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1

Introduction

Though we will later focus on inverse problems in integral geometry, these problems sit inside the
larger field of inverse problems, which prescribes an agenda of questions that one may address.
Some examples may then not be directly related to integral geometry, though they are part of the
inverse problems folklore (some of them still open to this day).

Reading material: [Ball2, Chapter 1], [Ilm17, §1]

1.1 What is an inverse problem ?

Given a continuous map M : X — Y and y € ), find € X such that M(z) = y.

e M can be linear or non-linear.

e X and )Y can be finite-dimensional normed spaces or, most often, infinite-dimensional topo-

logical vector spaces (Banach, Hilbert, Fréchet spaces of functions and distributions) or topo-
logical manifolds.

The spaces above often reflect a notion of smoothness, typically embodied by a scale of
Hilbert or Banach spaces (e.g. Sobolev spaces), whose intersection gives a Fréchet space
(e.g. smooth functions, rapidly-decaying functions or both). A scale of spaces is a family of
Banach or Hilbert spaces {(H®, || - ||s }sen, With continuous injections H® < H', s > ¢, and the
intersection may be given a Fréchet topology defined by the countable family of seminorms
| - |ls,s € Nog. Important examples include Sobolev spaces (f € HF(R) iff 9%f € L? for
all 0 < o < k, with norm ||f||%{k = ZZ:O [0°f]|2,) and the classical C*(R) Banach spaces
(equipped with the sup norm || f||gr 1= maxo<a<k Sup,er |0%f(x)]), with intersection space
C*®(R). Another way to quantify smoothness is by means of decay in the Fourier domain,
which may motivate other scales of spaces of the form B* = {f € L*(R); (14+22)*/2f € L*(R)},
k> 0.

e M may be not injective and not surjective. What, then, does it mean, to ’invert’ M ?

e It could be that the problem may be formulated as “recover x from M (x)”, and part of the

job is to find a ’good’ pair of spaces as well.

Some examples:

e Finite-dimensional, linear inverse problems.
e Recovering f: R — R from its antiderivative F(z) = [i f(t) dt.

e Recovering f from its Fourier transform f(ﬁ) = |k e~ f(x) dx, or its Hilbert transform

Hf(x) = 1 fg o5/ () dy.



Math 264 - Fall ’20 - Francois Monard 4

e Inverse diffusion: to recover the initial temperature distribution up(x) from the observation
of the temperature distribution at a later time up(z) = u(x,T'), where u(z,t) solves the heat
equation

O = 9%u, zeR, t>0 (heat equation)

u(x,0) = ug(x). (initial condition)

e X-ray/Radon transform (see below).

e (Calderon’s problem, boundary rigidity, inverse spectral problem.

1.2 The inverse problems agenda

Two practically motivated philosophical points may help approach what follows:

e The forward operator M is generally ’smoothing’ and therefore, undoing that process will
require 'unsmoothing’ the data, a process which is in itself ill-conditioned (or unstable) in the
sense that M~!: ) — X may not be continuous in general.

e The data y may be corrupted by noise, in the sense that we want to find x € X measuring
M(z) + n, where n models a noise realization which we have little control over. Two issues
naturally arise out of this: first, the measurement M(x) 4+ n might no longer live in Y
(depending on how smoothing the problem is, M(z) may be smoother than 7, so M(x) 4+ n
lives in the space where 7 lives, not where M(z) lives); second, M(z) + n might not even be
in the range of M !

With that in mind, here are some of the important questions to be addressed:

Injectivity: Does M (x) characterize z uniquely (equivalently, does M(x1) = M(z2) imply z1 =
x2) 7 If not, can one describe obvious obstructions to injectivity (for example, is there a “gauge”
group action G x X — X such that M(z1) = M(z2) if and only if 1 = g - x5 for some g € G)
? If yes, the lack of injectivity is well-understood, and one could in principle replace the initial,
non-injective operator M: X — ) by the injective one M: X /G — ).

Stability: Suppose injectivity has been settled. Stability is a quantification of how "well-behaved’
the inversion process will be.

One way to think of stability is to ask what is the form of the modulus of continuity of M~ :
Y — X, if any ? i.e., for which function w : [0,00) — [0, 00) with lim,_,ow(z) = 0 do we have!

IM™ (1) = M7 (o)l < wllyn = w2lly)-

"We will write a < b if there is a constant C' such that a < Cb. Unless important, we will not keep track of
constants.
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Since M~! might not even make sense, we prefer writing

21 — 222 S w(IM(21) = M(22)[y)- (1)
Equation (1) is a stability estimate, which quantifies how error on data (measured with || - ||y)
translates into error on the reconstruction (measured with || - ||x). It helps answer the question:

suppose I want a reconstruction error no greater than e, what precision on my measurements do 1
need ?

The problem is then said Lipschitz-stable in (X,)) if one has equality (1) with w(z) = z, the
best-case scenario?; Hélder-stable in (X,)) if w(z) = 2% for some 0 < a < 1; worse moduli of

continuity include w(z) = m (log-stable, or exponentially ill-posed).

A problem may be made Lipschitz-stable for some specific choice of norm, in spite of the fact
that it is objectively badly-behaved. But then, this Lipschitz estimate is probably practically
unusable because the space ) is too small for the noise to live in it. Although we mentioned above
that there is some leeway in choosing the spaces X and ), a first constraint is to use a space )
where the noise lives.

Another way to define stability is with respect to Hilbert scales X} and Y such that M: A —
Y, is continuous for all k. Then the inverse problem is

e well-posed if ||z — 2| S [[M(z) — M(2")]|x for all k

e mildly ill-posed of order o > 0 if there is o > 0 such that ||z —2'||; < [|M(z) — M(2')||k+a for
all k. One then seeks the smallest a and calls it the order of ill-posedness of M (it depends
on the choice of scales)

o severely ill-posed otherwise.

When the grading of the Hilbert scales at play describes order of differentiability, the « above
quantifies by how many derivatives the operator M is smoothing (as a result, reconstructing z will
involve differentiating the data « times). A severely ill-posed problem typically corresponds to an
operator which is smoothing by an infinite degree.

What is the link between the above two notions 7 When the second one is well-understood,
one can cook up appropriate moduli of continuity for the inverse, provided that one adds a prior
smoothness assumption on the unknown x (see Exercise 3).

Range characterization: The operator M : X — } is most likely not surjective, so how does
M(X) sit inside Y 7 Given y € Y, can one find “consistency conditions” which imply that y is in
the range of M 7 If M is linear, then M(X) is a linear subspace of }; can one easily describe the
supplementary (sometimes, orthocomplement) of M(X) ?

For example,

Consider the operator A: (2(Ng) — (?(Np) given by Au = (ﬂun> , u = (up)n. Equip

n

(%(Np) with the orthonormal family {e,},>0 where for n >0, e, = {§;»};>0

2Recall from one-variable calculus: a function with superlinear modulus of continuity is constant.
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A is not surjective for two fundamentally different reasons: any basis vector egy is not achieved
in the range of A, and if we were to restrict A to the span (ej, es3, €5, .. .), where it becomes injective,
it is still not surjective because elements in the range have faster decay than ¢?. In particular, the

sequence u = {W} € (?(Ng) seems to have a preimage by A, but that preimage does not
n
belong to £2(Np).

Reconstruction: What are the ways that we can recover x from M(z) ? (explicit reconstruction
formulas, Fredholm equations, regularized inversions, Markov Chain Monte Carlo)

Partial Data problems: What if we only have partial knowledge of M(z) (e.g. discrete samples,
or a restriction of the full data) ? How are injectivity, stability and reconstruction impacted ?

Parameter dependence: Similarly to the previous question: how do the answers to injectivity,
stability and reconstruction depend on some parameter in the system considered 7 Examples:

e Injectivity and stability of the geodesic X-ray transform on a Riemannian surface depend on
whether that surface has conjugate points.

e Injectivity of the attenuated X-ray transform over vector fields degenerates as the attenuation
vanishes.

e In an inverse wave problem (TAT/PAT), injectivity and stability depend on the observation
time.

Practical questions: What is the nature of the noise in the measurement ? (in what space does
it live 7) how to use the stability estimate to understand how errors will magnify ? How much do
we have to regularize the inversion in order to obtain a meaningful reconstruction ?

1.3 Some prototypes

e Finite-dimensional, linear inverse problems. Singular Value Decomposition. Recall that for a

linear operator A: CP — C9, setting r = min(p, q), there exists orthonormal bases (u1,...,up)
and (v1,...,vy) and non-negative numbers o1, ..., o0, such that
AUj:UjUj, A*Uj:UjUj, 1§j§7’.

If p > g, then we also have Au; = 0 for ¢ < j < p and if ¢ > p, we have A*v; = 0 for
p < j < q. The u;’s are the eigenvectors of A*A: CP — CP (a symmetric operator), the v;’s
are the eigenvectors of AA*: C? — C4, and 0]2- are the eigenvalues of either operator.

In the case where p = ¢ and all singular values are non-zero and arranged in decreasing order
o1 > -+ > 0p, then we have

aplle]l < fAzl| < oz, Vo eCP (2)

which gives us both continuity and stability constants.
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e Infinite-dimensional linear inverse problems involving compact® operators. Suppose A is now
a linear, bounded operator between two Hilbert spaces A: Hi1 — Hs. Can we use the SVD
picture again 7 Well, not always. The operator A*A: H; — H1 will be bounded, self-adjoint,
but its spectrum may not be discrete?. However, if A*A is compact, then indeed, we can find
two Hilbert orthonormal bases wu,, v, of Hi,Hs and a decreasing sequence of non-negative
numbers o; such that

A’U,j = 0;j, A*vj = 0;jUj, 3 =>0.

This is the spectral theorem for self-adjoint, compact operators. Moreover, since A*A is
compact, the sequence o; necessarily decreases to zero, so inf; o; = 0 and there will be no
room to write a stability estimate as in (2). Having an SVD is however extremely relevant to
understand stability, inversion and regularization purposes.

e Recover f € L%([0,27]) from its Fourier coefficients

1

27
—inf
= — 0) do Z.
271_/0 e f0)do, ne

an[f]
e Suppose f € L?([0,27]) satisfies fozﬂ f(0) do = 0. Recover f from the functional
0
F(§) = / FO)do,  6elo,2q].
0

e Consider the measurement operator as follows: Given f € L%([0,7]), Let M(f) = ul=r,
where u(x,t) solves the heat equation

Oru = Ozt (0,7) x (0,T), uli—o = f,
with Neuman boundary conditions 0,u(0,t) = dyu(m,t) = 0.

