ≤ x ≤ π,
∂xu(0, t) = ∂xu(π, t) = 0, 0 ≤ t ≤ T.

1. Using Fourier cosine series in x for f and u (f ↔
∑∞

n=0 an cos(nx)), write an explicit expres-

sion for M. Is M : L2([0, π])→ L2([0, π]) bounded ? injective ? surjective ? If M̃ describes
M acting on sequences of Fourier cosine coefficients, and equip the space of such sequences
with the Sobolev scale

hs :=

{
(an)n∈N,

∞∑
k=0

(k + 1)2s|ak|2 <∞

}
,

does there exists p ∈ R+ such that M̃ : `2 → hp is bounded and M̃−1 : hp → `2 is bounded
(two-sided estimate) ?

2. Same as (a) replacing the initial conditions by

u(x, 0) = 0, ∂tu(x, 0) = f, 0 ≤ x ≤ π.
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3. Same as (a) replacing the wave equation with the elliptic equation ∂ttu+ ∂xxu = 0.

Exercise 3 (On moduli of stability). Let a linear forward operator M : X → Y and X = ∩k≥0Xk,
Y = ∩k≥0Yk with {Xk}k, {Yk}k Banach scales. Suppose that for every k, M : Xk → Yk is bounded.
Assume moreover that {Yk}k satisfies interpolation inequalities5 of the form, if 0 ≤ k ≤ `

‖g‖Yλk+(1−λ)` ≤ C‖g‖
λ
Yk‖g‖

1−λ
Y` , λ ∈ [0, 1], g ∈ Y`, (4)

for some constant C(k, `, λ). Suppose that the operator M is ill-posed of order α > 0 in the sense
that

‖x− x′‖Xk ≤ C‖M(x)−M(x′)‖Yk+α , k ≥ 0. (5)

Fixing k, the question is whether we can obtain an estimate of ‖x− x′‖Xk in terms of a LOWER-
regularity norm of M(x − x′) than Yk+α, ideally Yk (as this might be the space where the noise
lives). We show that this is possible if we add the prior assumption that the unknown has “high
regularity”, namely x, x′ ∈ Xβ for some β > α+ k.

1. Assuming the uniform bound ‖x‖Xβ , ‖x′‖Xβ ≤ C for some β > α+ k, use (4) for appropriate
(λ, k, `), (5) and the boundedness of M to show a Hölder estimate of the form

‖x− x′‖Xk ≤ C‖M(x)−M(x′)‖θYk ,

where θ ∈ [0, 1] depends on α and β.

2. How does θ behave as β increases ?

3. Use Hölder’s inequality to show that the scale {hk}k in (3) satisfies (4).

Exercise 4 (On Fourier series). Given f ∈ L1(S1), we may define the sequence of Fourier coeffi-
cients of f , {cn[f ] := 1

2π

∫ 2π
0 e−inθf(θ) dθ}n∈Z, a bounded, doubly infinite sequence (in `∞(Z)). For

fixed n, we denote

Sn[f ](θ) :=
n∑

k=−n
ck[f ]eikθ ∈ Pn,

where we denote Pn the set of trigonometric polynomials of degree at most n, of the form p(θ) =∑n
k=−n cke

ikθ for some complex numbers ck.

On [0, 2π], let us define the Hilbert scale

Hk(S1) =

f ∈ L2(S1), ‖f‖2k :=
k∑
j=0

∫ 2π

0
|f (j)(θ)|2 <∞

 ,

with H0 = L2, equipped with the Hermitian inner product (f, g) =
∫ 2π

0 f(θ)ḡ(θ) dθ. On Z, define
the Hilbert scale

hk(Z) =

u ∈ CZ, ‖u‖2k =
∑
j∈Z

(1 + j2)k|uj |2 <∞

 .

5Sobolev scales most often satisfy this.



Math 264 - Fall ’20 - François Monard 10

1. Check that the functions {en(θ) = 1√
2π
einθ}n∈Z is an orthonormal system in L2(S1) and

that Sn[f ] =
∑n

k=−n(f, ek)ek. In the sequel, we will assume that {en}n∈Z is a complete6

orthonormal set in L2(S1).

2. Show that Sn[f ] is the minimizer of functional

F (p) =

∫ 2π

0
|f(θ)− p(θ)|2 dθ, p ∈ Pn.

Thus, Sn[f ] is the best L2-approximant of f among all trigonometric polynomials of degree n.

3. Show that for every n, Sn[f ] and f − Sn[f ] are L2-orthogonal and that

‖f‖2L2 = ‖Sn[f ]‖2L2 + ‖f − Sn[f ]‖2L2

= 2π
n∑

k=−n
|ck[f ]|2 + ‖f − Sn[f ]‖2L2 , n ≥ 0.

4. Deduce that Sn[f ] converges to f in L2(S1) and that

‖f‖2L2 = 2π
∑
k∈Z
|ck[f ]|2 (Parseval). (6)

What does (6) say about the Fourier series map L2(S1) 3 f 7→ {ck[f ]}k∈Z ∈ `2(Z) ?

5. Find the Fourier series of 4 cos θ sin θ and 1
2+cos2 θ

without computing integrals.

6. Suppose f ∈ C1. Show that cn[1
i
d
dθf ] = n cn[f ] for all n ∈ Z.

7. Given a polynomial q =
∑`

j=0 qjx
j, denote q(1

i
d
dθ ) :=

∑`
j=0 qj

(
1
i
d
dθ

)j
.

Provided that f ∈ C`, show that cn[q(1
i
d
dθ )f ] = q(n)cn[f ]. Combine this with (6) to deduce

that f ∈ H`(S1), then its coefficients belong to h`(Z).

8. Prove the converse: if a sequence belongs to h`(Z), then the Fourier series construct a function
that is H`(S1).

9. Cute stuff: Show that π2

6 =
∑∞

k=1
1
k2

by applying (6) to the function f(θ) = θ.

10. Find the integral kernel of the mapping f 7→ Sn[f ]. I.e., write Sn[f ](θ) =
∫ 2π

0 Kn(θ, θ′)f(θ′) dθ′

for some function Kn(θ, θ′) (to be written in the simplest form possible).

Exercise 5. Let {λn}n a sequence of non-negative numbers decreasing to zero, and define the
operator A : `2(N0)→ `2(N0) by (Au)n = λnun, u = {un}n.

Prove that the operator A is compact.

6This means: if f ∈ L2(S1) satisfies (f, en) = 0 for all n, then f = 0. A proof can be found in [HN01, Ch. 7],
showing that trigonometric polynomials are dense in C(S1) using approximations of identity and the density of C(S1)
in L2(S1).
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2 Explicit integral geometric examples

For the ’friendliest’ cases of X-ray transforms on surfaces, one usually says that they are ’smoothing
of order 1/2’ and their associated normal operators are ’smoothing of order 1’. This section aims
at making these statements most explicit, following one or more of the following routes:

� by computing an explicit singular value decomposition of the operator. Once this is done,
the construction of Hilbert scales which reflect these smoothing properties becomes relatively
straightforward.

� by finding an explicit functional relation between the X-ray transform (or rather, one of
its normal operators) with distinguished differential operators. Since the latter oftentimes
determine a scales of smoothness in their ambient spaces, the smoothing properties of the
operator of interest naturally follows.

The next three examples include a compact manifold with boundary, a complete manifold, and
a manifold with boundary. Each of these cases brings its own set of peculiarities.

2.1 The Funk transform on the two-sphere S2

2.1.1 Formulation

Our first example is the Funk transform, initially studied in [Fun16]. In the 70’s, Guillemin [Gui76]
used this transform in order to construct Zoll7 metrics on the sphere. This example is also treated
in [MP11, Sec. 1.2].

For the Funk transform, we can derive the full SVD of the operator, and appropriate Hilbert
scales where to describe the mapping properties of the operator.

Let S2 = {(x, y, z) ∈ R3, x2 + y2 + z2 = 1} the Euclidean 2-sphere. Given f ∈ C∞(S2) and
p ∈ S2, we define

If(p) :=

∫ 2π

0
f(γp(t)) dt,

where γp is the equator on the sphere thinking of p as the North pole (it moves around !), traversed
counterclockwise when viewed from p. If p = N = (0, 0, 1) (the actual North Pole), γN (t) =
(cos t, sin t, 0). The parameterization of γp matters, and this one is chosen so that γp is a unit-speed
geodesic on S2.

Exercise 6. How to parameterize γp for any p ∈ S2 ?

Since γp depends smoothly on p and f ∈ C∞(S2), then If ∈ C∞(S2). Note that in this case, f
and If can both be viewed as functions on the same domain S2 (this will never happen again in
the integral geometric problems considered below). The question to investigate is thus:

study the problem of reconstructing f ∈ C∞(S2) from If ∈ C∞(S2).
7A Zoll manifold is a closed Riemannian manifold, all of whose geodesics are closed and of the same length. The

round sphere is such an example.
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Obvious kernel and cokernel. Let A : S2 → S2 the antipodal map (A(p) = −p). A is a smooth
involution and induces a direct sum decomposition

C∞(S2) = C∞even(S2)⊕ C∞odd(S2),

where a function f will be considered even if f ◦A = f , odd if f ◦A = −f . Then the following two
observations can be made: first If = 0 whenever f is odd, and If is even for any f . It therefore
makes sense that we refine our initial question to:

study the problem of reconstructing f ∈ C∞even(S2) from If ∈ C∞even(S2).

In what follows, we will show that I is an automorphism of C∞even(S2) and that, upon defining

an appropriate Hilbert scale Hs
even(S2), I is an isomorphism of Hs

even onto H
s+ 1

2
even. This will be

based on understanding its eigendecomposition by means of spaces of spherical harmonics.

2.1.2 Spherical Harmonics

In order to define a scale of spaces on S2, one natural idea is to define, for k = 2` even, H2`(S2)
as the closure of C∞(S2) for the topology defined by the norm ‖f‖H2` = ‖(−∆S2 + 1)`f‖L2 . Here
∆S2 denotes the Laplace-Beltrami operator8, then −∆S2 is non-negative, essentially self-adjoint
operator and the +1 makes it injective. It is an example of an elliptic operator, which means that,
in spite of the fact that this is a single differential operator, if ∆f is L2, then any second-order
derivative of f is in L2, although most other second-derivative ares are arguably “less natural” to
write down.

When this is done, we realize that we only have spaces of even order, though we would like to
define Hs for all integer s, or even for all s ≥ 0 (and even all s ∈ R). A process called interpolation
allows to do this, though another clear picture emerges if we know the spectral decomposition
of ∆S2 . Note that general functional-analytic arguments show that ∆S2 has a complete, discrete
eigensystem in L2(S2) and that its spectrum tends to ∞9. We now undertake this task, largely
following [Fol95, Ch. 2.H].

The story of spherical harmonics sums up to this10: define Hk the space of polynomials on R3,
harmonic11 and homogeneous of degree k, and let Hk = {P |S2 : P ∈ Hk}. The latter is called
spherical harmonics of degree k.

Theorem 1. (Spherical harmonics) (1) For every k ∈ N0, Hk = ker(−∆S2 − k(k + 1)Id) and
dimHk = 2k + 1. Moreover, Hk is an irreducible SO(3)-module.

8In the coordinates (θ, ϕ) 7→ (sin θ cosϕ, sin θ sinϕ, cos θ), ∆S2f = 1
sin θ

∂
∂θ

(sin θ ∂f
∂θ

) + 1
sin2 θ

∂2f
∂ϕ2

9Sketch of proof: by Riesz-representation theorem, for f ∈ L2, the problem −∆S2u + u = −f admits a unique
solution in H1, this defines (−∆S2 + 1)−1 : L2(S2) → H1(S2) as a bounded operator. Since the inclusion H1 → L2

is compact, then (−∆S2 + 1)−1 is a compact, operator, moreover, injective and self-adjoint. By the spectral theorem
for compact, self-adjoint operators, there exists a complete orthonormal set φn of L2(S2) along with a decreasing
sequence λn → 0 such that (−∆S2 + 1)−1φn = λnφn. Then (φn, λ

−1
n − 1) is an eigensystem for ∆S2 .

10it works with minor modifications in all dimensions ≥ 2, see [Fol95, Ch. 2.H]
11in the sense that ∆R3P = 0, where ∆ = ∂2

x + ∂2
y + ∂2

z
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(2) We have the direct orthogonal sum

L2(S2) =
⊕
k≥0

Hk, (7)

in the sense that every f ∈ L2(S) admits a unique orthogonal and L2-convergent decomposition
f =

∑
k≥0 fk with fk ∈ Hk.

Proof of Theorem 1. First let Pk the space of polynomials on R3, homogeneous of degree k, and
write r2 := x2 + y2 + z2. One may show as exercise that dimPk = (k + 1)(k + 2)/2. The first
question is to understand the orthocomplement of Hk in Pk. To this effect, [Fol95, Prop. 2.49]
states that for k ≥ 2,

Pk = Hk ⊕ r2Pk−2, r2Pk−2 := {r2P : P ∈ Pk−2}, (8)

whose proof is given in Ex. 7. As a result,

dimHk = dimPk − dimPk−2 = 2k + 1,

and by induction,

Pk = Hk ⊕ r2Hk−2 ⊕ r4Hk−4 . . . (9)

Also recall the expression of the Laplacian in spherical coordinates:

∆R3 =
1

r2
∆S2 +

∂2

∂r2
+

2

r

∂

∂r
.

Now, if f ∈ Hk, then one may write f = rkf̄ where f̄ = f |S2 , then applying the equation above
and evaluating at r = 1 yields the relation

∆R3f = 0 = ∆S2 f̄ + k(k + 1)f̄ .

Hence Hk consists is the eigenspace of ∆S2 associated with eigenvalue −k(k + 1). As ∆S2 is self-
adjoint, this implies the L2(S2)-orthogonality Hk ⊥ H` for k 6= `.

The proof of (7) is based on the Weierstrass approximation theorem, together with (9): in
a nutshell, a function in L2(S2) can be approximated by functions in C(S2), which in turn can
be approximated by restrictions to S2 of polynomials, which by (9) decompose as finite sums of
spherical harmonics.

Exercise 7. This problem guides you through the proof of (8). Here and below, denote x = (x, y, z)
and for a tri-index α = (α1, α2, α3) ∈ N3

0, we denote |α| = α1 + α2 + α3, α! = α1!α2!α3!, xα =
xα1yα2zα3 and ∂α = ∂α1

x ∂α2
y ∂α3

z . Thus, a general element of Pk takes the form P =
∑
|α|=k aαxα

for some complex numbers {aα}α, where the sum runs over all tri-indices of length k, and for such
a P , we define the differential operator P (∂) :=

∑
|α|=k aα∂

α.
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1. On Pk, we define the inner productP =
∑
|α|=k

aαxα, Q =
∑
|β|=k

bβxβ

 7→ ∑
|α|=k

α!aαbα.

Show that such an inner product can be obtained by computing the quantity {P,Q} := P (∂)Q.
[Hint: show that {xα, xβ} = α! if α = β, 0 otherwise.]

2. Show that for P ∈ Pk−2 and Q ∈ Pk,

{r2P,Q} = {P,∆R3Q}.

3. Conclude (8).
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2.1.3 Eigendecomposition of the Funk transform

The group SO(3) acts on C∞(S2) by rotations: g · f(p) = f(g−1p). The key observation is that I
commutes12 with this action in the sense that

I(g · f) = g · If, g ∈ SO(3), f ∈ C∞(S2).

By Schur’s lemma, this implies two things at the level of all the irreducible SO(3)-modules Hk:
for all k ≥ 0,

� I(Hk) ⊆ Hk

� I|Hk = λkId for some constant λk.

If k is odd, since Hk ⊂ C∞odd(S2), we already know that λk = 0. For k even, k = 2` for some ` ≥ 0,
it suffices to find a “good” function in f ∈ H2` and a point p where f(p) 6= 0, then λ2` will be

given by c2` = If(p)
f(p) . A good choice is as follows: one may check that the “sectoral” harmonic

function f(x, y, z) = (x + iy)2`, restricted to S2, belongs to H2`. Now choose p = (1, 0, 0), with
γp(t) = (0, cos t, sin t) to deduce

λ2` =
1

f(1, 0, 0)

∫ 2π

0
f(0, cos t, sin t) dt = (−1)`

∫ 2π

0
(cos t)2` dt.

The above is a Wallis integral, and one may deduce the final expression

λ2` = (−1)`2π
(2`)!

22`(`!)2
, ` ∈ N0. (10)

As a conclusion, the eigenvalue decomposition of I : L2(S2)→ L2(S2) is given by:

ker I =
⊕
`≥0

H2`+1, ker(I − λ2`) = H2`, ` ≥ 0,

or at the level of the spectral decomposition:

If =
∑
k≥0

λkfk, f =
∑
k≥0

fk, fk ∈ Hk.

Using Stirling’s formula13, we arrive at the conclusion that

|λ2`| ∼
√

8π(2`)−1/2, `→∞. (11)

We now explain how to exploit this to formulate mapping properties of the Funk transform in
a sharp way.

12In representation theory language, I is equivariant w.r.t the SO(3) action, or I is SO(3)-linear.
13n! ∼

√
2πn

(
n
e

)n
as n→∞
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2.1.4 Mapping properties

To formulate mapping properties, we need two things: (1) to translate smoothness on S2 into rate
of decay of the spherical harmonic decomposition and (2) to use the asymptotics of λ2` for large `
given in (11).

For s ≥ 0, one may define Hs(S2) to be the closure of C∞(S2) for the norm

‖f‖2Hs :=
∑
k≥0

(1 + k(k + 1))s‖fk‖2L2 , f =
∑
k≥0

fk, fk ∈ Hk. (12)

For s = 2` an even integer, this amounts to the norm ‖(−∆ + 1)`f‖L2 and hence it indeed encodes
that, when this quantity is finite, the function f has 2` square-integrable derivatives. Allowing
s to be any non-negative reals achieves a few things: it gives meaning to “having derivatives of
fractional order”; it hints at the fact that for any s ≥ 0, the operator

f =
∑
k≥0

fk 7→
∑
k≥0

(1 + k(k + 1))s/2fk

is one way to define the operator (−∆+1)s/2. By construction, this operator is Hs → L2 bounded,
a process which embodies the action of taking “s derivatives” (in an “isotropic” way).

Remark 1. Given s fixed, although the construction (12) has the special property that it can be
related exactly to the operator (−∆ + 1), one may notice that for any sequence dk such that (i)
dk 6= 0 for all k and (ii) there exists two positive constants such that C1 ≤ |ksdk| ≤ C2, one may
define the norm

‖f‖2 :=
∑
k≥0

d2
k‖fk‖2L2 , f =

∑
k≥0

fk, fk ∈ Hk,

and the closure of C∞(S2) with respect to that norm would give a Hilbert space whose topology is
the same as Hs(S2).

Just like C∞ = C∞even ⊕ C∞odd, we can split these Sobolev spaces into even and odd functions

Hs(S2) = Hs
even(S2)⊕Hs

odd(S2).

On to the smoothing properties of I, the main crux is to understand the polynomial behavior
of λ2` as `→∞. By (11), there exists two positive constants C1, C2 such that

C1(1 + (2`)1/2) ≤ |λ2`| ≤ C2(1 + (2`)1/2), ` ≥ 0. (13)

Out of this, we can deduce the two-sided estimates

C1‖f‖Hs
even
≤ ‖If‖

H
s+1

2
even

≤ C2‖f‖Hs
even

, (14)

a precise description of the fact that the operator I is smoothing of order 1
2 .

Exercise 8. Work out the details of (13) and (14).
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2.2 The Radon transform on the plane R2

[Recalls on Schwartz space and tempered distributions - see PDE lecture notes]

Although we will spend more time with the Radon transform in the lectures that follow, the
main point of this section is to show that this example can be naturally tackled using Fourier
analysis on R2. Given f ∈ Cc(R2) or f ∈ S (R2), we define

Rf(s, θ) =

∫
R
f(sθ + tθ⊥) dt, (s, θ) ∈ Z := R× S1, (15)

where θ =
(

cos θ
sin θ

)
and θ⊥ =

(− sin θ
cos θ

)
. One may equip Z with area element ds dθ and define L2(Z)

with respect to that measure.

2.2.1 Basic mapping observations

One can define a Schwartz space on S (Z) and show that R : S (R2)→ S (Z) is continuous.

Similarly, S : C∞c (R2) → C∞c (Z) is continuous14. Observe in particular that if f is supported
in {|x| < R}, then Rf is supported in the truncated cylinder {|s| < R}.

2.2.2 The L2 − L2 adjoint R∗

By direct calculation, one may compute the L2(R2)→ L2(Z) adjoint R∗ given by

R∗g(x) =

∫
S1
g(x · θ, θ) dθ, x ∈ R2.

Notice the duality of geometries: the Radon transform integrates a function over all points
through a line, while its transpose integrates over all lines through a point.

2.2.3 The normal operator R∗R as a convolution operator

Combining both definitions of R and R∗, we compute directly that

R∗Rf(x) = 2

∫
R2

f(y)
1

|x− y|
dy =

(
2

| · |
? f

)
(x).

Since R∗R is a convolution operator, is becomes diagonalized through the Fourier transform,
more specifically

R̂∗Rf(ξ) = 2ĥ(ξ)f̂(ξ), h(x) :=
1

|x|
.

The question is: what sense does the Fourier transform of h make, and how to compute it ?

14Note that spaces of smooth functions with compact support are slightly more general than Fréchet.



Math 264 - Fall ’20 - François Monard 18

Indeed, h is not in L1, nor in L2. . . On the other hand, it makes sense as a tempered distribution,
since for f ∈ S (R2),∣∣∣∣∫

R2

1

|x|
f(x) dx

∣∣∣∣ ≤ sup
x
|f(x)(1 + |x|2)|

∫
R2

1

|x|(1 + |x|2)
dx ≤ C sup

x
|f(x)(1 + |x|2)|.

This justifies that its Fourier transform makes sense as a tempered distribution. To compute it,

we use the following trick: the function h is the S ′-limit of hε(x) = e−ε|x|

|x| in the sense that for every

f ∈ S , 〈hε, f〉S ′,S → 〈h, f〉S ′,S as ε→ 0. Since the Fourier transform is S ′ → S ′-continuous, ĥ

is the S ′-limit of ĥε, and since hε ∈ L1(R2), we can compute its Fourier transform in the ’classical’
sense:

ĥε(ξ) =

∫
R2

e−ε|x|

|x|
e−ix·ξ dx =

∫ ∞
0

∫
S1
e−ερ−iρ|ξ| cos θ dθ dρ =

∫
S1

1

ε+ i|ξ| cos θ
dθ

=
1

|ξ|

∫
S1

1
ε
|ξ| + i cos θ

dθ.

Now by complex integration, one can show that for any a > 0,∫
S1

dθ

a+ i cos θ
=

2π√
1 + a2

, (16)

and hence,

ĥε(ξ) =
2π

|ξ|
1√

1 + ε2

|ξ|2
,

whose pointwise limit (and hence in S ′) is ĥ(ξ) = 2π
|ξ| .

Conclusion. We then conclude that

R̂∗Rf(ξ) =
4π

|ξ|
f̂(ξ).

In particular, note that since −̂∆f(ξ) = |ξ|2f̂(ξ), then

F((R∗R)2(−∆)f)(ξ) =
(4π)2

|ξ|2
|ξ|2f̂(ξ) = (4π)2f̂(ξ).

In other words, (R∗R)2(−∆)f = (4π)2f , a statement which one may think of as “the operator
1

4πR
∗R is a negative squareroot of (−∆)”.

What remains to clarify is: in what spaces does all of this work ?
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Exercise 9. Prove (16).

Exercise 10 (Basic properties of the Radon transform). In what follows, for r ≥ 0, we denote
Br = {x ∈ R2 : |x| ≤ r}.

1. Show that if f ∈ C∞c (R2) vanishes outside Br, then Rf is smooth with compact support, and
vanishes outside {(s, θ) ∈ Z, |s| ≤ r}.

2. Show that for n ≥ 2, if f(z) = z−n (z = x+ iy), then Rf ≡ 0. In particular, the converse to
the previous statement is false.

3. Show that R : L2(Br)→ L2([−r, r]× S1) is bounded.

Exercise 11. Let f ∈ S(R2).

1. Show that R[∂xf ] = cos θ ∂∂sRf and R[∂yf ] = sin θ ∂∂sRf .

2. Show that ∂2

∂s2
Rf(s, θ) = R[∆f ](s, θ). ∆ = ∂2

x + ∂2
y .

Exercise 12. 1. Compute the Radon transform of the characteristic function of the ball of radius
ε > 0 and center s0e

iβ with ρ > 0.

2. Let f(x) =

{
(1− |x|2)−1/2 |x| < 1,
0 |x| ≥ 1.

Compute Rf(s, θ) for |s| ≤ 1.

Exercise 13. For α ∈ R, define the weighted L2 space

L2,α(R2) =

{
f :

∫
|f(x)|2(1 + |x|2)α dx <∞

}
.

For what α’s do we have that R : L2,α(R2)→ L2(Z) is bounded ?

Exercise 14. If a function is supported inside the unit disk D, we may then define its Radon
transform on the “truncated cylinder” [−1, 1]× S1, equipped with the measure dsdθ.

1. On the unit disk D, define the weighted space

L2,α(D) =

{
f :

∫
|f(x)|2(1− |x|2)α dx <∞

}
.

For what α do we have that R : L2,α(D)→ L2([−1, 1]× S1) is bounded ?

2. On the truncated cylinder, define the weighted space

L2,β([−1, 1]× S) =

{
g :

∫
|g(s, θ)|2(1− s2)β dsdθ <∞

}
.

For which β do we have that R : L2(D)→ L2,β([−1, 1]× S1) is bounded ?
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2.3 The X-ray transform on the unit disk D

While we will leave for later the question of finding the right spaces for the Radon transform
(mainly because the continuous spectrum aspect of the problem raises additional issues). We will
now return to an example where the integral geometric operator has discrete spectrum, and where
a Singular Value Decomposition can be derived.

2.3.1 From parallel beam to fan-beam

From Exercise (14), one may find out that the operator

R : L2(D)→ L2([−1, 1]× S1, (1− s2)−1/2 ds dθ)

is bounded. In spirit this weight on the codomain arises from the fact that integration curves
become shorter as |s| approaches 1 and this also contributes to the smallness of Rf there. Note
that we have shrunk the co-domain, and thus we have changed the expression of the adjoint, which
now looks like

R∗g(x) =

∫
S1

[(1− s2)−1/2g](x · θ, θ) dθ =

∫
S1

g(x · θ, θ)
(1− (x · θ)2)1/2

dθ.

There are “natural” angle variables in which the measure (1−s2)−1/2 ds dθ becomes dα dβ, called
fan-beam coordinates: β ∈ S1 parameterizes a point from the boundary, while α ∈ (−π/2, π/2)
parameterizes the angle where to cast the line segment, relative to the inner pointing normal. See
Fig. 1 for an example of both transforms side-by-side.