1. Expand f and u as Fourier cosine series to make appear an explicit form of the measure-
ment operator. In the Fourier cosine series identification f <> {ay,}n>0 such that f(z) =
Yoo an cos(nz), the operator M is diagonal and its action looks like a, ane T,

In particular, the operator M (or, rather FMJF ! with F the cosine series transform)

is bounded and injective from ¢?(Np) into itself.
2. On the other hand, the inverse is not £2 — ¢2 continuous, nor is it h?» — ¢2 bounded for

any p > 0 (study the ratio ||/\ﬂl{%|2|hp with f(z) = cos(nz)). This is an example of an
exponentially ill-posed problem.

3. Yet we can still find a space H where M : ¢ — H is an isometry (i.e. with bounded
inverse in particular). This space can be easily found to be

H =< (an) € 12, Z |an|2e2n2T < 00
n>0

3A linear operator between Hilbert spaces A: Hi — Ha is compact if it maps bounded sequences to sequences
with convergent subsequences.
4See the spectral theorem for bounded, self-adjoint operators
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It corresponds to Fourier series which decay at an exponential rate. For such series, the
corresponding Fourier cosine series - ax cos(kz) is smooth on [0, 7]. Then M maps
rough functions into smooth ones. Undoing that process would then require “differenti-
ating infinitely many times”, one of the interpretations of severe ill-posedness.

Exercise 1. For k > 0, define the scale of Hilbert spaces

WP = {u = {uptnzo € C, Julf =Y n®u* < oo . (3)
n>0

and denote £? := h0. Consider a sequence of complex numbers {\}n>0, and consider the ’diagonal’

operator
A 02— 2, A({untn) = {\nun tn.
1. Under what condition is the operator A bounded (=continuous) ?
2. Suppose N\, # 0 for all n. Is A invertible ? Is A=': (2 — (% always continuous ?
3. Fiz p > 0 and suppose A\, = n—lp With A defined as above, what is the order of ill-posedness
of A in the scale h* defined in (3) ?
4. Same question with the sequence A\, = e~ ".
5. Can you describe the intersection space h™ := ﬁkzohk 7

Exercise 2. Consider the following measurement operator: given f € L*([0,7]), define Mf =
ul|t=r where u(x,t) solves the wave equation

1.

Ot — g = 0, x € (0,m), t e (0,7),
u(z,0) = f, Oyu(z,0) =0, 0<z<m,
0,u(0,t) = Oyu(m,t) =0, 0<t<T.

Using Fourier cosine series in « for f and u (f <> > 2 ancos(nx)), write an explicit expres-
sion for M. Is M : L*(0,7]) — L2([0,7]) bounded ? injective ? surjective ? If M describes
M acting on sequences of Fourier cosine coefficients, and equip the space of such sequences
with the Sobolev scale

B = {(an)neN, S (k4 Do < oo} ,
k=0

does there exists p € Ry such that M : 62 = hP is bounded and M1 : kP — (% is bounded
(two-sided estimate) ¢

2. Same as (a) replacing the initial conditions by

u(z,0) =0, Ou(z,0) = f, 0<z<m.
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3. Same as (a) replacing the wave equation with the elliptic equation Oyu + Opzu = 0.

Exercise 3 (On moduli of stability). Let a linear forward operator M: X — Y and X = Ng>oX,
Y = N>V with { X}, {Vi}r Banach scales. Suppose that for every k, M: Xy, — Yy, is bounded.
Assume moreover that {Ji}y satisfies interpolation inequalities® of the form, if 0 < k </

A
19l95s i s < Cligly llglly,*,  A€0,1], g€, (4)

for some constant C(k,?,\). Suppose that the operator M is ill-posed of order o > 0 in the sense
that

lz = 2'|x, < CIM(z) = M@ )lysar k20 (5)

Fizing k, the question is whether we can obtain an estimate of ||x — 2’| x, in terms of a LOWER-
regularity norm of M(x — ') than Viia, ideally Vi (as this might be the space where the noise
lives). We show that this is possible if we add the prior assumption that the unknown has “high
reqularity”, namely z,z' € X3 for some > a + k.

1. Assuming the uniform bound ||z||x,,||2||x, < C for some B > a+k, use (4) for appropriate
(A, k,2), (5) and the boundedness of M to show a Hélder estimate of the form
|2 = 'llx, < CIM(@) = M]3,
where 6 € [0, 1] depends on o and 3.
2. How does 0 behave as B increases ?
3. Use Hélder’s inequality to show that the scale {h*}y in (3) satisfies (4).

Exercise 4 (On Fourier series). Given f € LY(S!), we may define the sequence of Fourier coeffi-
cients of f, {cn[f] = 5= fOQW e~ £(0) dO}necz, a bounded, doubly infinite sequence (in (>°(Z)). For
fixed n, we denote

n

Salf1(0) := D> ekl fle™ € P,

k=—n
where we denote P, the set of trigonometric polynomials of degree at most n, of the form p(0) =
- ce™ for some complex numbers cy,.
On [0,27], let us define the Hilbert scale

k 27 )
) = £ e . IR =3 [ 100 <00 .
7=0

21

with H® = L2, equipped with the Hermitian inner product (f,g) = o f(0)g(0) db. On Z, define

the Hilbert scale

WH(2) = JueC? Julf =) (1+5)"ul < oo
JEZ

5Sobolev scales most often satisfy this.
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1. Check that the functions {e,(0) = \/%eme}nez is an orthonormal system in L*(S') and

that Sp[f] = Yor__, (f.ex)er. In the sequel, we will assume that {e,}nez is a complete®
orthonormal set in L?(S!).

2. Show that S, [f] is the minimizer of functional

27
F(p) = /0 £(6) —p(O) db,  pe P,

Thus, Sy|f] is the best L?-approzimant of f among all trigonometric polynomials of degree n.

3. Show that for every n, Sy[f] and f — S,[f] are L?-orthogonal and that
£ 72 = 1Sl f1II72 + 1f — Sulf]lI72

=2 > |alfIP+1If = Sl A7, n>0.

k=—n
4. Deduce that Sy[f] converges to f in L*(S') and that

IFI7: =27 ) lelf1>  (Parseval). (6)

kEZ
What does (6) say about the Fourier series map L*(S') 3 f v+ {ci[f]}rez € 2(Z) ?

5. Find the Fourier series of 4cos@sinf and 5 Without computing integrals.

1
2+co!
6. Suppose f € C'. Show that cy[+-% f] = n ¢,[f] for alln € Z.

. . l i 4 j
7. Given a polynomial ¢ = ijo g;x’, denote q(%d%) = ijo q; (%d%)].

Provided that f € C*, show that cn[q(%d%)f] = q(n)cp[f]. Combine this with (6) to deduce
that f € HY(SY), then its coefficients belong to h'(Z).

8. Prove the converse: if a sequence belongs to h'(Z), then the Fourier series construct a function
that is H'(SY).

9. Cute stuff: Show that %2 =, 1%2 by applying (6) to the function f(0) = 6.

10. Find the integral kernel of the mapping f — Sy[f]. Le., write Sy[f](0) = 027r K,(0,0)f(¢) do¢

for some function K, (0,0") (to be written in the simplest form possible).

Exercise 5. Let {\,}, a sequence of non-negative numbers decreasing to zero, and define the
operator A: (*(Ng) — (2(Ng) by (Au), = M\yn, u = {u, bn.

Prove that the operator A is compact.

5This means: if f € L*(S') satisfies (f,e,) = 0 for all n, then f = 0. A proof can be found in [HNO01, Ch. 7],
showing that trigonometric polynomials are dense in C(S') using approximations of identity and the density of C'(S*)
in L*(SY).
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2 Explicit integral geometric examples

For the ’friendliest’ cases of X-ray transforms on surfaces, one usually says that they are ’smoothing
of order 1/2’ and their associated normal operators are ’smoothing of order 1’. This section aims
at making these statements most explicit, following one or more of the following routes:

e by computing an explicit singular value decomposition of the operator. Once this is done,
the construction of Hilbert scales which reflect these smoothing properties becomes relatively
straightforward.

e by finding an explicit functional relation between the X-ray transform (or rather, one of
its normal operators) with distinguished differential operators. Since the latter oftentimes
determine a scales of smoothness in their ambient spaces, the smoothing properties of the
operator of interest naturally follows.

The next three examples include a compact manifold with boundary, a complete manifold, and
a manifold with boundary. Each of these cases brings its own set of peculiarities.

2.1 The Funk transform on the two-sphere S?
2.1.1 Formulation

Our first example is the Funk transform, initially studied in [Fun16]. In the 70’s, Guillemin [Gui76]
used this transform in order to construct Zoll” metrics on the sphere. This example is also treated
in [MP11, Sec. 1.2].

For the Funk transform, we can derive the full SVD of the operator, and appropriate Hilbert
scales where to describe the mapping properties of the operator.

Let S = {(x,y,2) € R3,2? + ¢y% + 22 = 1} the Euclidean 2-sphere. Given f € C°°(S?) and
p € S?, we define

2

If(p) := ; fwp(t)) dt,

where 7, is the equator on the sphere thinking of p as the North pole (it moves around !), traversed
counterclockwise when viewed from p. If p = N = (0,0,1) (the actual North Pole), yn(t) =
(cost,sint,0). The parameterization of v, matters, and this one is chosen so that ~, is a unit-speed
geodesic on S2.

Exercise 6. How to parameterize vy, for any p € S* ?

Since 7, depends smoothly on p and f € C*°(S?), then If € C*°(S?). Note that in this case, f
and If can both be viewed as functions on the same domain S? (this will never happen again in
the integral geometric problems considered below). The question to investigate is thus:

study the problem of reconstructing f € C°°(S?) from If € C*(S?).

"A Zoll manifold is a closed Riemannian manifold, all of whose geodesics are closed and of the same length. The
round sphere is such an example.
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Obvious kernel and cokernel. Let A : S? — S? the antipodal map (A(p) = —p). A is a smooth
involution and induces a direct sum decomposition

C%(S?) = C5en(S%) @ Coia(S?),

where a function f will be considered even if fo A = f, odd if fo A = —f. Then the following two
observations can be made: first I f = 0 whenever f is odd, and If is even for any f. It therefore
makes sense that we refine our initial question to:

study the problem of reconstructing f € C2,, (S?) from If € C2,,,(S?).

even

In what follows, we will show that I is an automorphism of C5,, (S?) and that, upon defining
1
s on(S?), I is an isomorphism of HZ,. onto Hiy2. This will be

based on understanding its eigendecomposition by means of spaces of spherical harmonics.

an appropriate Hilbert scale H?

2.1.2 Spherical Harmonics

In order to define a scale of spaces on S?, one natural idea is to define, for k = 2¢ even, H?*(S?)
as the closure of C*°(S?) for the topology defined by the norm ||f||g2e = ||[(—Ag2 + 1)°f| 2. Here
Ag2 denotes the Laplace-Beltrami operator®, then —Age is non-negative, essentially self-adjoint
operator and the +1 makes it injective. It is an example of an elliptic operator, which means that,
in spite of the fact that this is a single differential operator, if Af is L?, then any second-order
derivative of f is in L?, although most other second-derivative ares are arguably “less natural” to
write down.