We now call I0 the operator R|L2(D), for reasons that may appear more obvious later15. Hence,
for f ∈ L2(D), let us define

I0f(β, α) :=

∫ 2 cosα

0
f(eiβ + tei(β+π+α)) dt, (β, α) ∈ S1 × [−π/2, π/2]. (17)

Since I0(β, α) = Rf(sinα, β + π/2 + α), using a change of variable from (s, θ) to (β, α), one
may show that I0 : L2(D) → L2(S1

β × [−π/2, π/2]α, dα dβ) is bounded, and its adjoint (a.k.a. the
backprojection operator) takes the form

I∗0g(x) =

∫
S1

1

cosα−(x, θ)
g(β−(x, θ), α−(x, θ)) dθ, (18)

where β−(x, θ), α−(x, θ) are the fan-beam coordinates of the unique line passing through (x, θ), as
explained in section 2.3.3 below.

The purpose below is to compute the full SVD of I0 using the method of intertwining differential
operators, which we now recall.

15If you can’t wait: I is notation for the geodesic X-ray transform on functions on the unit tangent bundle SM ,
while I0 is the restriction of the former to functions on M .
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Figure 1: left to right: a function f , its Radon transform Rf (axes: (θ, s)), its X-ray transform I0f
(axes: (β, α))

2.3.2 The method of intertwining operators

Suppose we have a bounded, injective operator between two Hilbert spaces

A : (H1, ‖ · ‖1)→ (H2, ‖ · ‖2),

and suppose we have two self-adjoint operators D1 : D(D1) → H1 and D2 : D(D2) → H2, defined
on dense subspaces D(D1) ⊂ H1 and D(D2) ⊂ H2

16 such that A(D(D1)) ⊂ D(D2).

Suppose that the intertwining relation A ◦ D1 = D2 ◦ A holds on D(D1), and assume further
that D1 has simple spectrum λ0 ≤ λ1 ≤ · · · ≤ λn ≤ . . . with eigenvectors {un}n≥0, a complete
orthonormal set in H1.

Theorem 2. With the assumptions above, the SVD of A : H1 → A(H1) is given by(
un
‖un‖1

,
Aun
‖Aun‖2

,
‖un‖1
‖Aun‖2

)
n≥0

.

Note that A is not always surjective, this is why the operator is co-restricted to its range in the
statement.

Proof of Theorem 2. For all n ≥ 0, set vn = Aun. We have that

D2vn = D2(Aun) = A(D1un) = A(λnun) = λnvn,

hence the family {vn}n≥0, being eigenvectors with distinct eigenvalues of the self-adjoint operator,
is an orthogonal family. By definition, {vn/‖vn‖2}n≥0 is a complete orthonormal set in A(H1), and
we obviously have

A
un
‖un‖1

=
‖vn‖2
‖un‖1

vn
‖vn‖2

, n ≥ 0.

16This is usually the case of differential operators and when the space H is an L2 space. Such operators are never
bounded, but they are densely defined (say, on C∞), and the theory of unbounded operators still allows for their
good understanding.
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It just remains to show that

A∗
vn
‖vn‖2

=
‖vn‖2
‖un‖1

un
‖un‖1

, n ≥ 0.

To do this, we simply expand A∗vn =
∑

p≥0 anpup, where

anp =
〈A∗vn, up〉
‖up‖21

=
〈vn, Aup〉
‖up‖21

=
〈vn, vp〉
‖up‖21

= δnp
‖vn‖22
‖un‖21

,

and the result follows.

The original idea can be found in [Maa91], where the backprojection operator I∗0 is first diag-
onalized using spherical harmonics, into countably many one-dimensional operators (one for each
spherical mode). Each such operator intertwines two second-order differential operators, and the
computation of the spectrum of one involves solving ODEs, which in spirit is much simpler than
solving integral equations.

What if A is not injective ? Note further that upon taking adjoints and using the self-
adjointness of D1, D2, we may obtain a second intertwining relation D1 ◦ A∗ = A∗ ◦ D2, and
combining the two, we arrive that the fact that [A∗A,D1] = 0 and [AA∗, D2] = 0.

In particular, the eigenspaces of D1 are A∗A-stable, and since they are all one-dimensional
A∗Aun = anun for every n ≥ 0. The kernel of A is precisely the span of those vectors un for which
an = 0, and upon removing those and replacing A by its injective restriction A|{kerA}⊥ , we can
apply Theorem 2.

In what follows, we will factor in the circular symmetry of the problem by considering pairs
of intertwined differential operators.

2.3.3 Interwiners for the backprojection operator I∗0

The presentation that follows is a combination of [Mon20, Section 3] and [MM19]. We will denote

∂+SD = S1
β × [−π/2, π/2]α, µ = cosα.

Let us define the operator I]0 : C∞α (∂+SD) → C∞(D) as the formal adjoint of I0 : L2(D) →
L2(∂+SD, µ dα dβ), (so that I∗0 defined in (18) takes the form I∗0 := I]0( 1

µ ·)). Such an opera-
tor takes the form

I]0g(x) =

∫
S1
g(β−(x, θ), α−(x, θ)) dθ, (19)

where β−(x, θ), α−(x, θ) are the fan-beam coordinates of the unique line passing through (x, θ). In
what follows, we will identify x with ρeiω. See Figure 2 for a summary.

From the observation made in Fig. 2, these functions satisfy the following relation:

β−(ρeiω, θ) = ω + β−(ρ, θ − ω), α−(ρeiω, θ) = α−(ρ, θ − ω).
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x

y

θ

ω
ρ β−

α−
x = ρeiω

eiβ−

Figure 2: Setting of definition of (β−(ρeiω, θ), α−(ρeiω, θ)) (written as (β−, α−) on the diagram).
The rotation invariance implies that if θ and ω are translated by δ, then β− is translated by δ and
α− remains unchanged.

In particular, the expression of I]0g immediately becomes

I]0g(ρeiω) =

∫
S1
g(ω + β−(ρ, θ − ω), α−(ρ, θ − ω)) dθ =

∫
S1
g(ω + β−(ρ, θ), α−(ρ, θ)) dθ.

We then immediately see the first intertwining property

∂ω ◦ I]0 = I]0 ◦ ∂β, ∂ω ◦ I∗0 = I∗0 ◦ ∂β.

Upon defining

T := ∂β − ∂α, (20)

a second intertwining property is then given as follows.

Theorem 3. Define the operators

L := (1− ρ2)
∂2

∂ρ2
+

(
1

ρ
− 3ρ

)
∂

∂ρ
+

1

ρ2

∂2

∂ω2
, (21)

and D := T 2 + 2 tanαT . Then we have the following intertwining properties:

L ◦ I]0 = I]0 ◦D, (22)

L ◦ I∗0 = I∗0 ◦ (−T 2), L := −L+ 1. (23)

Proof. Proof of (22). In what follows, α− and β− will be short for α−(ρ, θ) and β−(ρ, θ). Note the
easy two properties

β− + α− + π = θ, sinα− = −ρ sin θ.
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In particular, this gives ∂α−
∂ρ = − sin θ

cosα−
= 1

ρ tanα−, ∂α−
∂θ = −ρ cos θ

cosα−
, and the derivatives of β− can

be deduced through the relations

∂β−
∂ρ

= −∂α−
∂ρ

,
∂β−
∂θ

= 1− ∂α−
∂θ

.

From these relations, we immediately deduce the property that

∂

∂ρ
I]0g = −1

ρ
I]0[tanαTg].

Iterating this formula, we obtain

∂2

∂ρ2
I]0g =

1

ρ2
I]0[tanαTg] +

1

ρ2
I]0[tanαT (tanαTg)] =

1

ρ2
I]0[tan2 αT 2g − tan3 αTg].

Then by direct algebra, using the last two identities, we obtain

[(1− ρ2)∂2
ρ + (

1

ρ
− 3ρ)∂ρ]I

]
0g =

1

ρ2
I]0[tan2 αT 2g − tanα(1 + tan2 α)Tg] . . .

− I]0[tan2 αT 2g − tanα(tan2 α+ 3)Tg].

(24)

To obtain further identities, we write

0 =

∫
S1
∂θ(g(ω + β−, α−)) dθ

=

∫
S1

(
∂β−
∂θ

∂β +
∂α−
∂θ

∂α

)
g(ω + β−, α−) dθ

= I]0[∂βg] + ρ

∫
S1

cos θ

cosα−
Tg(ω + β−, α−) dθ,

as well as

0 =

∫
S1
∂2
θ (g(ω + β−, α−)) dθ

=

∫
S1
∂θ

(
∂βg +

ρ cos θ

cosα−
Tg

)
dθ

=

∫
S1

(
∂2
βg +

2ρ cos θ

cosα−
T∂βg −

(
ρ sin θ

cosα−
+ ρ2 cos2 θ

sinα−
cos3 α−

)
Tg +

ρ2 cos2 θ

cos2 α−
T 2g

)
dθ.

From the previous identity and the fact that T∂β = ∂βT , the second term equals −2I]0[∂2
βg]. In the

remaining terms, we use that −ρ sin θ = sinα− and ρ2 cos2 θ = ρ2(1 − sin2 θ) = ρ2 − sin2 α− and
the previous equality becomes

1

ρ2
I]0[tan2 αT 2g − tanα(1 + tan2 α)Tg] = − 1

ρ2
I]0[∂2

βg] + I]0[− tanα(1 + tan2 α)Tg + (1 + tan2 α)T 2g]

= − 1

ρ2
∂2
ωI

]
0g + I]0[− tanα(1 + tan2 α)Tg + (1 + tan2 α)T 2g].
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Plugging this relation into the right hand side of (24), we obtain[
(1− ρ2)∂2

ρ +

(
1

ρ
− 3ρ

)
∂ρ

]
I]0g = − 1

ρ2
∂2
ωI

]
0g + I]0[(T 2 + 2 tanαT )g],

hence (22) is proved. Equation (23) follows immediately once noticing that

D =
1

µ
T 2µ+ 1,

thus Theorem 3 is proved.

An integration by parts with zero boundary terms (notice that ρ and 1− ρ2 both vanish at the
ends of [0, 1]) shows that for all u, v ∈ C∞(D),

(Lu, v)L2(D) =

∫
D

(
(1− ρ2)(∂ρu)(∂ρv) +

1

ρ2
(∂ωu)∂ωv

)
ρ dρ dω + (u, v)L2(D), (25)

in particular L is a self-adjoint operator as densely defined on L2(D) (it is defined on C∞(D)).
In addition, the operator −T 2 is formally self-adjoint on L2

+(∂+SM) or C∞α,−,+(∂+SM) defined
in Indeed, following notation in [MM19], an orthogonal basis of L2

+(∂+SD) whose C∞ span gives
C∞α,−,+(∂+SM) is given by

ψn,k :=
(−1)n

4π
ei(n−2k)(β+α)(ei(n+1)α + (−1)ne−i(n+1)α), n ≥ 0, k ∈ Z, (26)

and such that (−T 2)ψn,k = (n+ 1)2ψn,k for all n, k.

From these observations, passing to the adjoints in (23), the further intertwining property holds

I0 ◦ L = (−T 2) ◦ I0. (27)

2.3.4 Backprojecting the joint eigenfunctions of −T 2 and −i∂β - Zernike polynomials

We now focus our attention to I∗0ψn,k = I]0

[
ψn,k
µ

]
. Together with the definition of I]0 and the

relations satisfied by the Euclidean footpoint map for all (ρeiω, θ) ∈ SD:

β−(ρeiω, θ) + α−(ρeiω, θ) + π = θ,

β−
(
ρeiω, θ

)
= β−(ρ, θ − ω) + ω, α−(ρeiω, θ) = α−(ρ, θ − ω),

we arrive at the expression

I]0

[
ψn,k
µ

]
(ρeiω) = ei(n−2k)ω 1

2π

∫
S1
ei(n−2k)θ e

i(n+1)α−(ρ,θ) + (−1)ne−i(n+1)α−(ρ,θ)

2 cosα−(ρ, θ)
dθ.

With the relation sinα−(ρ, θ) = −ρ sin θ, we may rewrite this as

I]0

[
ψn,k
µ

]
(ρeiω) =

ei(n−2k)ω

2π

∫
S1
ei(n−2k)θWn(−ρ sin θ) dθ, (28)
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where we have defined

Wn(sinα) :=
ei(n+1)α + (−1)ne−i(n+1)α

2 cosα
. (29)

The functions Wn are related to the Chebychev polynomials of the second kind Un, specifically
through the relation Wn(t) = inUn(t). In particular, it is immediate to check the 2-step recursion
relation and initial conditions

Wn+1(t) = 2itWn(t) +Wn−1(t), W0(t) = 1, W1(t) = 2it.

By induction, the top-degree term of Wn is (2it)n. Fixing n ≥ 0, we now split the calculation into
two cases:

Case k < 0 or k > n. In light of (28), since Wn is a polynomial of degree n, then Wn (−ρ sin θ)
is a trigonometric polynomial of degree n in eiθ. In particular, if k < 0 or k > n, then |n− 2k| > n
and thus the right hand side of (28) is identically zero. In short, we deduce

I]0

[
ψn,k
µ

]
= 0, n ≥ 0, k < 0 or k > n.

Case 0 ≤ k ≤ n. For the remaining cases, we then define Zn,k := I]0

[
ψn,k
cosα

]
, and for the sake of

self-containment, we now show that the functions {Zn,k}n≥0, 0≤k≤n so constructed are the Zernike
basis in the convention of [KB04], by showing that they satisfy Cauchy-Riemann systems and take
the same boundary values.

Lemma 4. The functions {Zn,k}n≥0, 0≤k≤n satisfy the following properties: For all n ≥ 0

∂zZn,0 = 0, ∂zZn,k + ∂zZn,k+1 = 0 (0 ≤ k ≤ n− 1), ∂zZn,n = 0, (30)

Zn,k(e
iω) = (−1)kei(n−2k)ω, 0 ≤ k ≤ n, ω ∈ S1. (31)

Proof. Using the relation Wn(−t) = (−1)nWn(t), we arrive at the expression

Zn,k(ρe
iω) = ei(n−2k)ω (−1)n

2π

∫
S1
ei(n−2k)θWn(ρ sin θ) dθ

=
(−1)n

2π

∫
S1
ei(n−2k)θWn(ρ sin(θ − ω)) dθ. (32)

With ∂z = e−iω

2 (∂ρ − i
ρ∂ω) and ∂z̄ = eiω

2 (∂ρ + i
ρ∂ω), we compute

∂z(ρ sin(θ − ω)) = i
e−iθ

2
, ∂z̄(ρ sin(θ − ω)) = −ie

iθ

2
.

Plugging these into (32) immediately implies

∂zZn,k + ∂zZn,k+1 = 0, 0 ≤ k ≤ n− 1. (33)
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In addition, we compute

Zn,0(ρeiω) = einω
(−1)n

2π

∫
S1
einθWn(ρ sin θ) dθ

= einω
(−1)n

2π

∫
S1
einθ(2iρ sin θ)n dθ

= ρneinω
(−1)n

2π

∫
S1
einθ(2i sin θ)n dθ

where the second equality comes from the fact that the lower-order terms of Wn(ρ sin θ) have no
harmonic content along einθ. Finally, the constant is∫

S1
einθ(eiθ − e−iθ)n dθ =

∫
S1

(e2iθ − 1)n dθ = 2π(−1)n.

In short, Zn,0 = ρneinω = zn. This also implies ∂zZn,0 = 0 and since we have Zn,n = (−1)nZn,0 =
(−1)nzn, we deduce that ∂zZn,n = 0.

To prove the boundary condition, using that Zn,k(ρe
iω) = ei(n−2k)ωZn,k(ρ), it is enough to show

that Zn,k(1) = (−1)k for every n ≥ 0 and 0 ≤ k ≤ n. That this is true for k = 0 and k = n
follows from the expressions just computed, and the general claim follows by induction on n once
the following equality is satisfied:

Zn,k(1) = Zn−2,k−1(1)− Zn−1,k−1(1) + Zn−1,k(1). (34)

To prove (34), it suffices to input the recursion Wn(sin θ) = 2i sin θWn−1(sin θ) +Wn−2(sin θ) into
the expression (32), and to evaluate it at ρeiω = 1.

From Lemma 4, we see that the family so defined satisfies the characterization (b) of [KB04,
Theorem 1] of the Zernike polynomials. One may see that this characterization defines the same
family due the following facts: for n ≥ 0 and k = 0, the functions Zn,k in both sets agree; by
induction on k > 0, in both sets of functions, Zn,k satisfies a ∂z equation with same right-hand side
and same boundary condition, for which a solution is unique if it exists.

Let us then a few useful properties of these polynomials:

� The following characterization is proved in [KB04, Theorem 1]:

Zn,k(z, z) =
1

k!

∂k

∂zk

[
zn
(

1

z
− z
)k]

, n ≥ 0, 0 ≤ k ≤ n. (35)

� The family {Zn,k}n≥0,0≤k≤n is orthogonal on L2(D). Indeed, they are the eigenfunction of
the pair of self-adjoint operators (L,−∂2

ω) (as densely defined on C∞(D)), since we have

(L,−∂2
ω)Zn,k = (L,−∂2

ω)I∗0ψn,k = I∗0 (−T 2,−∂2
β)ψn,k = ((n+ 1)2, (n− 2k)2)Zn,k,

and the map (n, k) 7→ ((n+ 1)2, (n− 2k)2) is injective.

� Their completeness in L2(D) follows again from the Weierstrass approximation theorem.
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We finally show

Lemma 5.

‖Zn,k‖2 =
π

n+ 1
, n ≥ 0, 0 ≤ k ≤ n. (36)

A functional-analytic proof is given in [Mon20, Appendix]. We give here a proof in the spirit
of recurrence relations for orthogonal polynomials.

Proof of Lemma 5. As a quick consequence of (35), the following relation holds

(n+ 1)Zn,k = −∂(Zn+1,k+1 + Zn−1,k), n ≥ 0, 0 ≤ k ≤ n. (37)

Multiplying (37) by Zn,k and integrating, we arrive at the relation

(n+ 1)‖Zn,k‖2 = −
∫
D

(∂Zn+1,k+1)Zn,k +

∫
D

(∂Zn−1,k)Zn,k.

The last term is zero because ∂Zn−1,k is of degree n− 2 and Zn,k is orthogonal to any polynomial
of degree ≥ n− 1. On to the first term,∫

D
(∂Zn+1,k+1)Zn,k =

∫
D
∂(Zn+1,k+1Zn,k)−

∫
D
Zn+1,k+1∂Zn,k,

= − 1

2i

∫
∂D
Zn+1,k+1Zn,k dz −

∫
D
Zn+1,k+1∂Zn,k.

The rightmost term is again zero by consideration of degree, while the boundary term is computed
using (31), to wit∫

D
(∂Zn+1,k+1Zn,k) dz =

−1

2i

∫
S1

(−1)k+1ei(n+1−2(k+1))βe−i(n−2k)β(−1)kieiβ dβ =
1

2

∫
S1
dβ = π,

hence (36) is proved.

Exercise 15. Prove (37) using (35).

2.3.5 SVD of I0 and mapping properties

We now conclude regarding the SVD of I0 using the method of intertwining differential operators.
This SVD has been known for quite some time, see e.g. [Cor64, Lou84], and the idea to use
intertwining differential operators for such derivations can be found e.g. in [Maa91], though they
are usually written there for each polar harmonic number separately.

Equation (23) allows to avoid this separation by harmonics. Below, the “hat” notation stands
for vector normalization in their respective spaces.

Theorem 6. The Singular Value Decomposition of I0 : L2(D)→ L2(∂+SD, dΣ2) is given by

(Ẑn,k, ψ̂n,k, an,k)n≥0,0≤k≤n, an,k :=

√
4π√
n+ 1

. (38)
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Proof. We obviously have (−T 2)ψn,k = (n + 1)2ψn,k and −i∂βψn,k = (n − 2k)ψn,k, which by self-
adjointness on L2(∂+SD, dΣ2) of the two operators applied, makes ψn,k and orthogonal system. In
addition, an immediate computation gives

‖ψn,k‖2L2(∂+SM) =
1

4
, n ≥ 0, k ∈ Z.

In addition we have, as explained in [MM19] I∗0ψn,k = 0 for k < 0 or k > n, and for 0 ≤ k ≤ n, we
define Zn,k := I∗0ψn,k. By Theorem 3, we compute

LZn,k = LI∗0ψn,k = I∗0 (−T 2)ψn,k = (n+ 1)2Zn,k

−i∂ωZn,k = (n− 2k)Zn,k,

which immediately makes them an orthogonal system in L2(D). This gives us orthogonal systems
associated with I0 and I∗0 and to compute the singular values, it suffices to normalize all vectors.
By definition we have

I∗0 ψ̂n,k = an,k Ẑn,k, an,k :=
‖Zn,k‖L2(D)

‖ψn,k‖L2(∂+SD)
= 2‖Zn,k‖L2(D)

(36)
=

√
4π√
n+ 1

,

hence the result.

The following statement follows directly. Although it is unclear whether it appears explicitly in
the literature, the ingredients for the proof were known since Zernike’s seminal paper [Zer34].

Theorem 7. The following relation holds:

L(I∗0I0)2 = (4π)2Id.

Proof. The proof is seen at the level of the spectral decomposition, since we have for every n ≥ 0
and 0 ≤ k ≤ n,

I∗0I0Zn,k =
4π

n+ 1
Zn,k, and LZn,k = (n+ 1)2Zn,k.

A Sobolev-Zernike scale. For s ∈ R, let us define the scale of Hilbert spaces

H̃s(D) =

{
f =

∞∑
n=0

n∑
k=0

fn,kẐn,k,
∞∑
n=0

(n+ 1)2s
n∑
k=0

|fn,k|2 <∞

}
=
{
f ∈ L2(D), Ls/2f ∈ L2(D)

}
,

(39)

with continuous, in fact compact, injections H̃s ⊂ H̃t for s > t. An important property of the scale
{H̃s(D)}s is the following:

Theorem 8. ⋂
s∈R

H̃s(D) = C∞(D)
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Proof. The inclusion ⊃ is clear, since a smooth function f is such that for all n ≥ 0, Lnf ∈ L2(D).
The proof of the inclusion ⊂ is based on the next two lemmas, proved in [Mon20, Appendix].

Lemma 9. For all α > 3/2, we have the continuous injection H̃α(D)→ C(D).

Lemma 10. There exists ` > 0 such that for every α ≥ `, the operators

∂ : H̃α(D)→ H̃α−`(D) and ∂ : H̃α(D)→ H̃α−`(D)

are bounded. The index ` can be chosen as 2 + ε for every ε > 0.

To prove the inclusion ⊂, it is enough to show that if f ∈ ∩s≥0H̃
s(D), then for any p, q ≥ 0,

∂p∂
q
f ∈ C(D). With ` a constant as in Lemma 10, since f ∈ H̃(p+q)`+3(D), repeated use of Lemma

10 gives that ∂p∂
q
f ∈ H̃3(D), and by Lemma 9, this implies that ∂p∂

q
f ∈ C(D). Hence the

result.

Moreover, it is immediate to establish the property, for all s ≥ 0

‖I∗0I0f‖H̃s+1 = 4π‖f‖
H̃s , ∀f ∈ H̃s, (40)

which is both a continuity and stability estimate.

We also fully understand the mapping properties of I0 : L2(M)→ L2
+(∂+SM): if f =

∑
n,k fn,kẐn,k,

then

I0f =
∑
n,k

fn,k

√
4π√
n+ 1

ψ̂n,k.

Similarly to above, one may define a scale of spaces

Hs
T,+(∂+SM) =

{
g =

∞∑
n=0

∑
k∈Z

gn,kψ̂n,k,
∞∑
n=0

(n+ 1)2s
∑
k∈Z
|gn,k|2 <∞

}
=
{
g ∈ L2

+(∂+SM), (−T 2)s/2g ∈ L2
+(∂+SM)

}
,

in which the following identity is immediate:

‖If‖
H
s+1/2
T,+

=
√

4π‖f‖
H̃s , ∀f ∈ H̃s. (41)

Note that the above space is an example of anisotropic Sobolev space, defined in terms of some
but not all derivatives (in other words, the definition of Hs

T,+ says nothing about how smooth a
function in it is with respect to ∂β).

Exercise 16. Show (40) and (41).

Unlike I∗0I0 which is surjective from H̃s to H̃s+1, and although (41) holds, and unlike I∗0I0

which is surjective, this does not say that I0 is surjective ((41) is indexed by f and says nothing as
to whether If exhausts the codomain).

As we will see later, there exists an operator C− that is Hs
T,+ → Hs

T,+-continuous for every s,
and such that

I0(H̃s(D)) = H
s+ 1

2
T,+ (SD) ∩ kerC−.
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3 A variety of methods to tackle the Radon/X-ray transform on
the plane

3.1 Generalities and mapping properties

Recall the definition, for f ∈ S (R2):

Rf(s, θ) =

∫
R
f(sθ + tθ⊥) dt, (s, θ) ∈ R× S1.

One may show that R : S (R2) → S (Z) is continuous. However, in spite of the fact that we
have defined the “adjoint” of R relative to the L2(R2)-L2(Z) pairing, let us first clarify the following
point:

the Radon transform R : L2(R2)→ L2(Z) is not bounded.

To see this, consider the function f(x) = 1
〈x〉β where we denote 〈x〉 := (1 + |x|2)1/2. We make the

following claims:

� f ∈ L2 iff β > 1: indeed,

‖f‖2L2 =

∫
R2

dx

(1 + |x|2)β
= 2π

∫ ∞
0

ρ dρ

(1 + ρ2)β
,

and the latter is finite iff 2β − 1 > 1.

� If β > 1, its Radon transform takes the form

Rf(s, θ) =

∫
R

1

(1 + s2 + t2)β/2
dt =

1

〈s〉β−1

∫
R

du

(1 + u2)β/2
=

Aβ
〈s〉β−1

,

upon changing variable t = u
√

1 + s2. Aβ is a fixed number, finite iff β > 1.

� For β > 1, Rf ∈ L2(Z) iff β > 3
2 : indeed,

‖Rf‖2L2(Z) = A2
β2π

∫
R

ds

〈s〉2β−2
,

and the integral on the right is finite iff 2β − 2 > 1.

As a conclusion for any 1 < β ≤ 3/2, the function f(x) = 〈x〉−β is in L2 while Rf is not in L2.

To reintroduce spaces in which the Radon transform becomes bounded, we need to consider
weighted spaces where the weights behave polynomially at infinity. In particular, we define

L2(R2, 〈x〉α) := {f :

∫
R2

|f(x)|2〈x〉α dx <∞},

L2(Z, 〈s〉α) := {g :

∫
Z
|g(s, θ)|2〈s〉α ds dθ <∞}.

With these definitions, we prove the following:



Math 264 - Fall ’20 - François Monard 32

Theorem 11. For any α > 1
2 , the Radon transform is continuous in the following setting:

R : L2(R2, 〈x〉2α)→ L2(Z, 〈s〉2α−1),

with operator norm no greater than
√

2πA2α, A2α :=
∫
R

dt
(1+t2)α

.

Proof. Suppose α > 1
2 , then use Cauchy-Schwarz inequality to make appear

|Rf |(s, θ)2 =

∣∣∣∣∣
∫
R
f(sθ + tθ⊥)

(1 + s2 + t2)α/2

(1 + s2 + t2)α/2
dt

∣∣∣∣∣
≤
∫
R
|f(sθ + tθ⊥)|2〈sθ + tθ⊥〉α dt ·

∫
R

dt

(1 + s2 + t2)α
.