When this is done, we realize that we only have spaces of even order, though we would like to
define H*® for all integer s, or even for all s > 0 (and even all s € R). A process called interpolation
allows to do this, though another clear picture emerges if we know the spectral decomposition
of Agz2. Note that general functional-analytic arguments show that Ag2 has a complete, discrete
eigensystem in L2(S?) and that its spectrum tends to oo”. We now undertake this task, largely
following [Fol95, Ch. 2.H].

The story of spherical harmonics sums up to this'®: define H;, the space of polynomials on R?,
harmonic'! and homogeneous of degree k, and let Hy, = {P|s2 : P € Hy}. The latter is called
spherical harmonics of degree k.

Theorem 1. (Spherical harmonics) (1) For every k € Ny, Hp = ker(—Agz — k(k + 1)Id) and
dim Hy = 2k + 1. Moreover, Hy, is an irreducible SO(3)-module.

8In the coordinates (6, ) — (sin 6 cos @, sin O sin @, cos ), Agz f =

wvo oy (I 05F) + g 5

9Sketch of proof: by Riesz-representation theorem, for f € L2, the problem —Agu + u = —f admits a unique
solution in H', this defines (—Ag2 +1)7': L*(S*) — H'(S?) as a bounded operator. Since the inclusion H' — L2
is compact, then (—Ag2 4+ 1) ! is a compact, operator, moreover, injective and self-adjoint. By the spectral theorem
for compact, self-adjoint operators, there exists a complete orthonormal set ¢, of L? (82) along with a decreasing
sequence A, — 0 such that (—Ag2 + 1)7145” = An¢n. Then (¢n, At — 1) is an eigensystem for Age.

0t works with minor modifications in all dimensions > 2, see [Fol95, Ch. 2.H]

in the sense that Ags P = 0, where A = 92 + 85 + 02
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(2) We have the direct orthogonal sum

L*(S%) = €P Hy, (7)

k>0

in the sense that every f € L*(S) admits a unique orthogonal and L?-convergent decomposition

Proof of Theorem 1. First let P, the space of polynomials on R3, homogeneous of degree k, and
write 72 := 22 + % + 22. One may show as exercise that dim Py, = (k + 1)(k + 2)/2. The first
question is to understand the orthocomplement of Hy in P;. To this effect, [Fol95, Prop. 2.49]
states that for k > 2,

Pr =Mk ®@r*Pr_g,  1*Pr_a:={r’P: P € Py_o}, (8)
whose proof is given in Ex. 7. As a result,
dimH, =dim Py —dim Pr_o =2k + 1,
and by induction,
Pr=Hp ®r°Hyo @1 Hp_y. .. )
Also recall the expression of the Laplacian in spherical coordinates:

1 0?2 290
Ags = —A 4=
R? = 208 * or? + ror
Now, if f € Hy, then one may write f = r*f where f = fls2, then applying the equation above
and evaluating at » = 1 yields the relation

Apsf=0=Agf+Ek(k+1)f.

Hence Hj, consists is the eigenspace of Ag2 associated with eigenvalue —k(k + 1). As Age is self-
adjoint, this implies the L?(S?)-orthogonality Hj, 1 Hy for k # £.

The proof of (7) is based on the Weierstrass approximation theorem, together with (9): in
a nutshell, a function in L?(S?) can be approximated by functions in C(S?), which in turn can
be approximated by restrictions to S? of polynomials, which by (9) decompose as finite sums of
spherical harmonics. ]

Exercise 7. This problem guides you through the proof of (8). Here and below, denote x = (x,y, 2)
and for a tri-index o = (a1, g, a3) € Ng, we denote |a| = a1 + ag + az, ol = aqlaglag!, x¢ =
TMy*22% and 0% = 931 0,2073. Thus, a general element of Py, takes the form P = Z|a|=k Ao X®
for some complex numbers {aq}a, where the sum runs over all tri-indices of length k, and for such
a P, we define the differential operator P(0) := Zm:k a0,
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1. On Py, we define the inner product
P= Z aox%,Q = Z bﬁxﬁ — Z alagbey.
o=k 181=k |r|=k

Show that such an inner product can be obtained by computing the quantity {P,Q} := P(0)Q.
[Hint: show that {x*,x%} = a! if a = 3, 0 otherwise.]

2. Show that for P € Py_o and Q € Py,
{r’P,Q} = {P, Aps Q}.

3. Conclude (8).
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2.1.3 Eigendecomposition of the Funk transform

15

The group SO(3) acts on C*(S?) by rotations: g- f(p) = f(g~'p). The key observation is that I

commutes'? with this action in the sense that

Ig-f)=g-1f, g€8SO@B3), feC™(S?.

By Schur’s lemma, this implies two things at the level of all the irreducible SO(3)-modules Hy:

for all £ > 0,

e [(Hy) C Hy

e [|y, = A\iId for some constant Ay.

If £ is odd, since Hy C C’gdod(SZ), we already know that A\ = 0. For k even, k = 2/ for some ¢ > 0,
it suffices to find a “good” function in f € Hyy and a point p where f(p) # 0, then gy will be

_ If(p)

given by cop = T A good choice is as follows: one may check that the “sectoral” harmonic
function f(z,y,2) = (z + iy)%, restricted to S?, belongs to Hys. Now choose p = (1,0,0), with

Yp(t) = (0,cost,sint) to deduce

2m 27
Aoy = f(0,cost,sint) dt = (—1)K/ (cost)? dt.

f(1,0,0) Jo 0

The above is a Wallis integral, and one may deduce the final expression

_ 1yl (20)!
AQ( = (—1) 27TW, le NO.

As a conclusion, the eigenvalue decomposition of I: L?(S?) — L%(S?) is given by:

ker I = @HQM, ker(I — \og) = Hoy, ?>0,
>0

or at the level of the spectral decomposition:

If =Y Mfe =D fe  fo€Hy

k>0 k>0

Using Stirling’s formula'®, we arrive at the conclusion that

Aoe| ~ V8T(20)7Y2 4 .

(10)

(11)

We now explain how to exploit this to formulate mapping properties of the Funk transform in

a sharp way.

2Tn representation theory language, I is equivariant w.r.t the SO(3) action, or I is SO(3)-linear.
Bnl~V27mn (2)" asn — oo
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2.1.4 Mapping properties

To formulate mapping properties, we need two things: (1) to translate smoothness on S? into rate
of decay of the spherical harmonic decomposition and (2) to use the asymptotics of Ay for large ¢
given in (11).

For s > 0, one may define H*(S?) to be the closure of C*°(S?) for the norm

IF s =Y (U4 k(k+ D))V fellFes  f=D for fr € Hy (12)

k>0 k>0

For s = 2¢ an even integer, this amounts to the norm ||(—A 4 1)*f|| ;2 and hence it indeed encodes
that, when this quantity is finite, the function f has 2¢ square-integrable derivatives. Allowing
s to be any non-negative reals achieves a few things: it gives meaning to “having derivatives of
fractional order”; it hints at the fact that for any s > 0, the operator

F= fe= Y (L4 k(k+1)2f

k>0 k>0

is one way to define the operator (—A +1)*/2. By construction, this operator is H* — L? bounded,
a process which embodies the action of taking “s derivatives” (in an “isotropic” way).

Remark 1. Given s fized, although the construction (12) has the special property that it can be
related exactly to the operator (—A + 1), one may notice that for any sequence dy such that (i)
di, # 0 for all k and (ii) there exists two positive constants such that Cy < |k*d;| < C2, one may
define the norm

AP =Y dilfill3es f=D_frr fr € Hi,

k>0 k>0

and the closure of C*(S?) with respect to that norm would give a Hilbert space whose topology is
the same as H*(S?).

Just like C° = Cgy,,, ®© C5y,, we can split these Sobolev spaces into even and odd functions

HS(SQ) = ngen(SQ) D sdd(Sg)'

On to the smoothing properties of I, the main crux is to understand the polynomial behavior
of Agp as £ — oo. By (11), there exists two positive constants C7, Cy such that

Cr(1+ (20)1%) < Mg < C2(1 4 (20)12),  £>0. (13)
Out of this, we can deduce the two-sided estimates

Cillflzen < AN iy < Collfllm (14)

even’
even

a precise description of the fact that the operator I is smoothing of order %

Exercise 8. Work out the details of (13) and (14).
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2.2 The Radon transform on the plane R?

[Recalls on Schwartz space and tempered distributions - see PDE lecture notes]

Although we will spend more time with the Radon transform in the lectures that follow, the
main point of this section is to show that this example can be naturally tackled using Fourier
analysis on R, Given f € C.(R?) or f € .7 (R?), we define

Rf(s,0) = /Rf(sé) +t04) dt, (5,0) € Z:=R x S, (15)

where 6 = (5° 9) and 0+ = (~ sin 9). One may equip Z with area element ds df and define L?(Z)

3 sin 6 cos 6
with respect to that measure.

2.2.1 Basic mapping observations

One can define a Schwartz space on .#(Z) and show that R: .7 (R?) — . (Z) is continuous.

Similarly, .7: C°(R?) — C2°(Z) is continuous'?. Observe in particular that if f is supported
in {|z| < R}, then Rf is supported in the truncated cylinder {|s| < R}.

2.2.2 The L? — L? adjoint R*

By direct calculation, one may compute the L?(R?) — L?(Z) adjoint R* given by
R*g(x) = / g(x-0,0)ds, xR
S1

Notice the duality of geometries: the Radon transform integrates a function over all points
through a line, while its transpose integrates over all lines through a point.

2.2.3 The normal operator R*R as a convolution operator

Combining both definitions of R and R*, we compute directly that

* = 1 —i* X
wRie) =2 [ 1)t dv= (1) 0

Since R*R is a convolution operator, is becomes diagonalized through the Fourier transform,
more specifically

~

RRIE) = 2h(©)f(€),  h(x) = —

X’

The question is: what sense does the Fourier transform of h make, and how to compute it ?

M Note that spaces of smooth functions with compact support are slightly more general than Fréchet.
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Indeed, h is not in L', nor in L2. .. On the other hand, it makes sense as a tempered distribution,
since for f € 7 (R?),

/szlcl (x) dx

This justifies that its Fourier transform makes sense as a tempered distribution. To compute it,
o—clal

we use the following trick: the function h is the .%’-limit of h(x) = W the sense that for every

Ssgplf(X)(lJr\XI?)l dx < C’sgp|f(x)(1—|—|x]2)|.