Changing variable t =
√

1 + s2u, we arrive at∫
R

dt

(1 + s2 + t2)α
=

A2α

〈s〉2α−1
, A2α =

∫
R

dt

(1 + t2)α
<∞.

Multiplying through by 〈s〉2α−1, we arrive at

|Rf |(s, θ)2〈s〉2α−1 ≤ A2α

∫
R
|f(sθ + tθ⊥)|2〈sθ + tθ⊥〉α dt.

Now integrate w.r.t. ds dθ, change variable x(s, t) = sθ+tθ⊥ in the R.H.S. to arrive at the estimate

‖Rf‖2L2(Z,〈s〉2α−1) ≤ 2πA2α‖f‖2L2(R2,〈x〉2α).

Hence the result.

Exercise 17. Find an expression for Aβ in terms of the Beta function

B(x, y) := 2

∫ π/2

0
(sin θ)2x−1(cos θ)2y−1 dθ, x > 0, y > 0.

Remark 2. A special case of Theorem 11 is for α = 1
2 , where the operator

R : L2(R2, 〈x〉)→ L2(Z)

is bounded, with adjoint R∗ := 〈x〉−1Rt, if Rt denotes the unweighted L2 − L2-adjoint previously
defined.

The necessity of moment conditions The operator R : S (R2)→ S (Z) is not surjective. To
see this, we have the following:

Lemma 12. If g is in the range of R : S (R2) → S (Z), then for every k ∈ N0,
∫
R g(s, θ)sk ds is

a homogeneous polynomial of degree k in cos θ, sin θ.
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Proof. Suppose g = Rf for some f ∈ S (R2) and let k ≥ 0. We compute∫
R
skRf(s, θ) ds =

∫
R2

skf(sθ + tθ⊥) dt ds

=

∫
R2

(x · θ)kf(x) dx (setting x(s, t) = sθ + tθ⊥)

=
k∑
j=0

(
k

j

)
cosj θ sink−j θ

∫
R2

f(x)xjyk−j dx,

hence the result.

For example, g(s, θ) = e−s
2
eiθ cannot be in the range of R, since

∫
R g(s, θ) ds =

√
2πeiθ is not

a polynomial of degree zero in cos θ, sin θ.

It can be shown that the converse also holds, namely that if these conditions are satisfied,
then g = Rf for some f . In fact, such an f can be uniquely constructed from the moments∫
R2 f(x)xjyk−j dx appear above.

3.2 The Fourier Slice Theorem and its consequences

3.2.1 The Fourier Slice Theorem

We first describe our Hilbert scales on R2 and Z. We define the Fourier transform on R2 as usual:

f̂(ξ) =

∫
R2

e−ix·ξf(x) dx, ξ ∈ R2, f ∈ L2(R2),

and on Z,

g̃(σ, θ) =

∫
R
e−isσg(s, θ) ds, g ∈ L2(Z).

for r ∈ R, define

‖f‖2Hr(R2) =

∫
R2

(1 + |ξ|2)r|f̂(ξ)|2 dξ, ‖g‖2Hs(Z) =

∫
Z

(1 + σ2)r|g̃(σ, θ)|2 dσ dθ.

Theorem 13 (Fourier Slice Theorem). For all f ∈ S (R2),

R̃f(σ, θ) = f̂(σθ), (σ, θ) ∈ Z.

Proof.

R̃f(σ, θ) =

∫
R
e−iσsRf(s, θ) ds =

∫
R
e−iσs

∫
R
f(sθ + tθ⊥) dt ds.

The result follows by changing variable x(s, t) = sθ + tθ⊥, noticing that sσ = x · θσ = x · (σθ).

Some consequences:
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� If Rf = 0, then f = 0 (Injectivity # 2).

� The FST motivates a first reconstruction formula: take Rf , compute its 1D Fourier transform
in s, this is the Fourier transform of f in polar coordinates; recover f from its Fourier
transform. This last step may require a tricky interpolation from polar to cartesian, and we
will see below other reconstruction formulas which do not have this drawback.

3.2.2 Stability estimates

In the Hilbert scales defined above, the FST allows to formulate sharp stability estimates.

Theorem 14 (two-sided estimates, see Thm 2.2.2. in [Bal12]). Let f ∈ Hr(Rn) for some r ∈ R.
Then we have the following inequalities:

(i)
√

2‖f‖Hr(R2) ≤ ‖Rf‖Hr+1/2(Z).

(ii) For any smooth and compactly supported function χ,

‖R(χf)‖Hr+1/2(Z) ≤ Cχ‖χf‖Hr(R2).

In particular the estimates can not be improved on the Sobolev scale, the problem is “ill-posed
of order 1/2”.

Proof. For the purpose of proving both (i) and (ii), we first compute, as a preliminary:

‖Rf‖2
Hr+1

2 (Z)
=

∫
R×S1

|R̃f(σ, θ)|2〈σ〉2r+1 dσ dθ = 2

∫
(0,∞)×S1

|R̃f(σ, θ)|2〈σ〉2r+1 dσ dθ,

where we have used the symmetry R̃f(σ, θ) = R̃f(−σ, θ+π). We now use the Fourier Slice Theorem
and change variable ξ = σθ to arrive at

‖Rf‖2
Hr+1

2 (Z)
= 2

∫
R2

|f̂(ξ)|2〈ξ〉2r 〈ξ〉
|ξ|

dξ.

Now notice that we always have 〈ξ〉 ≥ |ξ|, so estimate (i) following immediately from bounding 〈ξ〉|ξ|
from below by 1.

To obtain (ii) however, we see that there is an issue17 because 〈ξ〉|ξ| is not bounded on R2. Fixing

a “cutoff” function χ ∈ C∞c (R2), we rewrite the last equation as

1

2
‖R(χf)‖2

Hr+1
2 (Z)

=

∫
R2

|χ̂f(ξ)|2〈ξ〉2r 〈ξ〉
|ξ|

dξ =

∫
|ξ|<1︸ ︷︷ ︸
I1

+

∫
|ξ|≥1︸ ︷︷ ︸
I2

.

17This is sometimes referred to as a zero-frequency problem, since it occurs at ξ = 0.
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On the term I2, for |ξ| ≥ 1, we always have 〈ξ〉|ξ| =
(

1
|ξ|2 + 1

)1/2
≤
√

2, and hence I2 ≤
√

2‖χf‖Hr .

Bounding I1 is the trickier part. We exploit the fact that the singularity at ξ = 0 is integrable:

I1 =

∫
|ξ|≤1

|χ̂f(ξ)|2〈ξ〉2r 〈ξ〉
|ξ|

dξ ≤
∫
|ξ|≤1
〈ξ〉2r 〈ξ〉

|ξ|
dξ︸ ︷︷ ︸

=C<∞

· sup
|ξ|≤1
|χ̂f(ξ)|.

Now fix ψ ∈ C∞c (R2) equal to 1 on the support of χ so that χf = ψχf . Then for |ξ| ≤ 1,

χ̂f(ξ) = χ̂fψ(ξ) =

∫
R2

χ(x)f(x)ψ(x)e−ix·ξ dx

=
1

(2π)2

∫
R2

χ̂f(η) ̂ψe−i(·)·ξ(η) dη (Parseval)

≤ 1

(2π)2

∫
R2

|χ̂f(η)|2〈η〉2r dη ·
∫
R2

| ̂ψe−i(·)·ξ(η)|2〈η〉−2r dη (Cauchy-Schwarz)

≤ 1

(2π)2
‖χf‖2Hr

∫
R2

|ψ̂(η + ξ)|2〈η〉−2r dη.

The last factor is uniformly bounded over the set |ξ| ≤ 1. Putting everything back together,

I1 ≤ Cχ‖χf‖Hr ,

where the constant Cχ may depend on the size of the support of f (through the choice of function
ψ).
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3.2.3 Interlude: Riesz potentials, Hilbert transform and convolution operators

This section serves as preliminary for the one that follows.

Recall the identity f̂ ? g(ξ) = f̂(ξ)ĝ(ξ). It’s true for f, g ∈ S (Rn) but can be pushed to g ∈ S ′

and f a distribution with compact support.

Given f a distribution with compact support18, one may consider the convolution operator
Af : S → S ′ defined by Af (g) := f ? g. The previous identity tells us that it can be computed
in two ways: (i) by direct computation of the convolution, or (ii) via Fourier transform, as Af =

F−1 ◦ f̂(ξ)◦F . In other context, the function f̂(ξ) is called the symbol (or Fourier multiplier) of Af ,

and Af is called the quantization of f̂ . The form (ii) is extremely useful for computing purposes,
as the computation of F and F−1 can be done using the Fast Fourier Fransform (FFT).

Several operators are convolution operators in disguise:

� The identity is nothing but g 7→ δ ? g, which, as a Fourier multiplier, gives f̂(ξ) = 1. In
particular, δ̂ = 1.

� Any differential operator P (D) =
∑
|α|≤m aα∂

α can be viewed as convolution by P (D)δ, with

Fourier multilplier P (iξ). In particular, the Laplacian ∆ has symbol −|ξ|2.

A class of interest to us in the next section will be the Riesz potentials: on Rn, for α < n,
define Iα via Fourier transform:

Îαf(ξ) := |ξ|−αf̂(ξ). (42)

The condition α < n ensures that |ξ|−αf̂(ξ) remains locally integrable so that it can be viewed as
an element of S ′.

Some comments: for α < 0, Iα is “unsmoothing”, for example, I−2 = −∆; for α = 0, I0 is the
identity; for 0 < α < n, Iα is smoothing. It is also immediately clear that Iα ◦ Iβ = Iβ ◦ Iα = Iα+β

as long as α, β and α+ β are strictly less than n.

The Hilbert transform. Picking up where we left off, let us focus on the one-dimensional case,
using s for the physical variable and σ for its dual Fourier variable. The operator I−1 is then a
convolution operator with symbol |σ|, and one may wonder how close it is from being a d

ds derivative,
an operator whose symbol is iσ. The answer is fairly simple: upon writing

|σ| = iσ · 1

i
sgn(σ),

we see that I−1 can be written as the product of two commuting operators, one being d
ds , and the

other one being the operator with Fourier multiplier ĥ(σ) := 1
i sgn(σ). We call that operator the

Hilbert transform. Namely, define

H : L2(R)→ L2(R), Hf := F−1(ĥ(ξ)Ff). (43)

18An element of E in the PDE notes.
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From this definition, several interesting properties follow quickly: Using Parseval’s formula, H
is an isometry of L2; moreover, H2 = −Id.

One may however wonder what that operator looks like as a convolution operator. Namely: if
ĥ(σ) := 1

i sgn(σ), what does h ∈ S ′ look like ? Upon defining the distribution p.v.1s by

〈p.v.1
s
, ϕ〉S ′,S := lim

ε→0

∫
R\(−ε,ε)

ϕ(s)

s
ds =

∫ ∞
0

ϕ(s)− ϕ(−s)
s

ds,

We now sketch a proof that

h(s) =
1

π
p.v.

1

s
. (44)

Proof of (44). We first show that d
dσ sgn(σ) = 2δ. Indeed, for any ϕ ∈ S ,

〈 d
dσ

sgn(σ), ϕ〉 = −〈sgn(σ), ϕ′〉 = −
∫
R

sgn(σ)ϕ′(σ) dσ

=

∫ 0

−∞
ϕ′(σ) dσ +

∫ ∞
0

ϕ′(σ) dσ = 2ϕ(0) = 〈2δ, ϕ〉.

In addition, we claim that δ = 1̂
2π , as the line below shows:

〈δ, ϕ〉 = ϕ(0) =
1

2π

∫
R
ϕ̂(ξ) dξ = 〈 1

2π
, ϕ̂〉 = 〈 1̂

2π
, ϕ〉.

Combining the past two claims, we arrive at the conclusion that

−̂ish(σ) =
d

dσ
ĥ(σ) =

d

dσ

1

i
sgn(σ) =

2

i
δ =

2

i

1̂

2π
.

Since the Fourier transform is an isomorphism, we deduce the equality of tempered distributions:

sh(s) =
1

π
. (45)

One may be tempted to divide by s and call it a day, but the function 1
s does not define a distri-

bution. However, the distribution 1
πp.v.

1
s does, and in fact, solves equation (45) (exercise: check

this). As a result, we have the following equality of tempered distributions

s

(
h(s)− 1

π
p.v.

1

s

)
= 0.

We now use the following lemma, whose sketch is given in Ex. 18:

Lemma 15. If u ∈ S ′ solves su = 0 in S ′, then u = Cδ for some constant C.

We then deduce that

h(s) =
1

π
p.v.

1

s
+ Cδ.

Finally, C is zero by evenness/oddness considerations: h and 1
πp.v.

1
s are both odd in the sense

that 〈h, ϕ(−s)〉 = −〈h, ϕ〉 for all ϕ ∈ S , and δ is even in the sense that 〈δ, ϕ(−s)〉 = 〈δ, ϕ〉 for all
ϕ ∈ S . The last display in the equality forces C to be zero. Hence the result.
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What equation (44) buys us is the following second characterization of the Hilbert transform:

Hf(t) =
1

π
p.v.

∫
R

f(s)

t− s
ds, (46)

which we will use later.

Exercise 18. Sketch of proof of Lemma 15: suppose su = 0. Fix χ ∈ C∞c (R) a function equal to
1 in a neighbourhood of 0. For ϕ ∈ S , write ϕ(s) = ϕ(0)χ(s) + sψ(s) for some ψ ∈ S . Conclude
by computing 〈u, ϕ〉 using this decomposition.