Rz [x[(1+[x]?)

fes, (he,f)s.s — (h,f)o v as e = 0. Since the Fourier transform is ./ — .#’-continuous, h
is the .#/-limit of h., and since h, € L'(R?), we can compute its Fourier transform in the ’classical’

sense:
he(€) = / M i gy — / N / empmivltlcost g gp = / S
U ) Ja P= Jo e+ il€[cosd

1 1
=— [ — db.
€] Jst Eﬂ—l—zcos&

Now by complex integration, one can show that for any a > 0,

/ do B 21 (16)
staticosl 1+ a2

and hence,
~ 27 1
€)=
1+ IGE
whose pointwise limit (and hence in .#") is h(£) = %l
Conclusion. We then conclude that
_ A7 -
R*Rf(§) = i€l (&)

In particular, note that since —/A\f(f) = |§|2f'(§), then

B (471')2
R

In other words, (R*R)%(—A)f = (47)%f, a statement which one may think of as “the operator
£+ R*R is a negative squareroot of (—A)”.

F((R*R*(-A)f)(&) €12 F(€) = (4m)2£(©).

What remains to clarify is: in what spaces does all of this work 7
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Exercise 9. Prove (16).

Exercise 10 (Basic properties of the Radon transform). In what follows, for r > 0, we denote
B, ={xeR?: x| <r}.

1. Show that if f € C°(R?) vanishes outside B,., then Rf is smooth with compact support, and
vanishes outside {(s,0) € Z, |s| < r}.

2. Show that forn > 2, if f(z) =2z"" (z =x +1iy), then Rf = 0. In particular, the converse to
the previous statement is false.

3. Show that R: L*(B,) — L*([-r,r] x S') is bounded.
Exercise 11. Let f € S(R?).

1. Show that R0, f] = cos0 L Rf and R[0,f] = sin0 2 Rf.

2. Show that 25 Rf(s,0) = RIAf](s,0). A =92+ 02

Exercise 12. 1. Compute the Radon transform of the characteristic function of the ball of radius
€ > 0 and center soe’® with p > 0.

(1 =[x |xl <1,

2. Let f(x) = { 0 x| > 1. Compute Rf(s,0) for |s| < 1.

Exercise 13. For a € R, define the weighted L? space
@) = {5 [IFPA+ kP dx < oo}

For what a’s do we have that R : L>*(R?) — L*(Z) is bounded ?

Exercise 14. If a function is supported inside the unit disk D, we may then define its Radon
transform on the “truncated cylinder” [—1,1] x St, equipped with the measure dsdf.

1. On the unit disk D, define the weighted space

me—{w/ﬂvﬁu—mm%k<m}

For what o do we have that R: L>%(D) — L?([—1,1] x S!) is bounded ?

2. On the truncated cylinder, define the weighted space
LYP([-1,1] x S) = {g : / 19(s,0) (1 — s%)° dsdf < oo} .

For which B do we have that R: L*(D) — L*>#([—1,1] x S) is bounded ?
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2.3 The X-ray transform on the unit disk D

While we will leave for later the question of finding the right spaces for the Radon transform
(mainly because the continuous spectrum aspect of the problem raises additional issues). We will
now return to an example where the integral geometric operator has discrete spectrum, and where
a Singular Value Decomposition can be derived.

2.3.1 From parallel beam to fan-beam

From Exercise (14), one may find out that the operator
R: L2(D) — L*([-1,1] x S*, (1 — s*)7V/% ds do)

is bounded. In spirit this weight on the codomain arises from the fact that integration curves
become shorter as |s| approaches 1 and this also contributes to the smallness of Rf there. Note
that we have shrunk the co-domain, and thus we have changed the expression of the adjoint, which
now looks like

. B . B g(x-0,0)
Rt = [ 10— 2glc-0.0) a0 = | I TR

There are “natural” angle variables in which the measure (1—s2)~'/2 ds df becomes da dj3, called
fan-beam coordinates: 5 € S! parameterizes a point from the boundary, while a € (—m/2,7/2)
parameterizes the angle where to cast the line segment, relative to the inner pointing normal. See
Fig. 1 for an example of both transforms side-by-side.

We now call Ij the operator R| 12(p), for reasons that may appear more obvious later'®. Hence,
for f € L*(D), let us define

Iof(Bya) = /0 T B 1t qr(8,0) €S x [n/2, 72 (17)

Since Ip(f, ) = Rf(sina, B + 7/2 + «), using a change of variable from (s,0) to (8, ), one
may show that Ip: L?(D) — LQ(S}; X [=m/2,7/2]q, da df) is bounded, and its adjoint (a.k.a. the
backprojection operator) takes the form

Tg(x) = /S L (B_(x.60),0_(x.0)) db, (18)

1 cosa—(x,0)
where f_(x,0), a_(x,0) are the fan-beam coordinates of the unique line passing through (x, ), as
explained in section 2.3.3 below.

The purpose below is to compute the full SVD of Iy using the method of intertwining differential
operators, which we now recall.

151f you can’t wait: I is notation for the geodesic X-ray transform on functions on the unit tangent bundle SM,
while Ij is the restriction of the former to functions on M.
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-1 -0.5 0 0.5 1

Figure 1: left to right: a function f, its Radon transform Rf (axes: (6,s)), its X-ray transform Iy f
(axes: (8, q))

2.3.2 The method of intertwining operators

Suppose we have a bounded, injective operator between two Hilbert spaces
A (Hu, [ - [l) = (Ha, [l - l2),

and suppose we have two self-adjoint operators Dyi: D(D1) — Hi1 and Dy: D(Dsg) — Ha, defined
on dense subspaces D(D;) C Hy and D(Dy) C H2'® such that A(D(D;)) C D(Ds).

Suppose that the intertwining relation A o Dy = Dy o A holds on D(D;), and assume further
that D; has simple spectrum Ao < A\; < --- < X\, < ... with eigenvectors {uy},>0, a complete
orthonormal set in H;.

Theorem 2. With the assumptions above, the SVD of A: Hyi — A(H1) is given by

unlli” |Aunll2” [[Aunll2 / 50

Note that A is not always surjective, this is why the operator is co-restricted to its range in the
statement.

Proof of Theorem 2. For all n > 0, set v, = Au,,. We have that
Dovy, = Da(Auy,) = A(Diuy) = A(Anun) = Apop,

hence the family {v,}n>0, being eigenvectors with distinct eigenvalues of the self-adjoint operator,
is an orthogonal family. By definition, {v,/||vn||2}n>0 is a complete orthonormal set in A(H1), and
we obviously have

A un  lvallz vn

= n > 0.
lunlls  llunll a2’

16This is usually the case of differential operators and when the space # is an L? space. Such operators are never
bounded, but they are densely defined (say, on C°°), and the theory of unbounded operators still allows for their
good understanding.
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It just remains to show that

Un o an”Q Un

A" = ) n > 0.
lonllz llunll1 lunlly
To do this, we simply expand A*v, = szo Anply, Where
a _ <A*Un7up> _ <Un7AuP> _ <’Un,Up> _ 5 HUHH%
np — - - - Yn 9
g I3 I3 [ I3 " lnll?
and the result follows. O

The original idea can be found in [Maa91], where the backprojection operator I is first diag-
onalized using spherical harmonics, into countably many one-dimensional operators (one for each
spherical mode). Each such operator intertwines two second-order differential operators, and the
computation of the spectrum of one involves solving ODEs, which in spirit is much simpler than
solving integral equations.

What if A is not injective 7 Note further that upon taking adjoints and using the self-
adjointness of Dy, Dy, we may obtain a second intertwining relation D; o A* = A* o Dy, and
combining the two, we arrive that the fact that [A*A, D1] = 0 and [AA*, D3] = 0.

In particular, the eigenspaces of Dy are A*A-stable, and since they are all one-dimensional
A* Au,, = apuy, for every n > 0. The kernel of A is precisely the span of those vectors u,, for which
an = 0, and upon removing those and replacing A by its injective restriction Alye, 431, we can
apply Theorem 2.

In what follows, we will factor in the circular symmetry of the problem by considering pairs
of intertwined differential operators.

2.3.3 Interwiners for the backprojection operator I;
The presentation that follows is a combination of [Mon20, Section 3] and [MM19]. We will denote
8+S]D):S}; X [=7/2,7/2]q, [ = COos Q.

Let us define the operator Ig: C2(04SD) — C°°(D) as the formal adjoint of Iy : L*(D) —
L*(0:SD, u da df), (so that I} defined in (18) takes the form I} := Ig(i)) Such an opera-
tor takes the form

Tfas) = [ a(B-(x.6).0-(x.0)) db (19)

where 8_(x,0), a_(x,0) are the fan-beam coordinates of the unique line passing through (x,6). In
what follows, we will identify x with pe™. See Figure 2 for a summary.

From the observation made in Fig. 2, these functions satisfy the following relation:

Bo(pe,0) = w+B-(p,0—w),  a(pe,0) = a_(p,0 — w).
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Figure 2: Setting of definition of (3_(pe™,0),a_(pe™,0)) (written as (8_,a_) on the diagram).
The rotation invariance implies that if 6§ and w are translated by §, then S_ is translated by J and
«a_ remains unchanged.

In particular, the expression of Igg immediately becomes

Fg(pe) = /S g+ 5 (.0~ w),a(p,6 — w)) df = /S g+ 5 (p,0), 0 (p,6)) do.

We then immediately see the first intertwining property
6on§:I§oaﬁ, Oy 0 Iy =15 00g.
Upon defining
T := g — Oa, (20)
a second intertwining property is then given as follows.

Theorem 3. Define the operators

0? 1 0 1 02

and D :=T? + 2tanoT. Then we have the following intertwining properties:
Lol!=1I}oD, (22)
Lol =1I5o(-T?%), L:=-L+1. (23)

Proof. Proof of (22). In what follows, a_ and S_ will be short for a_(p,0) and 5_(p, 8). Note the
easy two properties

b +a_+m1=20, sina_ = —psiné.
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Oo_ —pcos

a_ sinf  __ 1 _
- ptana_’ 90 T cosa—

. . dor_
In particular, this gives By T " cosar
be deduced through the relations

06— da_ 0 _, _da

dp  9p 90 00

, and the derivatives of 5_ can

From these relations, we immediately deduce the property that
1o
159 = —;Io[tan aTgl.

Iterating this formula, we obtain

0? 1 1 1
a—prf(ﬁ)g = p—ng[tan aTg] + ﬁlg[‘uan aT'(tanaTg)] = ﬁlg[‘caHQ aT?g — tan® aTg].

Then by direct algebra, using the last two identities, we obtain

1 1
[(1— p2)8§ + (= - 3p)8p]I§g = —2Ig[tan2 aT?g — tan a1 + tan® a)Ty] . ..
p p (24)
- Ig [tan® aT?g — tan a(tan® a + 3)Tg).