3.2.4 Filtered-Backprojection formulas

Exact formulas. In what follows, we will somewhat abuse notation: for a function on R2, we
will define the Riesz potential Iαf as in (42). For functions on Z, we will use the 1D Riesz potential
w.r.t. the s variable, namely

Ĩαg(σ, θ) := |σ|−αg̃(σ, θ).

Using these operators, we can then derive the following one-parameter family of inversion for-
mulas, see also [Nat01, Thm. 2.1]. Recall the definition of the backprojection operator

Rtg(x) =

∫
S1
g(x · θ, θ) dθ, x ∈ R2.

Theorem 16. For all α < 2 and f ∈ S (R2),

f(x) =
1

4π
I−αRtIα−1Rf.

Proof. We compute, using the Fourier inversion formula

Iαf(x) =
1

(2π)2

∫
R2

Îαf(ξ)eix·ξ dξ

(a)
=

1

(2π)2

∫
R2

|ξ|−αf̂(ξ)eix·ξ dξ

=
1

(2π)2

∫ ∞
0

∫
S1
|σ|1−αf̂(σθ)eix·σθ dσ dθ (ξ = σθ)

(b)
=

1

(2π)2

1

2

∫
R

∫
S1
|σ|1−αR̃f(σ, θ)eix·σθ dσ dθ

=
1

4π

∫
S1
I1−αRf(x · θ, θ) dθ

=
1

4π
RtI1−αRf(x).

In (a) we have used the definition of Iα, and in (b) we have used the symmetry R̃f(−σ, θ + π) =

R̃f(σ, θ) to extend the integral to R.
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Special cases:

� The case α = 1 reads

f =
1

4π
I−1RtRf,

where I−1 corresponds to the Fourier multiplier |ξ|, i.e. I−1 =
√
−∆. We could have guessed

this from the work that was done in Section 2.2.

� Perhaps the most popular case is when α = 0, this gives:

f =
1

4π
RtI−1Rf. (47)

The operator I−1 is the one-dimensional Fourier multiplier |σ|. Computing it is done colum-
nwise (for each θ separately), and each column is processed via fast fourier transform

before and after multiplication of by |σ|. As explained above we can write I−1 = d
dsH = H d

ds .

� The last comment allows one to easily go from (47) to Radon’s original inversion formula:

f(x) =
−1

π

∫ ∞
0

dFx(q)

q
, Fx(q) :=

1

2π

∫
S1
Rf(q + x · θ, θ) dθ.

This formula has a nice geometric interpretation: f(x) is a weighted functional of Fx(q), which
is the average of Rf over all lines tangent to the circle of center x and radius q.

Approximate formulas.

The Fourier multiplier |σ|, also called a ramp filter, amplifies high frequencies more than low
frequencies. Since actual images have limited bandwidth19, and since noise tends to be more
prominent at high frequencies, we want to replace this “exact” filter by a low-pass one, emphasizing
the features of f which can be more faithfully reconstructed by the data at hand.

The general setting is the following: take w ∈ S (R), w ≡ w(s) an even function (in the sense
that w(−s) = w(s)), and let W = Rtw, that is to say

W (x) =

∫
S1
w(x · θ) dθ = W (|x|).

Then following the same scheme of proof as Theorem 16, one can show the following general

result. In the statement
x
? denotes two-dimensional convolution and

s
? denotes one-dimensional

s-convolution.

Theorem 17 (Filtered-Backprojection Formulas).

W
x
? f =

1

4π
Rt(w

s
? Rf). (48)

19i.e., their Fourier transforms is supported in a ball of radius b. The smallest such b is often called the bandwidth.
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Formulas of this type do not reconstruct f exactly, rather, they reconstruct W ?f , which should
be thought of as a “regularized”, low-frequency version of the unknown.

The relevant parameter is w̃(σ), which should be in some sense a low-pass version of |σ|. Fixing
a cutoff bandwidth b > 0, here are the most commonly used filters in Matlab’s iradon function.

Ram-Lak: w̃b(σ) = |σ|χ[−b,b](σ).

Shepp-Logan: w̃b(σ) = |σ|χ[−b,b](σ) sin(πσ/2b)
πσ/2b .

cosine: w̃b(σ) = |σ|χ[−b,b](σ) cos(π2
|σ|
b ).

Hahn: w̃b(σ) = |σ|χ[−b,b](σ)(.54 + .46 cos(πσ/b)).

Hamming: w̃b(σ) = |σ|χ[−b,b](σ)(.5 + .5 cos(πσ/b)).

Approximate formulas via functional calculus and intertwining differential operators.
We take a second look at Theorem 17. Since the function w is only a function of s, it is easy to
show that W = Rtw is only a function of |x|. This implies that Ŵ (ξ) is only a function of |ξ|, or

equivalently, of |ξ|2, namely, let us write Ŵ (ξ) = Ŵr(|ξ|2) for some function Ŵr : (0,∞)→ R.

The LHS of (48) looks like W ? f = F−1 ◦ Ŵr(|ξ|2) ◦ Ff , something we can write Ŵr(−∆)f .

Such an identification is obviously justified whenever Ŵr is a polynomial, and for more general
functions, it is justified by the spectral theorem for self-adjoint operators.

In short, for a general bounded function h ∈ L∞(0,∞), we can make sense of h(−∆) via the

formula ̂h(−∆)f(ξ) = h(|ξ|2)f̂(ξ), and for functions on Z, we can make sense of h(−∂2
s ) via the

formula ˜h(−∂2
s )g(σ, θ) = h(|σ|2)g̃(σ, θ) (recall that g̃(σ, θ) =

∫
R e
−isθg(s, θ) ds).

The important thing to notice next is that since the relation R ◦ (−∆) = (−∂2
s ) ◦R generalizes

to any reasonable function of −∆, namely R ◦ h(−∆) = h(−∂2
s ) ◦ R. Again, such a formula is

obvious when h is a polynomial, and can be generalized to any limit of polynomials.

For such a function, apply the formula (47) to h(−∆)f to make appear

h(−∆)f =
1

4π
RtH∂sR(h(−∆)f) =

1

4π
RtH∂sh(−∂2

s )Rf. (49)

This formula tells us what to do in order to recover a regularized version of f , h(−∆)f , from Rf .
The operator H∂sh(−∂2

s ) has symbol |σ|h(|σ|2).

Examples of regularization kernels. In the last paragraph above, by ’regularized’, we mean
a low-frequency version of the function to be reconstructed. In particular, the function h(ρ) should
decay to zero as ρ→∞. The ram-lak filter above corresponds to the sharp cutoff

h(ρ) = 1[0,b2](ρ
2) (ram-lak),

where b is the cutoff bandwidth. At the level of the reconstruction, this amounts to using the filter
Ŵ (ξ) = 1[0,b2](|ξ|2), which is nothing but the characteristic function of the ball of radius b. Thus
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the function h(−∆)f only contains the frequency content of f up to frequency b. This induces a
limitation on the size of the details of h(−∆)f .

Another example of regularization kernel is given by the heat semi-group

h(−∆) = et∆ =
∞∑
k=0

tk

k!
∆k, t > 0.

(it’s a semi-group because et∆ ◦ es∆ = e(t+s)∆ for all s, t > 0). It is both a non-polynomial example
of a relevant function of the Laplacian, and its existence is motivated by PDEs. Specifically: for
f ∈ S ′(R2), et∆f is obtained by solving the following heat equation:

∂u

∂t
= ∆u (t > 0, x ∈ R2) with initial condition u|t=0 = f.

Indeed, we can look at what the function v(ξ, t) :=
∫
R2 e

ix·ξu(x, t) dx satisfies: using the properties

of the Fourier transform, v satisfies dv
dt = −|ξ|2v with initial condition v(ξ, 0) = f̂(ξ), and this can

be immediately solved through direct ODE integration

v(ξ, t) = e−t|ξ|
2
f̂(ξ).

We then see that u(x, t) = et∆f as claimed. Note that this also means that u(·, t) can be viewed
as a convolution operator applied to f , with convolution kernel

Wt(x) =
1

(2π)2

∫
R2

eix·ξe−t|ξ|
2
dt =

1

4πt
e−|x|

2/4t.
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Exercise 19. Prove Theorem 17.

Exercise 20. For (α,a) ∈ S1 × R2, define the action of the Euclidean group

(α,a) · f(x) = f(R(α)x + a), R(α) :=

[
cosα sinα
− sinα cosα

]
, f ∈ S (R2).

Find a relation between R[(α,a) · f ] and Rf .

Exercise 21. The Radon transform in higher dimensions. For f ∈ S(Rn), define

Rf(s, ω) =

∫
{x·ω=s}

f, s ∈ R, ω ∈ Sn−1,

where the hyperplane hs,ω := {x ∈ Rn, x · ω = s} is equipped with its natural Lebesgue measure.

Notice the symmetry Rf(s, ω) = Rf(−s,−ω). Define f̂ the Fourier transform as usual on Rn, and
g̃(σ, ω) the one-dimensional Fourier transform along the s factor for functions on R× Sn−1.

1. Prove the Fourier slice theorem: for any f ∈ S(Rn), R̃f(σ, ω) = f̂(σω),

2. Compute the formal adjoint operator of R : L2(Rn) → L2(R× Sn−1), call it R∗. What is its
geometric meaning ?

3. Recalling the definition of the Riesz potentials as usual (for α < n, Îαf(ξ) = |ξ|−αf̂(ξ)), prove
the filtered-backprojection formula, true for any f ∈ S(Rn):

f =
1

2
(2π)1−nI−αR∗Iα−n+1Rf, α < n.

4. Focus on the case α = 0 and explain how the locality of I−n+1 depends on the parity of n.

5. Conclude that in odd dimensions, f(x) can be reconstructed from the Radon transform over
all planes intersecting a small neighborhood of x.

Exercise 22. Radon transform and wave equation. Recall d’Alembert’s formula

v(x, t) =
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ x+t

x−t
g(u) du

which provides the expression for the unique solution to the 1 + 1-dimensional wave problem

∂2v

∂t2
− ∂2v

∂x2
= 0 (x ∈ R, t > 0), v|t=0 = f,

∂v

∂t
|t=0 = g.

This problem shows how the Radon transform and d’Alembert’s formula provide a method for solving
wave equations in Rn × (0,∞) for any n ∈ N.

1. Prove that for f ∈ S(Rn), d2

ds2
Rf = R[∆f ].

2. Use the previous result to derive a solution of the wave problem

∂ttu−∆u = 0 (x ∈ Rn, t > 0), u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),

by setting up a PDE problem for the function v(s, ω, t) := Ru(x, t) (where the Radon transform
acts on the x-variable only).
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3.3 Diagonalization through circular harmonics and radial inversions

3.3.1 Preliminaries on the Beta and Gamma functions

Recall that we define the Gamma function via the absolutely convergent integral Γ(s) =
∫∞

0 ts−1e−t dt
for all s > 0. This defines a smooth function which interpolates the factorial in the sense that
Γ(n+ 1) = n! for all n ∈ N0.

Exercise 23. 1. Show that Γ(s+1) = sΓ(s) for all s > 0. Deduce by induction that Γ(n+1) = n!
for all n ∈ N0.

2. Show that Γ(1/2) =
√
π. Deduce the value of Γ at all half-integers.

Also define the Beta function for all a, b > 0 by

B(a, b) =

∫ 1

0
ua−1(1− u)b−1 du. (50)

It is also smooth in both arguments, and can in fact be expressed in terms of the Gamma function
as follows:

B(a, b) =

∫ 1

0
ua−1(1− u)b−1 du =

Γ(a)Γ(b)

Γ(a+ b)
. (51)

It contains the value of all binomial coefficients, Wallis integrals, etc.

Exercise 24. Prove (51) as follows: write Γ(a)Γ(b) as a double integral in (t, u) ∈ R2
+ and do the

change of variable v = t+ u, w = t
t+u .

3.3.2 The Radon transform of radial functions

Suppose a smooth function to be integrated takes the form f(x) = F (|x|) for F a compactly
supported function. Then by direct calculation,

Rf(s, θ) =

∫
R
F (|sθ + tθ⊥|) dt

= 2

∫ ∞
0

F (
√
s2 + t2) dt

= 2

∫ ∞
s

F (u)u√
u2 − s2

du =: R0F (s).

We immediately see that Rf only depends on s, and that the recovery of F leads to the inversion
of the one-dimensional integral operator F 7→ R0F . To understand the nature of this operator, let
us take a detour through a family of integral transforms of Abel type.

Exercise 25. Show that if f ∈ C∞(R2) and f(x) = F (|x|) for some F : [0,∞)→ R, then F must
take the form F (ρ) = g(ρ2) for some function g ∈ C∞([0,∞)). [Hint: if f is smooth at 0, write a
Taylor expansion there.]
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Abel transforms. In the sequel, all the calculations can be justified by considering functions
which are continuous and compactly supported on R+, a space which we write Cc(R+). If you are
curious, think about how far one can reduce the regularity and integrability below and still make
the calculations justified.

Following [Eps08, §2.5.4], for 0 < α ≤ 1, we define the Abel transform

Aαg(t) =
1

Γ(α)

∫ ∞
t

g(s)

(s− t)1−α ds, g ∈ Cc(R+).

with, in particular when α = 1/2:

A1/2g(t) =
1√
π

∫ ∞
t

g(s)√
s− t

ds, g ∈ Cc(R+).

Notice that A1 produces an antiderivative for g, so these operators have a smoothing behavior.
In fact, Aα is smoothing by the fractional amount α. This is best embodied by the following
observation:

Lemma 18. For all α ∈ (0, 1),

Aα ◦A1−α = A1−α ◦Aα = A1 on Cc(R+).