To obtain further identities, we write

0= /S do(g(w+ B, a_)) df

as well as

2 0 in@ ino_ 2 cos?6
_ / <8§g | 2poos TOsg — <psm + 2 cos?0 Slngoa ) Tyt /(JJO;OSOZ ng> 0.
st COS O — COS” (X — _

From the previous identity and the fact that T'0g = 93T, the second term equals —2[8 [8§g]. In the

2

remaining terms, we use that —psinf = sina_ and p?cos?§ = p?(1 — sin?6) = p? —sin? a_ and

the previous equality becomes
1 1
?Ig [tan? aT?g — tan (1 4 tan? o) Tg] = —?Ig[agg] + Ig[— tan (1 + tan a)Tg + (1 + tan? ) T?g]

1
= —Eﬁilgg + Ig[— tan a1 + tan? a)Tg+ (1+ tan? a)T2g],
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Plugging this relation into the right hand side of (24), we obtain
1 1
[(1 - p2)02 + <p — 3p> 0,)} Igg = —pﬁafjfgg + Ig[(T2 + 2tanaT)g],

hence (22) is proved. Equation (23) follows immediately once noticing that

L o

D=-T"p+1,

1

thus Theorem 3 is proved. ]

An integration by parts with zero boundary terms (notice that p and 1 — p? both vanish at the
ends of [0, 1]) shows that for all u,v € C>*(D),

1
2

Loy = [ ((1 - OG0 +

(8wu)8wv) p dp dw + (u, U)LQ(]D))a (25)

in particular £ is a self-adjoint operator as densely defined on L?(D) (it is defined on C*°(D)).
In addition, the operator —T? is formally self-adjoint on L2 (845M) or C3°_ , (04.SM) defined
in Indeed, following notation in [MM19], an orthogonal basis of L2 (9;.SD) whose C*™ span gives
Coo (04 SM) is given by

¢n,k — (_41) 6i(n—2k)(ﬁ+a)(6i(n+1)a + (_1)n€—i(n+1)a)’ n>0, keZ (26)
s

and such that (—=T2)ty, 1 = (n + 1)*, x for all n, k.

From these observations, passing to the adjoints in (23), the further intertwining property holds

Ipo L= (~T%oI,. (27)

2.3.4 Backprojecting the joint eigenfunctions of —72 and —103 - Zernike polynomials

We now focus our attention to Ijy, , = Ig [%} Together with the definition of Ig and the
relations satisfied by the Euclidean footpoint map for all (pe', ) € SD:

B_(pe™,0) + a_(pe™,0) + 7 =4,

/8* (peiw,e) = 57(,0, 0 — w) +w, O‘*(peiwv 9) = a,(p, 0 — w)7
we arrive at the expression

im0 (p0) | (_1)ne=iln+D)a—(00)

Un.k . Lo 1 Lo
Iﬁ ) iwy _ i(n—2k)w / i(n—2k) do.
0 { ,u (pe™) = e 27 Js ¢ 2cosa—_(p,0)
With the relation sina_(p,0) = —psinf, we may rewrite this as

' i(n—2k)w )
Ig [wn,k] (pezw> _ 6/ el(n72k)9Wn(—p sin 9) de, (28)
7! 2 St
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where we have defined

etntl)a + (_1)nefi(n+1)a

W (sina) := (29)

2cos o
The functions W,, are related to the Chebychev polynomials of the second kind U, specifically
through the relation W, (t) = i"U,(t). In particular, it is immediate to check the 2-step recursion
relation and initial conditions

Wn+1(t) = Qith(t> + Wn_l(t), Wo(t) =1, %] (t) = 21t.
By induction, the top-degree term of W,, is (2it)". Fixing n > 0, we now split the calculation into

two cases:

Case k <0 or k >n. In light of (28), since W, is a polynomial of degree n, then W,, (—psin6)
is a trigonometric polynomial of degree n in €. In particular, if k < 0 or k > n, then |n — 2k| > n
and thus the right hand side of (28) is identically zero. In short, we deduce

Ig[wn’k]:O, n >0, k<0ork>n.
L

— Iﬂ wn,k

0 |cosal’

Case 0 < k < n. For the remaining cases, we then define Z,, , : and for the sake of

self-containment, we now show that the functions {Z,, 1 }n>0, 0<k<n so constructed are the Zernike
basis in the convention of [KB04], by showing that they satisfy Cauchy-Riemann systems and take
the same boundary values.

Lemma 4. The functions {Z, i }n>0, o<k<n Satisfy the following properties: For alln >0

aEZn,O - O; 8zZn,k + 8EZ'rL,Ic—i-l =0 (0 < k <n-— 1)7 82Zn,n - 07 (30)
Zp (%) = (=1)kein=2kw g <k <n, weSh (31)

Proof. Using the relation W, (—t) = (—1)"Wy,(t), we arrive at the expression

: . _1)n .
Z. k(pezw) _ ez(nf2k)w! / ez(ank:)GWn (P sin 0) Ao
’ 2 St

With 0, = %(8/) - %8w) and 0z = %(@ + %&J), we compute

e—i@ ei@
0:(psin(d —w)) =1 5 Oz(psin(f —w)) = —i?.

Plugging these into (32) immediately implies

8zZn,k + %Zn,k—&—l =0, 0<k<n-—1. (33)
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In addition, we compute

e™W,(psin ) df

B
(=)
—
S
™
.
S
~
Il
m&
=L
S
T
—_
~—
3

St

o (=1)" ,

= em“( 273 /Sl e (2ipsin6)" db
"
2m

/ e (2isin 0)" do
Sl

where the second equality comes from the fact that the lower-order terms of W, (psin#f) have no
harmonic content along ¢™’. Finally, the constant is

/ eim‘)(eié _ efiQ)n Ao _/ (621‘9 _ l)n do = 27.‘.(_1)@
st st

In short, Z, o = ple™ = 2" This also implies 0:Zp 0 = 0 and since we have Z,, , = (—1)"Z, o =
(—1)"z", we deduce that 0,2, , = 0.

To prove the boundary condition, using that Z,, (pe”) = el n.k(p), it is enough to show
that Z, (1) = (—1)* for every n > 0 and 0 < k < n. That this is true for k = 0 and k = n

follows from the expressions just computed, and the general claim follows by induction on n once
the following equality is satisfied:

n—2k)w

Znk(1) = Zpn-2k-1(1) = Zn_1p-1(1) + Zn—1,1(1). (34)

To prove (34), it suffices to input the recursion W, (sin @) = 2isin W,,_1(sin ) + W,,_s(sin @) into
the expression (32), and to evaluate it at pe™ = 1. O

From Lemma 4, we see that the family so defined satisfies the characterization (b) of [KB04,
Theorem 1] of the Zernike polynomials. One may see that this characterization defines the same
family due the following facts: for n > 0 and k = 0, the functions Z, in both sets agree; by
induction on k > 0, in both sets of functions, Z,, ;. satisfies a 0z equation with same right-hand side
and same boundary condition, for which a solution is unique if it exists.

Let us then a few useful properties of these polynomials:

e The following characterization is proved in [KB04, Theorem 1]:

I L S B
Inkl52) = i g% [ (‘)

o The family {Z,, 1 }n>0,0<k<n is orthogonal on L?(D). Indeed, they are the eigenfunction of
the pair of self-adjoint operators (£, —82) (as densely defined on C*°(D)), since we have

, n>0, 0<k<n. (35)

(‘Cv *ai)Zn,k = ([’7 *afz)lgqpn,k = If]k(*T2a *8,%)1#71,1@ = ((’I’L + 1)25 (n - Qk)2)Zn,k7
and the map (n,k) — ((n + 1)%, (n — 2k)?) is injective.

e Their completeness in L?(D) follows again from the Weierstrass approximation theorem.
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We finally show

Lemma 5.

| Znil? = n>0, 0<k<n. (36)

n+1’

A functional-analytic proof is given in [Mon20, Appendix]. We give here a proof in the spirit
of recurrence relations for orthogonal polynomials.

Proof of Lemma 5. As a quick consequence of (35), the following relation holds
(n+1)Zpx=—-0Zpt1 541+ Zn-1x), n>0,0<k<n. (37)

Multiplying (37) by Z, 1 and integrating, we arrive at the relation
0+ D120l = = [ @Zusspe)Zoi+ [ (@210
D D

The last term is zero because 02,1 is of degree n — 2 and Z, . is orthogonal to any polynomial
of degree > n — 1. On to the first term,

/(aZn+1,k+1)Zn,k - / g(Zn—&—l,k:—s—lZn,k) - / Zn+1,k+182n,k7
D D D
1 _ .
=5 | ZurwiiZog &2 = [ ZuasiZo.
The rightmost term is again zero by consideration of degree, while the boundary term is computed
using (31), to wit

_ 1 , , . 1
/(8Zn+1 k+1Zn k) dz = — (_1)k+1ez(nJrl72(k+1)),8672(n72k),8(_1)191-61,8 dB = = / dg =,
D ’ ’ 21 st 2 S
hence (36) is proved. O

Exercise 15. Prove (37) using (35).

2.3.5 SVD of [ and mapping properties

We now conclude regarding the SVD of Iy using the method of intertwining differential operators.
This SVD has been known for quite some time, see e.g. [Cor64, Lou84|, and the idea to use
intertwining differential operators for such derivations can be found e.g. in [Maa91], though they
are usually written there for each polar harmonic number separately.

Equation (23) allows to avoid this separation by harmonics. Below, the “hat” notation stands
for vector normalization in their respective spaces.

Theorem 6. The Singular Value Decomposition of Iy: L*(D) — L*(9;.SD, d%?) is given by

— \VAar
(Zn s Yn ks On ke )n>0,0<k<ns Ap ko= NCEw (38)
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Proof. We obviously have (—T?)¢y, 1, = (n + 1)*¥y, x and —idpthy = (n — 2k)tby, k, which by self-
adjointness on L?(9, SD, d¥?) of the two operators applied, makes ¥n. i and orthogonal system. In
addition, an immediate computation gives

1
2
L2(8,. SM) :Z, n >0, ke 7.

H‘bmk

In addition we have, as explained in [MM19] I§,, ,, = 0 for £ < 0 or k > n, and for 0 < k < n, we
define 7, . := Ijvy, . By Theorem 3, we compute

LZyy = LIk = I (=T?)ng = (0 +1)*Zp
—z‘é?mek =(n-— Qk‘)Zn’k,
which immediately makes them an orthogonal system in L?(ID). This gives us orthogonal systems

associated with Iy and I and to compute the singular values, it suffices to normalize all vectors.
By definition we have

P = Qnk Znks an = ————"2 =217 = ,
0 Yk = Gn Znk " ekl z2 o, 5y 1Znlz2my Vn+1
hence the result. I

The following statement follows directly. Although it is unclear whether it appears explicitly in
the literature, the ingredients for the proof were known since Zernike’s seminal paper [Zer34].

Theorem 7. The following relation holds:
L(I31o)? = (4n)*Id.

Proof. The proof is seen at the level of the spectral decomposition, since we have for every n > 0
and 0 < k <mn,

47

B I0Zn s = 1 Znks and LZpg = (n+1)2Zp.
O
A Sobolev-Zernike scale. For s € R, let us define the scale of Hilbert spaces
[ee] n [e.e] n
H*(D) = {f= SN fakZog D+ DEY sl < oo}
n=0 k=0 n=0 k=0 (39)

= {re @), L1 e @)},

with continuous, in fact compact, injections H* C H'for s > t. An important property of the scale
{H?*(D)}s is the following;:
Theorem 8.

(| H*(D) = C>(D)

seR
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Proof. The inclusion D is clear, since a smooth function f is such that for all n > 0, L*f € L?(D).
The proof of the inclusion C is based on the next two lemmas, proved in [Mon20, Appendix].

Lemma 9. For all o > 3/2, we have the continuous injection H*(D) — C (D).
Lemma 10. There exists £ > 0 such that for every a > ¢, the operators
9: HX(D) — H* YD)  and  9: H*(D) — H* “(D)
are bounded. The index ¢ can be chosen as 2 + ¢ for every € > 0.
To prove the inclusion C, it is enough to show that if f € ﬁszoﬁs(D), then for any p,q > 0,
P9’ f € C(D). With £ a constant as in Lemma 10, since f € I;T(Hq)“?’(]l))), repeated use of Lemma

10 gives that 8P8"f € H3(D), and by Lemma 9, this implies that 0P9°f € C(ID). Hence the
result. O

Moreover, it is immediate to establish the property, for all s > 0

1o lof | gorr = 47| fll g, Vf € H?, (40)
which is both a continuity and stability estimate.

We also fully understand the mapping properties of I: L?(M) — L% (04 SM): if f = Dok fnykZ/n;,
then

Inf = ank\/i%m

Similarly to above, one may define a scale of spaces

Hj (9, SM) = {g = ZZgn ks 2 (1Y lgal < oo}

n=0keZ n=0 keZ
- {g € L2 (0.SM), (~T%)/%ge Li(mSM)} :

in which the following identity is immediate:

HIfHH;++1/2 = Vx| flg., VfeH. (41)

Note that the above space is an example of anisotropic Sobolev space, defined in terms of some
but not all derivatives (in other words, the definition of Hj . says nothing about how smooth a
function in it is with respect to dg).

Exercise 16. Show (40) and (41).

Unlike I5ly which is surjective from H* to H**!, and although (41) holds, and unlike I51o
which is surjective, this does not say that Iy is surjective ((41) is indexed by f and says nothing as
to whether I f exhausts the codomain).

As we will see later, there exists an operator C_ that is Hf | — Hj  -continuous for every s,
and such that

Io(H*(D)) = 8*2 2(SD) Nker C_.
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3 A variety of methods to tackle the Radon/X-ray transform on
the plane

3.1 Generalities and mapping properties

Recall the definition, for f € .7 (R?):

Rf(s,0) = /Rf(seﬂeﬂ dt, (5,0) € R x S..

One may show that R: . (R?) — .#(Z) is continuous. However, in spite of the fact that we
have defined the “adjoint” of R relative to the L?(R?)-L?(Z) pairing, let us first clarify the following
point:

the Radon transform R: L?(R?) — L?(Z) is not bounded.

To see this, consider the function f(x) = ﬁ where we denote (x) := (1 + [x|?)'/2. We make the

following claims:
o fc L?iff B> 1: indeed,
dx < pdp
2
pu— ———————————— 2 —
Wit = [ = =2, T
and the latter is finite iff 28 — 1 > 1.

e If 3> 1, its Radon transform takes the form

1 1 du Ap
R 76 — dt = = s
f(s,0) /]R (1+ 52 + 2)B/2 (s)B—1 /]R (1+u2)82 ~ (s)B-1
upon changing variable ¢ = uv'1+ s2. Ag is a fixed number, finite iff 5 > 1.
e For B>1, Rf € L*(2)iff 3 > %: indeed,

ds
2 2
IRf72(z) :Aﬂ27r/R<S>25—2’

and the integral on the right is finite iff 26 — 2 > 1.

As a conclusion for any 1 < 3 < 3/2, the function f(x) = (x)7% is in L? while Rf is not in L.

To reintroduce spaces in which the Radon transform becomes bounded, we need to consider
weighted spaces where the weights behave polynomially at infinity. In particular, we define

PR (%) = {f = [ 1G0R " dx < oo}
L*(Z,(s)*) :={g: /z l9(s,0)|?(s)® ds df < oo}.

With these definitions, we prove the following:
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Theorem 11. For any o > %, the Radon transform is continuous in the following setting:
R: LX(R?, (x)**) — L*(Z, (s)**7),

with operator norm no greater than v/2mwAsy, Asa = fR (Htg

Proof. Suppose o > %, then use Cauchy-Schwarz inequality to make appear

o/
Rf|(s,9)2:|/ f(50+t49¢)( + 52 4 12)2/2 |

( —|—82+t2 a/2

1 J_
/\f50+t0 )[2(5 + t0™) / 1+32+t2

Changing variable t = v/1 + s2u, we arrive at

/ dt _ Ag, N _/ dt
r(LHs )~ (@2l T e T

Multiplying through by (s)2*~!, we arrive at

RF|(s,0)2(s)20~" < AQQ/RV(SO 105260 + 101) dt.

Now integrate w.r.t. ds df, change variable x(s,t) = s@+t0~ in the R.H.S. to arrive at the estimate

”RfHL2 y2a—1) < 27TA2aHfHL2 R2,(x)2) "
Hence the result. O

Exercise 17. Find an expression for Ag in terms of the Beta function
w/2
B(z,y) = 2/ (sin )%~ L(cos )%~ de, x>0, y>0.
0

Remark 2. A special case of Theorem 11 is for a = %, where the operator

R: L*(R?, (x)) — L*(Z)
is bounded, with adjoint R* := (x) 'R, if R' denotes the unweighted L?> — L?-adjoint previously
defined.

The necessity of moment conditions The operator R: .7 (R?) — . (Z) is not surjective. To
see this, we have the following:

Lemma 12. If g is in the range of R: ./ (R?) — .#(Z), then for every k € Ny, ng(s,G)sk ds is
a homogeneous polynomial of degree k in cos@,sinf.
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Proof. Suppose g = Rf for some f € .7(R?) and let k > 0. We compute

/ska(s,H) ds :/ s f(s0 +t0F) dt ds
R

R2

= /]R2 (x- O)kf(X) dx (setting x(s,t) = s + tQL)

k
< > cos’ fsin* 7 0 f(x)adyF =9 dx,
- M R2

hence the result. OJ

For example, g(s,0) = e~5"¢! cannot be in the range of R, since [ g(s,0) ds = 21e™ is not
a polynomial of degree zero in cos 8, sin 6.

It can be shown that the converse also holds, namely that if these conditions are satisfied,
then ¢ = Rf for some f. In fact, such an f can be uniquely constructed from the moments
Jge f(x)27y*=J dx appear above.

3.2 The Fourier Slice Theorem and its consequences
3.2.1 The Fourier Slice Theorem

We first describe our Hilbert scales on R? and Z. We define the Fourier transform on R? as usual:
o= [ e™rmax  seR relr®),
and on Z,
g(o,0) = /Reis”g(s,ﬂ) ds, ge L*2).
for r € R, define
15 R2) = [+ ERVIAOR d Nalfniz) = [ 1+ %) la(o:0) do .
Theorem 13 (Fourier Slice Theorem). For all f € .#(R?),
Rf(0,0) = f(c0),  (0,0) € Z.

Proof.

Rf(o.0) = [

e_wSRf(S,Q) ds:/e—ias/f(sg_i_tgl) dt ds.
R R R

The result follows by changing variable x(s,t) = s +t0", noticing that so = x-00 = x-(¢6). 0

Some consequences:
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o If Rf =0, then f =0 (Injectivity # 2).

e The FST motivates a first reconstruction formula: take Rf, compute its 1D Fourier transform
in s, this is the Fourier transform of f in polar coordinates; recover f from its Fourier
transform. This last step may require a tricky interpolation from polar to cartesian, and we
will see below other reconstruction formulas which do not have this drawback.

3.2.2 Stability estimates

In the Hilbert scales defined above, the FST allows to formulate sharp stability estimates.

Theorem 14 (two-sided estimates, see Thm 2.2.2. in [Ball2]). Let f € H"(R") for some r € R.
Then we have the following inequalities:

(1) V20 fller g2y < | Rf |l pgrsirz 2y

(i) For any smooth and compactly supported function x,
IR 1722y < Ox XSl (m2)-

In particular the estimates can not be improved on the Sobolev scale, the problem is “ill-posed
of order 1/2”.

Proof. For the purpose of proving both (i) and (ii), we first compute, as a preliminary:

IRSI2,., / Rf(0.0)2(0)"*" do db =2 / Rf(0.0)2(0)*" do db,
H (2) RxS! (0,00) xSt

where we have used the symmetry va (0,0) = ]’%Tf (—o,0+7). We now use the Fourier Slice Theorem
and change variable £ = 00 to arrive at

¢ 2 27“@
—2 [ 1f@P© 1

IRfI? €|

S (2)
Now notice that we always have (£) > [¢|, so estimate (i) following immediately from bounding %
from below by 1

(t9)

To obtain (ii) however, we see that there is an issue!” because T is not bounded on R?. Fixing

a “cutoff” function y € C°(R?), we rewrite the last equation as

1 o 2 27"@ —
SIRONIE, .y ) = [ RTOPE© 5 de = é;ﬁ é,,

17 This is sometimes referred to as a zero-frequency problem, since it occurs at & = 0.
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e —
Bounding I is the trickier part. We exploit the fact that the singularity at £ = 0 is integrable:

_ o 2 <§> 27‘<§> su
I = L LITOP@T g des [ @7 de o RFO)

l€1<1 lgl<1

On the term Iy, for |£| > 1, we always have () — (|§|2 + 1) < /2, and hence Iy < v/2||xf| #r.

=C<oo

Now fix ¢ € C2°(R?) equal to 1 on the support of x so that xf = ¢xf. Then for |¢| <1,
Q) = XFE) = [ x(rtowoe ™ ds
(271r/ xf () zpe €(n) dn  (Parseval)

o dn- [ e O dy (Canchy-Selawar)

<

(27r>2\|><fHHr /R 190+ P ) d.

The last factor is uniformly bounded over the set |£| < 1. Putting everything back together,
I < Cyllxfllars

where the constant C, may depend on the size of the support of f (through the choice of function
). O
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3.2.3 Interlude: Riesz potentials, Hilbert transform and convolution operators

This section serves as preliminary for the one that follows.