Proof. We need to show that A1−αAαh(t) =
∫∞
t h(u) du. Iterating the integral, we get

A1−αAαh(t) =
1

Γ(α)Γ(1− α)

∫ ∞
t

1

(s− t)α

∫ ∞
s

h(u)

(u− s)1−α du ds

=
1

Γ(α)Γ(1− α)

∫ ∞
t

h(u)

(∫ u

t

ds

(u− s)1−α(s− t)α

)
du.

Now, somewhat magically, upon changing variable in the s integral s = t + v(u − t) for v ∈ [0, 1],
we arrive at∫ u

t

ds

(u− s)1−α(s− t)α
=

∫ 1

0

dv

(1− v)1−αvα
= B(α, 1− α) =

Γ(α)Γ(1− α)

Γ(1)
,

and the result follows.

In fact, since A1 is inverted by the operator −∂x, Lemma 18 gives us an inverse for Aα: we
directly have

−∂x ◦A1−α ◦Aα = id. (inversion of Aα) (52)

Exercise 26. Show the generalization of Lemma 18: as long as α, β, α+β ∈ (0, 1), Aα◦Aβ = Aα+β.
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Inversion of R0. We now use the results from the previous paragraph to invert R0 explicitly.
This is done by first relating R0 with the Abel transform A1/2. For a function F : [0,∞) → R,

denote F√(t) := F (
√
t). Working on the transform R0:

R0F (s) = 2

∫ ∞
s

F (u)u√
u2 − s2

du =

∫ ∞
s

F√(u2)
√
u2 − s2

d(u2) =

∫ ∞
s2

F√(t)
√
t− s2

dt = A1/2F√(s2).

In other words,

(R0F ) ◦
√
· =
√
πA1/2(F ◦

√
·), F ∈ Cc(R+), (53)

i.e. R0 is nothing but A1/2 acting on functions deformed by the squareroot function.

Since the inversion of A1/2 follows from (52) with α = 1/2, one is able to easily deduce the
inversion of R0:

Theorem 19 (Inversion of R0).

F (r) =
−1

πr
∂r

[∫ ∞
r

R0F (s)s√
s2 − r2

ds

]
=
−1

2πr
∂rR0[R0F ].

Exercise 27. Prove Theorem 19 using (53) and (52).

An interesting consequence: if R0F is supported in s ≤ L, then the form of the reconstruction
formula in Theorem 19 tells us that F is also supported in {|x| ≤ L}. This is a first example of
the so-called Helgason support theorem, which tells us how we can “scrape off” the support of a
function based on the support of its Radon transform.

3.3.3 Diagonalization through harmonics

This material is in part inspired by [Ilm17, Sec. 4, 5].

Let us now generalize to functions which are not necessarily radial. Given f ∈ Cc(R2), for every
ρ ≥ 0, the function β 7→ f(ρβ) = f(ρ cosβ, ρ sinβ) is 2π-periodic and therefore decomposes in
Fourier series:

f(ρβ) =
∑
k∈Z

fk(ρ)eikβ, fk(ρ) :=
1

2π

∫
S1
f(ρβ)e−ikβ dβ. (54)

Similarly, the function Rf(s, θ) is 2π-periodic in θ and thus decomposes into

Rf(s, θ) =
∑
p∈Z

(Rf)p(s)e
ipθ, (Rf)p(s) :=

1

2π

∫
S1
Rf(s, θ)e−ipθ dθ.

In all generality, (Rf)p(s) should depend on all Fourier modes of fk(ρ), by means of some doubly
infinite family of operatorsRpk : Cc(R+)→ Cc(R+) via the relation (Rf)p =

∑
k∈ZRpkfk. However,

all the non-diagonal ones will be zero, because the Radon transform commutes with rotations.
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This is seen more directly by simply computing the Radon transform of the k-th term in (54):

R[fk(ρ)eikβ](s, θ) =

∫
R
fk(|sθ + tθ⊥|)eikarg(sθ+tθ⊥) dt

=

∫
R
fk(
√
s2 + t2)eikarg(sθ+tθ⊥) dt

Now, if s > 0, arg(sθ+tθ⊥) = θ+arg(s+it) = θ+arctan(t/s) = θ+arccos(s/
√
t2 + s2). Returning

to our computation:

R[fk(ρ)eikβ](s, θ) = eikθ
∫
R
fk(
√
s2 + t2)eik arccos(s/

√
t2+s2) dt

a
= eikθ

∫ ∞
0

fk(
√
s2 + t2)2 cos(k arccos(s/

√
t2 + s2)) dt

b
= eikθ

∫ ∞
s

fk(u) cos(k arccos(s/u))
2udu√
u2 − s2

c
= eikθ

∫ ∞
s

fk(u)Tk(s/u)
2udu√
u2 − s2

,

where Tk(x) := cos(k arccosx) is the k-th Chebyshev polynomial of the first kind20.

Exercise 28. Justify steps a, b, c above.

Exercise 29. Define the function Tk through the relation Tk(cos θ) = cos(kθ), θ ∈ [0, π].

1. Show that T0(x) = 1 and T1(x) = x.

2. Show the recursion relation Tk+2(x) = 2xTk+1(x) − Tk(x). Deduce that Tk is a polynomial
of degree k (in particular it is also defined and smooth for x outside [0, 1]; in fact, on [1,∞)
another interpretation is Tk(x) = cosh(karccosh x)).

From the previous calculation, we immediately see that R[fk(ρ)eikβ](s, θ) only contains a Fourier
term along eikθ and nothing along any other ei`θ for ` 6= k. Moreover, upon defining the Abel type
integral transform

Rkg(s) :=

∫ ∞
s

g(u)Tk(s/u)
2udu√
u2 − s2

, g ∈ Cc(R+). (55)

Then we deduce that

Rf(s, θ) =
∑
k∈Z

Rkfk(s)e
ikθ,

where the fk terms are the polar Fourier coefficients of f and Rk is defined in (55).

This provides another avenue to reconstruct f from Rf , by solving countably many one-
dimensional integral equations, reconstructing each fk from Rkfk, provided that this last step
is possible. That this is indeed the case is given in the following result.

20Really, Tk is initially defined for k ∈ N0, but from its defining property, it is clear that we can abuse notation
and set Tk(x) = T−k(x) = T|k|(x).
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Theorem 20 (Inversion of Rk). The operator Rk : Cc(R+) → Cc(R+) is invertible. In particular,
g ∈ Cc(R+) can be reconstructed from Rkg by means of the reconstruction formula

g(r) =
1

π

d

dr

∫ ∞
r

Rkg(s)
Tk(s/r)

s
√

(s/r)2 − 1
ds.

Remark 3. Notice that the inversion involves the operator h 7→
∫∞
r h(s) Tk(s/r)

s
√

(s/r)2−1
ds, where

Tk(s/r) involves values of Tk for x > 1 (while the operator involved in the definition of Rk involves
values of Tk on [0, 1]).

Proof. It is enough to show that∫ ∞
r

Rkg(s)
Tk(s/r)

s
√

(s/r)2 − 1
ds = −π

∫ ∞
r

g(t) dt.

Upon writing the double integral:∫ ∞
r

Rkg(s)
Tk(s/r)

s
√

(s/r)2 − 1
ds =

∫ ∞
r

∫ ∞
s

g(t)Tk(s/t)Tk(s/r)
2t√
t2 − s2

1

s
√

(s/r)2 − 1
dt ds

= 2

∫ ∞
r

g(t)Kk(r, t) dt,

where we have defined

Kk(r, t) :=

∫ t

r

Tk(s/t)√
1− (s/t)2

Tk(s/r)

s
√

(s/r)2 − 1
ds.

The result follows upon proving the rather striking fact that Kk(r, t) = π
2 for all 0 < r < t and

k ∈ N0, which is the object of Exercise 30.

Exercise 30. Exercises 52 through 56 + Bonus Exercise 2 in [Ilmavirta, p27] take you through the
derivation of the magical identity∫ t

r

Tk(s/t)√
1− (s/t)2

Tk(s/r)

s
√

(s/r)2 − 1
ds =

π

2
, 0 < r < t,

A consequence of Theorem 20 is as follows:

Corollary 21. Suppose f ∈ Cc(R2) is such that there is L ≥ 0 such that Rf(s, θ) = 0 for all s > L.
Then f(x) = 0 for all |x| > L.

Proof. Expanding Rf(s, θ) into Fourier harmonics w.r.t. θ, we obtain that Rkfk(s) = 0 for every
s > L and every k ∈ Z. From the inversion formula in Theorem 20, since fk(r) is directly
reconstructed from Rkfk(s) for s ≥ r, this gives that fk(r) = 0 whenever r ≥ L for all k, and hence
f(rβ) =

∑
k∈Z fk(r)e

ikβ = 0 whenever r ≥ L.
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3.3.4 Approximate inversion and Volterra integral equations

The exact inversion of the transform (55) may have looked like it was pulled out of a hat, in the
sense that the inverse was given to us. Some of the intuition behind the construction of the inverse
may be found in Cormack’s original paper [Cor64]. If the kernel seems too messy to intuit an
inverse, some general form remains amenable to analysis. Specifically, it is worth noting that all
the operators Rk take the form

Bf(s) =

∫ ∞
s

f(u)b(s, u)
2u du√
u2 − s2

, s ≥ 0, (56)

where b is uniformly bounded by 1 (in fact smooth) on {(u, s) ∈ R+ × R+, u > s} and where
b(s, s) = 1 for all s ≥ 0, and let’s assume that we can invert the case where b(s, u) = 1 for u ≥ s,
in which case the operator B is R0, the Radon transform on radial functions.

Reduction to a Volterra Integral Equation of the second kind. Assuming that the original
integrand f is supported in [0, L], we then see that Bf(s) = 0 for any s ≥ L, and thus we may
consider the restriction of B to functions on [0, L], defined by

Bf(s) =

∫ L

s
f(u)b(s, u)

2u du√
u2 − s2

, s ∈ [0, L]. (57)

and suppose we want to reconstruct f from g = Bf , in other words solve Bf = g for f .

From what we’ve seen when looking at Abel operators, the relative order of smoothing α that
Aα provides really comes from the singularity of the kernel at s = u. In (57), the only singular
behavior comes from 1√

u−s which suggests that its smoothing behavior is close to that of the Abel

operator A1/2 or the operator R0. Upon plugging b(s, u) = 1 + (b(s, u)− 1) into (57), the equation
Bf = g becomes

R0f + Ef = g, Ef(s) :=

∫ L

s
f(u)(b(s, u)− 1)

2u du√
u2 − s2

.

We then apply the inversion formula of R0 to make appear

f −Kf = − 1

πr
∂rR0g, Kf :=

1

πr
∂rR0[Ef ]. (58)

A bit of work shows that:

Lemma 22. The operator K defined in (58) takes the form Kf(r) =
∫ L
r f(u)k(r, u) du for some

kernel k bounded on [0, L]2.

Proof. We compute

R0Ef(r) =

∫ L

r

∫ L

s
f(u)(b(s, u)− 1)

2u du√
u2 − s2

2s ds√
s2 − r2

=

∫ L

r
f(u)

(∫ u

r
(b(s, u)− 1)

1√
u2 − s2

2s ds√
s2 − r2

)
︸ ︷︷ ︸

e(u,r)

2u du.
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Now note that since b(s, s) = 1, we can write b(s, u) − 1 = (u2 − s2)h(s, u) for some bounded,
continuous function h. This allows us to write e(u, r) as

e(u, r) =

∫ u

r
h(s, u)

√
u2 − s2

2s ds√
s2 − r2

,

and upon changing variable s2 = r2 + y(u2 − r2), we arrive at

e(u, r) = (u2 − r2)

∫ 1

0
h(
√
r2 + y(u2 − r2), u)

√
1− y
√
y

dy.

In particular, e(r, r) = 0 for all r. Finally,

Kf(r) =
1

πr
∂rR0Ef

=
1

πr

(
2rf(r)e(r, r) +

∫ L

r
f(u)∂re(u, r) 2u du

)
=

1

πr

∫ L

r
f(u)∂re(u, r) 2u du.

We see that K is thus an integral operator with kernel

k(r, u) =
2u

πr
∂re(u, r).

The lemma is concluded once one shows that k is bounded on [0, L]. This is left as an exercise.

Exercise 31. Finish the proof of Lemma 22 by showing that the kernel k is uniformly bounded on
[0, L].

With this lemma and the work of the next paragraph, equation (58) can be inverted via the
Neumann series solution

f =
∞∑
p=0

Kp

[
− 1

πr
∂rR0g

]
,

Thereby implying that f can indeed be recovered from g in a semi-explicit manner (modulo an
infinite sum !). This method applies to several cases beyond the case of integration along lines: it
generalizes to more general integration curves, provided that

� This family has rotational summetry with respect to a distinguished point o.

� Each curve γ(t) satisfies d2

dt2
|γ(t) − o| > 0, and at the “vertex” γ(t0) where |γ(t0) − o| is

minimal, γ(t) has first order of contact with the circle to which it is tangent.

Example of articles dealing with such families are: the study of the geodesic X-ray transform for
spherically symmetric metrics [Sha97], integration certain kinds of ellipses [AK15] and “Cormack-
type curves” [RLL14].

Exercise 32. What about families of curves with higher order of contact ?
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Volterra operators of the first kind. Some of this material is inspired from [Eps08, §2.5.4].

Define an operator Kf(r) =
∫ L
r f(u)k(r, u) du for r ∈ [0, L], where the kernel function k(r, u)

satisfies a uniform estimate |k(r, u)| ≤ M for all r, u ∈ [0, L]. The operator K is called a Volterra
integral operator of the first kind, and with such an operator, an equation of the form

f −Kf = h on [0, L], (59)

to be solved for f , is called a Volterra equation of the second kind. See [Wid16] for a general
treatment. We show the following

Theorem 23. Let K an operator as above, with kernel k(r, u) uniformly bounded by M on [0, L]2

and vanishing for u < r. Then for any h ∈ L∞([0, L]), equation (59) has a unique solution
f ∈ L∞([0, L]) of the form f = h+

∑∞
k=1K

ph, where the second summand is a continuous function.