Recall the identity m(é) = f(&)§(&). Tt’s true for f, g € ./ (R™) but can be pushed to g € .7
and f a distribution with compact support.

Given f a distribution with compact support'®, one may consider the convolution operator
Ap: S — " defined by A¢(g) := f *g. The previous identity tells us that it can be computed
in two ways: (i) by direct computation of the convolution, or (ii) via Fourier transform, as Ay =
F~Lof(€)oF. In other context, the function f(£) is called the symbol (or Fourier multiplier) of Ay,
and Ay is called the quantization of f . The form (ii) is extremely useful for computing purposes,
as the computation of F and F~! can be done using the Fast Fourier Fransform (FFT).

Several operators are convolution operators in disguise:

e The identity is nothing but g — ¢ x g, which, as a Fourier multiplier, gives f(f) =1 1In
particular, § = 1.

e Any differential operator P(D) = }_,|<,, @0 can be viewed as convolution by P(D)4, with
Fourier multilplier P(i¢). In particular, the Laplacian A has symbol —|[&|?.

A class of interest to us in the next section will be the Riesz potentials: on R", for a < n,
define ¢ via Fourier transform:

1o f(€) = |e] = f (). (42)

The condition o < n ensures that ||~ f (&) remains locally integrable so that it can be viewed as
an element of ..

Some comments: for o < 0, I® is “unsmoothing”, for example, =2 = —A; for a = 0, I° is the

identity; for 0 < o < m, I® is smoothing. It is also immediately clear that I®oI# = [# o J* = [*+8
as long as «, 8 and a + [ are strictly less than n.

The Hilbert transform. Picking up where we left off, let us focus on the one-dimensional case,
using s for the physical variable and ¢ for its dual Fourier variable. The operator I~! is then a
convolution operator with symbol ||, and one may wonder how close it is from being a % derivative,
an operator whose symbol is io0. The answer is fairly simple: upon writing

1
|o| = io - —sgn(0),
?

we see that I~! can be written as the product of two commuting operators, one being %, and the

other one being the operator with Fourier multiplier ﬁ(a) = %sgn(a). We call that operator the
Hilbert transform. Namely, define

H: L*(R) = LYR),  Hf := F Y (h(&)Ff). (43)

8 An element of & in the PDE notes.
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From this definition, several interesting properties follow quickly: Using Parseval’s formula, H
is an isometry of L?; moreover, H?> = —Id.

R One may however wonder what that operator looks like as a convolution operator. Namely: if
h(o) := %sgn(a), what does h € .’ look like ? Upon defining the distribution p.v% by
1 & — (-
p(s) 4o / p(s) —p(=s)
0

(pv.—, @) 9 o = lim ,
S e—0 R\(—e,e) S S

We now sketch a proof that

h(s) = %p.vé. (44)

Proof of (44). We first show that %Sgn(a) = 2. Indeed, for any ¢ € .7,
d
(sn(0),¢) = ~(sgn(0). ') =~ [ sgn(o)e'(0) do
o R

0 0o
_ / (o) do + / ¢/(0) do = 20(0) = (26, ¢).
0

— 00
—

In addition, we claim that § = %, as the line below shows:

1 1 1
5 = 0 = — b d = (— ) = (— .
6.0) = 90) = 5= [ #(€) dE = (5-.9) = (5-.9)
Combining the past two claims, we arrive at the conclusion that
_ d - d1 2. 271
—ish(o) = %h(o) = %;sgn(a) = Z5 =S5
Since the Fourier transform is an isomorphism, we deduce the equality of tempered distributions:
1
h(s) = —. 45
sh(s) - (45)

One may be tempted to divide by s and call it a day, but the function % does not define a distri-
bution. However, the distribution 2p.v.2 does, and in fact, solves equation (45) (exercise: check
this). As a result, we have the following equality of tempered distributions

s (h(s) - ip.v.i) 0.

We now use the following lemma, whose sketch is given in Ex. 18:

Lemma 15. Ifu € .’ solves su =0 in ., then u = C§ for some constant C.

We then deduce that
1 1
h(s) = =p.v.— + C9.
T s

Finally, C is zero by evenness/oddness considerations: h and %p.v% are both odd in the sense
that (h, p(—s)) = —(h, ) for all p € ., and ¢ is even in the sense that (0, p(—s)) = (d,¢) for all
p € . The last display in the equality forces C' to be zero. Hence the result. O
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What equation (44) buys us is the following second characterization of the Hilbert transform:

Hf(t) = lp. J(s) ds

46
L N (46)

which we will use later.

Exercise 18. Sketch of proof of Lemma 15: suppose su = 0. Fiz x € C°(R) a function equal to
1 in a neighbourhood of 0. For ¢ € .7, write o(s) = ¢(0)x(s) + sy (s) for some ¢ € .#. Conclude
by computing (u, @) using this decomposition.

3.2.4 Filtered-Backprojection formulas

Exact formulas. In what follows, we will somewhat abuse notation: for a function on R?, we
will define the Riesz potential I® f as in (42). For functions on Z, we will use the 1D Riesz potential
w.r.t. the s variable, namely

I°g(0,0) := |o|~*§(0,0).

Using these operators, we can then derive the following one-parameter family of inversion for-
mulas, see also [NatO1l, Thm. 2.1]. Recall the definition of the backprojection operator

Rlg(x) = /S1 g(x-0,0) db, x € R2,

Theorem 16. For all a < 2 and f € ./ (R?),

1
e tIOé—l .
fla) = TR

Proof. We compute, using the Fourier inversion formula

1) = s [, PO de
(ﬁ) 1 —a f ix-
= (QW) S (et de

/ / o7 F(00)e™® do df (€ = 08)

= & 22// o' *Rf(c,0)e™° do df
1

T dr
= —RtllfaR :
i F(x)

—
=

11 “Rf(x-0,0) do

In (a) we have used the definition of I%, and in (b) we have used the symmetry Rf (—0,0+m) =
Rf(o,0) to extend the integral to R. O
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Special cases:

e The case a = 1 reads
1

f= - I'R'RY,
47

where I~! corresponds to the Fourier multiplier ||, i.e. I=! = v/—A. We could have guessed
this from the work that was done in Section 2.2.

e Perhaps the most popular case is when a = 0, this gives:
1
= —R'T"'Rf. 47
f=4 f (47)

The operator I~! is the one-dimensional Fourier multiplier |¢|. Computing it is done colum-
nwise (for each # separately), and each column is processed via fast fourier transform
before and after multiplication of by |o|. As explained above we can write 1! = %H =H %.

e The last comment allows one to easily go from (47) to Radon’s original inversion formula:

f(x):_l/ooo D) pg) ;:1/ Rf(g+x-0,0) do.

s q 21 Js

This formula has a nice geometric interpretation: f(x) is a weighted functional of Fy(q), which
is the average of Rf over all lines tangent to the circle of center x and radius q.

Approximate formulas.

The Fourier multiplier ||, also called a ramp filter, amplifies high frequencies more than low
frequencies. Since actual images have limited bandwidth'®, and since noise tends to be more
prominent at high frequencies, we want to replace this “exact” filter by a low-pass one, emphasizing
the features of f which can be more faithfully reconstructed by the data at hand.

The general setting is the following: take w € .#(R), w = w(s) an even function (in the sense
that w(—s) = w(s)), and let W = Rlw, that is to say

W(x) = /S w(x - 8) db = W([x]).

Then following the same scheme of proof as Theorem 16, one can show the following general
result. In the statement * denotes two-dimensional convolution and * denotes one-dimensional
s-convolution.

Theorem 17 (Filtered-Backprojection Formulas).

Wif:%Rt(win). (48)

19§ e., their Fourier transforms is supported in a ball of radius b. The smallest such b is often called the bandwidth.
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Formulas of this type do not reconstruct f exactly, rather, they reconstruct W« f, which should
be thought of as a “regularized”, low-frequency version of the unknown.

The relevant parameter is w(o ), which should be in some sense a low-pass version of |o|. Fixing
a cutoff bandwidth b > 0, here are the most commonly used filters in Matlab’s iradon function.

Ram-Lak: Wy(0) = [o|X[_p4(0).

Shepp-Logan: wy(c) = [o]X[—p4 () 7Sin7$§72/b?b).

lo]

cosine: Wy(o) = |o|x[—pp(0) cos(5).
Hahn: wp(0) = |o|x[—pp(0)(-54 + .46 cos(ma /b)).

Hamming: wy(0) = |o|x[—p,(0)(-5 + .5 cos(ma/b)).

Approximate formulas via functional calculus and intertwining differential operators.
We take a second look at Theorem 17. Since the function w is only a function of s, it is easy to
show that W = Rlw is only a function of |x] This implies that /V[7(§ ) is only a function of ||, or
equivalently, of [£|?, namely, let us write W( ) = W,(|¢]?) for some function W, : (0,00) = R.

The LHS of (48) looks like W x f = F~1 o W, (1¢)? ) o Ff, something we can write W,(—A)f.
Such an identification is obviously justified whenever W is a polynomial, and for more general
functions, it is justified by the spectral theorem for self-adjoint operators.

In short, for a general bounded function h € L*°(0,00), we can make sense of h(—A) via the
formula h(—A)f(€) = h(|€]?)f(€), and for functions on Z, we can make sense of h(—d2) via the
formula h(—92)g(o,0) = h(|o|*)g(o,0) (recall that G(o,0) = [, e *%g(s,6) ds).

The important thing to notice next is that since the relation R o (—A) = (—0?) o R generalizes
to any reasonable function of —A, namely R o h(—A) = h(—0?) o R. Again, such a formula is
obvious when h is a polynomial, and can be generalized to any limit of polynomials.

For such a function, apply the formula (47) to h(—A)f to make appear
1 1
h(=A)f = ERtHasR(h(—A) f) = ERtHash(fag)R f. (49)

This formula tells us what to do in order to recover a regularized version of f, h(—A)f, from Rf.
The operator Hdsh(—0?) has symbol |o|h(|o|?).

Examples of regularization kernels. In the last paragraph above, by 'regularized’, we mean
a low-frequency version of the function to be reconstructed. In particular, the function h(p) should
decay to zero as p — co. The ram-1lak filter above corresponds to the sharp cutoff

h(p) = 1wz (p°)  (ram-lak),

where b is the cutoff bandwidth. At the level of the reconstruction, this amounts to using the filter
W({ ) = o2 (1€ ?), which is nothing but the characteristic function of the ball of radius b. Thus
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the function h(—A)f only contains the frequency content of f up to frequency b. This induces a
limitation on the size of the details of h(—A)f.