Particular cases include:

� if h is continuous on [0, L], then so is f .

� if h = 0 on [0, L], then f = 0 on [0, L].

Proof. Let us inspect the convergence properties of the series
∑∞

j=0K
jh. Bounding the j = 1 term,

we obtain

|Kh(r)| =
∣∣∣∣∫ L

r
k(r, u)h(u) du

∣∣∣∣ ≤M‖h‖∞(L− r).

Notice also that, similarly,

|Kh(r)−Kh(r′)| ≤M‖h‖∞|r − r′|,

and thus Kh is (Lipschitz-) continuous on [0, L], in particular bounded on [0, L]. By induction,
every term Kjh will be continuous and bounded. Moreover, using the same bounding technique,
one may prove by induction that

|Kjh(r)| ≤ M j(L− r)j

j!
‖h‖∞, r ∈ [0, L],

this yields the uniform estimate ‖Kj‖∞ ≤ (ML)j

j! ‖h‖∞. Since the series of upper bounds is
summable, the Weierstrass M-test ensures that the limit exists and is bounded, with sup-norm∥∥∥∥∥∥

∞∑
j=0

Kjh

∥∥∥∥∥∥
∞

≤ eML‖h‖∞.

Since all terms but possibly the first one are continuous, then
∑∞

j=1K
jh is continuous as a uniform

limit of continuous functions.
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3.3.5 The exterior problem and Helgason’s support theorem

The geometry of lines is such that if K ⊂ R2 is compact and convex set, the problem of recon-
structing f from Rf admits a natural ’triangular’ structure. Namely, if we write f = f |K + f |Kc

(where each restriction is extended by zero to R2) and set ZK the set of lines which intersect K,
then an obvious observation is that the Radon transform of f |K is zero on any line that does not
intersect K. Hence, the operator R splits into[

Rf |ZK
Rf |ZcK

]
=

[
∗ ∗
0 ∗

] [
f |K
f |Kc

]
.

As for any triangular system, it is then worth inferring first the reconstructibility of f |Kc from
Rf |ZcK . This is called:

The exterior problem: given K a compact and convex domain and f ∈ C∞c (R2),
(i) does Rf(L) = 0 for every L not intersecting K imply that f ≡ 0 outside K ?

(ii) If the answer to (i) is ’yes’, how to recover f |Kc from Rf |ZcK ?

We will address (i), and this is called the Helgason support theorem, whose proof follows from
the work done in the previous sections. Recall that the support of a function (or a distribution)
f is the complement of the largest open set on which f ≡ 0.

Theorem 24 (Helgason support theorem). Let K ⊂ R2 be a compact and convex set. Suppose
f ∈ Cc(R2) integrates to zero over all lines L ⊂ R2 for which L ∩K = ∅. Then f |R2\K = 0.

Proof. Case 1: a disk. Suppose K = Dr(x0). Upon considering the function f̃(x) = f(x − x0),
the goal is to show that if Rf̃(s, θ) = 0 for s > r, then f̃(x) = 0 for |x| > r. But this follows directly
from Corollary 21.

Case 2: general. Now that this is proved for a general disk, this can be proved provided that
for any compact and convex set K, we have

K =
⋂

D⊇K,D disk

D. (60)

The inclusion ⊂ is obvious, and to prove the converse, one must show that for every point x /∈ K,
there is a disk D such that K ⊂ D and x /∈ D.

Once (60) is proved: for every disk containing K, Rf vanishes at lines not passing through D,

so by case 1, f vanishes on the complement of D. Then f vanishes on
⋃
Dc = (

⋂
D)c

(60)
= Kc,

which is what we had to prove.

Exercise 33. Prove the ⊃ part of (60).

Remark 4. Note that although the exterior problem is injective, and unlike K is at most a point,
this problem is severely ill-posed.
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3.4 Approach by complexification and Riemann-Hilbert problem

Further elaboration on this material can be found in [Bal12, Sec. 2.4].

3.4.1 The transport viewpoint

In this section, we take the transport viewpoint to define the X-ray/Radon transform on the plane:
given f ∈ C∞c (R2), we define the X-ray transform of f as If(x, θ) := limt→∞ u(x + tθ,θ), where u
is the unique solution to the equation

θ · ∇u = f (R2 × S1), lim
t→−∞

u(x− tθ,θ) = 0.

Originally we can think of it as a function of (x, θ) ∈ R2 × S1, though we see that If(x + uθ, θ) =
If(x, θ) for any u ∈ R. Writing x = (x · θ)θ + (x · θ⊥)θ⊥, we see that If(x, θ) = Rf(x · θ⊥, θ+ π

2 ),
where Rf is the Radon transform in the previous sections. In this convention, integration is done
along θ instead of θ⊥.

Note that R2 × S1 can be thought of as the unit tangent bundle of R2, and the equation above
can be thought of as a transport equation posed there (in this viewpoint, even the integrand f can
be viewed as a function of θ also). The vector field whose integral curves are those over which f is
being integrated over is θ · ∇ = cos θ∂x + sin θ∂y. It is the geodesic vector field on Euclidean R2,
whose integral curves (in R2 × S1, projected back onto R2) are straight lines.

3.4.2 Complex preliminaries

We introduce complex coordinates z = x+ iy, z = x− iy, and the induced complex derivatives

∂z =
1

2
(∂x − i∂y), ∂z =

1

2
(∂x + i∂y).

In these coordinates, the area form looks like dxdy = dz∧dz
2i =: dµ(z).

� Green’s formula in complex coordinates.
∫
∂Ω Pdx+Qdy =

∫
Ω

(
∂Q
∂x −

∂P
∂y

)
dx dy yields∫

∂Ω
u dz = 2i

∫
Ω

∂u

∂z̄
dµ(z)

� The fundamental solution to ∂z̄u = f with lim|z|→∞ u(z) = 0 for f ∈ Cc(R2).

u(z) =
1

π

∫
C

f(ζ)

z − ζ
dµ(ζ).

� Plemelj-Sokhotsky formula: For all f ∈ C∞c (R),

lim
ε→0

∫
R

f(x)

ix+ ε
dx = −ip.v.

∫
R

f(x)

x
dx+ sign(ε)πf(0). (61)
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3.4.3 A example of a Riemann-Hilbert problem

Call T the unit circle in R2 traversed counterclockwise, and let D+ the open unit disk, and D−
the complement of the closed unit disk. If φ is smooth on D+ ∪ D− and has limits at T , we let
φ±(t) = limε→0+ φ((1∓ ε)t), and call ψ(t) := φ+(t)− φ−(t) the jump of φ across T .

The RHP associated to T and ϕ is formulated as follows:

Problem 1 (Riemann-Hilbert problem across T ). Find φ satisfying:

(i) φ is analytic on D+ ∪D−
(ii) λφ(λ) is bounded as |λ| → ∞.

(iii) The jump of φ across T is ψ.

In their full generality, Riemann-Hilbert problems may include more general jump contours
than T , matrix-valued integrands, other normalization conditions than (ii). They appear in several
fields of mathematics related to special functions, random matrix theory, orthogonal polynomials,
integrable PDEs and more. See [AFF03], and [TO15] for more numerical and practical aspects.

As far as the problem above goes the following result holds and is crucial for what follows.

Theorem 25. The solution to Problem 1 exists and is unique, given by

φ(λ) =
1

2πi

∫
T

ψ(t)

t− λ
dt λ /∈ T.

Proof. (Existence) That the solution written above solves the problem follows immediately from
Plemelj’s formula (61), or rather, an adaptation of it to the unit circle. We can also check the jump
condition by computing left and right limits and expanding ψ(eiθ) into a Fourier series. Specifically,
let us decompose ψ(eiθ) =

∑
k∈Z ake

ikθ, and write

φ(λ) =
1

2π

∫ 2π

0

ψ(eiθ)

eiθ − λ
eiθ dθ.

If |λ| < 1 we use the Neumann series 1
1−λe−iθ =

∑
p≥0 λ

pe−ipθ to rewrite φ(λ) as

φ(λ) =
1

2π

∫ 2π

0

∑
p≥0

e−ipθλpψ(eiθ) dθ =
∑
p≥0

apλ
p.

As λ → eiα ∈ T , this converges to φ+(eiα) =
∑∞

p=0 ape
ipα, and the convergence is justified by the

original regularity imposed on ψ(eiθ). If |λ| > 1, we use the Neumann series 1
eiθ−λ = 1

λ

∑∞
p=0 λ

−peipθ

to write

φ(λ) = −
∑
p≥0

a−(p+1)λ
−(p+1).

As λ→ eiα ∈ T , this converges to φ−(eiα) = −
∑−1

k=−∞ ake
ikα. We indeed see that φ+(eiα)−φ−(eiα)

recovers exactly ψ(eiα).

(Uniqueness) That the solution is unique follows from Liouville and Morera’s theorems: if two
solutions φ1, φ2 both solve Problem 1, then Φ1−Φ2 is entire and bounded near infinity: it must be
a constant. Since its limit as |z| → ∞ is zero, it is identically zero.
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3.4.4 Inversion of the X-ray transform through a Riemann Hilbert problem

The idea of this method of inversion is as follows: u(x, θ) can be extended to λ /∈ T ∪ {0} by
complexifying the transport equation, starting from the observation that θ ·∇ = eiθ∂z + e−iθ∂z̄ and
setting λ = eiθ and e−iθ = λ−1, the augmented function u(x, λ) solves the problem

(λ∂z + λ−1∂z̄)u(z, λ) = f(z), lim
|z|→∞

u(z, λ) = 0, (62)

(here we write u(z) but we are not implying that u is complex-analytic). The method of resolution
then goes as follows:

1. Freezing λ /∈ T ∪ {0}, equation (62) turns out to be a complex Cauchy-Riemann equation
in the variable ζ = λ−1z − λz̄, in the sense that λ∂z + λ−1∂z̄ = (|λ|−2 − |λ|2)∂ζ̄ . Using the
fundamental solution of this problem, we arrive at the expression (denote u± = u|D±)

u±(z, λ) =

∫
C
G±(z − z′, λ)f(z′) dµ(z′), G±(z, λ) =

∓1

π(λ−1z − λz̄)
.

2. From the expression above, now freeze z and study u(z, λ) for λ /∈ T ∪ {0}: u± are obviously
complex-analytic on their domains of definition, and u+ is in fact analytic all the way down
to λ = 0, with limit 0. u− also has the right decay as |λ| → ∞, so u(z, ·) satisfies a RHP
across the unit circle. By Theorem 25, u(z, ·) can be globally expressed as a Cauchy integral
in terms of its jump across the unit circle. Namely, we also arrive at

u(z, λ) =
1

2πi

∫
T

ψ(z, t)

t− λ
dt =

1

2π

∫
S1

ψ(z, eiθ)

1− λe−iθ
dθ,

where ψ(z, eiθ) := limε→0+
(
u+(z, (1− ε)eiθ)− u−(z, (1 + ε)eiθ)

)
is the jump of u across the

unit circle. From using Plemelj formula, one may find that ψ is in fact only expressed in
terms of known data. More specifically, one may show that

lim
λ→eiθ,λ∈D±

∫
R2

G±(x− y, λ)f(y) dy = ± 1

2i
(HRθf)(x · θ⊥) + (Dθf)(x),

where Dθf(x) := 1
2

∫
R sign (t)f(x + tθ) dt is the so-called divergent beam transform. This

term is of course unknown from data, but disappears when computing the jump of u across
T .

3. To obtain a reconstruction formula for f(z), we now set λ → 0 in the “complex transport”
equation to obtain

f(z) = lim
λ→0

λ−1∂z̄u(z, λ).

Combining the expression of u in terms of ψ and of ψ in terms of Rθf , we recover the usual
Filtered-Backprojection formula.
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3.4.5 The attenuated X-ray transform

One of the powers of this method is that it can also deal with the presence of an attenuation
coefficient. More specifically, suppose an attenuation function a ∈ C∞c (R2) is known, and for
f ∈ C∞c (R2), let us consider the transform Iaf(x, θ) = limt→∞ u(x + tθ, θ), where u solves the
transport problem

θ · ∇u+ au = f (R2 × S1), lim
t→∞

u(x− tθ, θ) = 0.

Upon complexifying λ = eiθ, the equation becomes

(λ∂z + λ−1∂z̄)u(z, λ) + a(z)u(z, λ) = f(z).

Here it is then customary to introduce h(z, λ), for λ /∈ T ∪ {0}, the unique solution to the problem

(λ∂z + λ−1∂z̄)h = a, lim
|z|→∞

h(z, λ) = 0,

so that the complex transport equation becomes

(λ∂z + λ−1∂z̄)(ue
h) = aeh.

As in the unattenuated problem, h± are holomorphic in λ and the jump of h± is known (in fact,
even the radial limits of h± are known since a is known).

Solving the last equation gives two expressions of u for λ ∈ D±, that is,

u±(z, λ) = e−h±(z,λ)

∫
C
G±(z − z′, λ)eh±(z′,λ)f(z′) dµ(z′).

Again, it can then be shown that such an expression, with z frozen, is sectionally analytic in λ,
with limit 0 at λ = 0, and with the right decay at infinity. Then u can be parameterized from its
jump across T which can be expressed in terms of known data (that this step is true requires some
careful calculations).

Finally, the reconstruction formula for f will be again obtained from computing the expression

f(z) = lim
λ→0

λ−1∂z̄u(z, λ).
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