Another example of regularization kernel is given by the heat semi-group

h(=A) =e® =% =A% >0
— k!
(it’s a semi-group because etBoest = e(tH3)A for all s, t > 0). It is both a non-polynomial example
of a relevant function of the Laplacian, and its existence is motivated by PDEs. Specifically: for
f € .7 (R?), '™ f is obtained by solving the following heat equation:

0
371: —Au (>0, x€R?) with initial condition  wu|_g = f.
Indeed, we can look at what the function v(§,t) == [go e™Cu(x, t) dx satisfies: using the properties

of the Fourier transform, v satisfies % = —|¢[2v with initial condition v(£,0) = f(£), and this can

be immediately solved through direct ODE integration

v(E, ) = e U f(e).

We then see that u(x,t) = '™ f as claimed. Note that this also means that u(-,t) can be viewed
as a convolution operator applied to f, with convolution kernel

1 , 2 1 2
Wi(x) = ix§—tlE]® gp = = o—Ix[P/at
(%) (2m)? /Rz 0 ant”
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Exercise 19. Prove Theorem 17.
Exercise 20. For (a,a) € S' x R?, define the action of the FEuclidean group

cosa  sina
—sina  cosa

(a,a) - f(x) = f(R(a)x + a), R(a) := { } ) f e.Z(R?).

Find a relation between R[(a,a) - f] and Rf.
Exercise 21. The Radon transform in higher dimensions. For f € S(R™), define
Rf(s,w)—/ 7/, seR, wesS" 1,
{z-w=s}
where the hyperplane hs,, := {x € R", - w = s} is equipped with its natural Lebesque measure.
Notice the symmetry Rf(s,w) = Rf(—s,—w). Define f the Fourier transform as usual on R"™, and
g(o,w) the one-dimensional Fourier transform along the s factor for functions on R x S*~1,

1. Prove the Fourier slice theorem: for any f € S(R"), E}"(a,w) = f(aw),

2. Compute the formal adjoint operator of R : L*>(R™) — L?>(R x S™™1), call it R*. What is its
geometric meaning ¢

3. Recalling the definition of the Riesz potentials as usual (for a < n, @(5) = |§]_O‘f(§)), prove
the filtered-backprojection formula, true for any f € S(R™):

1
f _ 5(27T)1_RI_QR*Ia_n+1Rf, a < n.

4. Focus on the case a = 0 and explain how the locality of I~"*! depends on the parity of n.

5. Conclude that in odd dimensions, f(x) can be reconstructed from the Radon transform over
all planes intersecting a small neighborhood of x.

Exercise 22. Radon transform and wave equation. Recall d’Alembert’s formula
1 1 T+t
oo t) = 5 (@ =)+ fla )+ 5 [ glw) du
2 2 r—t
which provides the expression for the unique solution to the 1 + 1-dimensional wave problem

821) 821) ov
7~z =0 @ER >0, who=f  Sleo=g

This problem shows how the Radon transform and d’Alembert’s formula provide a method for solving
wave equations in R™ x (0,00) for any n € N.

1. Prove that for f € S(R"™), j—;Rf = R[Af].
2. Use the previous result to derive a solution of the wave problem
Opu —Au=0 (x e R",t > 0), u(z,0) = up(z), Oru(x,0) = uy(x),

by setting up a PDE problem for the function v(s,w,t) := Ru(x,t) (where the Radon transform
acts on the x-variable only).
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3.3 Diagonalization through circular harmonics and radial inversions
3.3.1 Preliminaries on the Beta and Gamma functions

Recall that we define the Gamma function via the absolutely convergent integral I'(s) = fooo tslet dt
for all s > 0. This defines a smooth function which interpolates the factorial in the sense that
I'(n+1) =n! for all n € Ny.

Exercise 23. 1. Show thatT'(s+1) = sI'(s) for all s > 0. Deduce by induction that T'(n+1) = n!
for all m € Ng.

2. Show that T'(1/2) = /7. Deduce the value of T' at all half-integers.

Also define the Beta function for all a,b > 0 by
1
Bla,b) = / w1 — )t du (50)
0

It is also smooth in both arguments, and can in fact be expressed in terms of the Gamma function
as follows:

[(a)L'(b)

L(a+b) (51)

1
B(a,b) = / w1 — )b du =
0

It contains the value of all binomial coefficients, Wallis integrals, etc.

Exercise 24. Prove (51) as follows: write T'(a)T'(b) as a double integral in (t,u) € R% and do the

change of variable v=1t+u, w = HLU

3.3.2 The Radon transform of radial functions

Suppose a smooth function to be integrated takes the form f(z) = F(|z|) for F' a compactly
supported function. Then by direct calculation,

Rf(s,0) = /RF(SO +t0L)) dt

oo
= 2/ F(v/s?2+1t2) dt
0
< F(u)u
s VuZ— §2
We immediately see that Rf only depends on s, and that the recovery of F' leads to the inversion

of the one-dimensional integral operator F' +— RoF'. To understand the nature of this operator, let
us take a detour through a family of integral transforms of Abel type.

=2 du =: RoF(s).

Exercise 25. Show that if f € C*°(R?) and f(x) = F(|x|) for some F : [0,00) — R, then F must
take the form F(p) = g(p?) for some function g € C*°([0,00)). [Hint: if f is smooth at 0, write a
Taylor expansion there.]
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Abel transforms. In the sequel, all the calculations can be justified by considering functions
which are continuous and compactly supported on Ry, a space which we write C.(R4). If you are
curious, think about how far one can reduce the regularity and integrability below and still make
the calculations justified.

Following [Eps08, §2.5.4], for 0 < a < 1, we define the Abel transform

Mgl = s | S b geCury),

with, in particular when a = 1/2:

Ay pag(t) = \/17? /too \/g% ds, g€ Cu(Ry).

Notice that A; produces an antiderivative for g, so these operators have a smoothing behavior.
In fact, A, is smoothing by the fractional amount «. This is best embodied by the following
observation:

Lemma 18. For all a € (0,1),
Ayo0Ai_q = A1_q0 Ay = A3 on Ce(Ry).

Proof. We need to show that A1_qAqh(t) = [ h(u) du. Iterating the integral, we get

Meoobl®) = ey | G ] G e
~ i | (] et

Now, somewhat magically, upon changing variable in the s integral s =t + v(u — t) for v € [0, 1],
we arrive at

u ds 1 dv I‘(a)r(l B a)
| e =, e — Bt — ) = S

and the result follows. O

In fact, since A; is inverted by the operator —d,, Lemma 18 gives us an inverse for A,: we
directly have

—0p0A1_q 0 Ay = 1d. (inversion of A,) (52)

Exercise 26. Show the generalization of Lemma 18: as long as o, f,a+ € (0,1), AqoAg = Antp.
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Inversion of Ry. We now use the results from the previous paragraph to invert Ry explicitly.
This is done by first relating Ry with the Abel transform A;/,. For a function F': [0,00) — R,
denote F ,(t) := F(y/t). Working on the transform Ry:

RoF (s _2/ W \/ué(i)d 3 = \/V(i) = Ay oF /(s%).
In other words,
(RoF) o/ = Vadip(Fov/s),  FeCuRy), (53)

i.e. Rp is nothing but A5 acting on functions deformed by the squareroot function.

Since the inversion of A/, follows from (52) with a = 1/2, one is able to easily deduce the
inversion of Ry:

Theorem 19 (Inversion of Rp).

* RoF(s)s
N

Exercise 27. Prove Theorem 19 using (53) and (52).

-1 -1
F(’l“) = E&« |: g d8:| = %8TRO[ROF]

An interesting consequence: if RoF' is supported in s < L, then the form of the reconstruction
formula in Theorem 19 tells us that F' is also supported in {|x| < L}. This is a first example of
the so-called Helgason support theorem, which tells us how we can “scrape off” the support of a
function based on the support of its Radon transform.

3.3.3 Diagonalization through harmonics

This material is in part inspired by [[lm17, Sec. 4, 5].

Let us now generalize to functions which are not necessarily radial. Given f € C.(R?), for every
p > 0, the function 5 — f(pB) = f(pcosp,psin ) is 2m-periodic and therefore decomposes in
Fourier series:

B) =X filo)e™, o) = 5= [ FoB)e dp, (54)

kEZ

Similarly, the function Rf(s,#) is 2m-periodic in # and thus decomposes into

Rf(s,0) = > J(Rf)p(s)e™,  (RP)p(s) =

PEZL

1 .
— | Rf(s,0)e " dp.
2w /Sl f(s,0)e

In all generality, (Rf),(s) should depend on all Fourier modes of fi(p), by means of some doubly
infinite family of operators Ry : C.(Ry) — C.(Ry) via the relation (Rf), = > 1c7 Rpk fx- However,
all the non-diagonal ones will be zero, because the Radon transform commutes with rotations.
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This is seen more directly by simply computing the Radon transform of the k-th term in (54):
RUP)](5,0) = [ 56+ 16+ oo o) gy
R
— / fk:( /g2 + tz)eikarg(se-‘rtOL) dt
R

Now, if s > 0, arg(s@+t0+) = f+arg(s+it) = O+arctan(t/s) = §+arccos(s/vt2 + s2). Returning

to our computation:

R[fk(p)eikﬁ](s,e) _ eik@/ fk( /52 + tg)eikarccos(s/\/t2+s2) dt
R
= eikg/ fre(V s 4+ t?)2 cos(k arccos(s/V/t? + s2)) dt
0

b ezk@/ fr(u) cos(k arccos(s/u)) 7;du .
S woe
2udu_

)
02 — 52

< ikt / " ) Tk(s /)

where Ty () := cos(k arccos ) is the k-th Chebyshev polynomial of the first kind?.

Exercise 28. Justify steps a, b, ¢ above.

Exercise 29. Define the function Ty through the relation Ty (cos @) = cos(k6), 6 € [0, 7].

1. Show that To(z) = 1 and Ty (x) = z.

2. Show the recursion relation Tiio(x) = 22Tj41(x) — T(x). Deduce that Ty is a polynomial
of degree k (in particular it is also defined and smooth for x outside [0,1]; in fact, on [1,00)

another interpretation is Ty(x) = cosh(karccosh x)).

From the previous calculation, we immediately see that R[fx(p)e*?](s, #) only contains a Fourier

term along e**Y and nothing along any other e*? for ¢ # k. Moreover, upon defining the Abel type

integral transform

2udu

5 9eCRy). (55)

w2 —

Rw@wz/mgWHuwm

Then we deduce that

Rf(S, 0) = Z kak(s)eik‘g)
keZ
where the fj terms are the polar Fourier coefficients of f and Ry is defined in (55).

This provides another avenue to reconstruct f from Rf, by solving countably many one-
dimensional integral equations, reconstructing each f from Ry fr, provided that this last step
is possible. That this is indeed the case is given in the following result.

2OReally, T}, is initially defined for k € No, but from its defining property, it is clear that we can abuse notation

and set Ty (x) = T_x(x) = Tjp (x).
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Theorem 20 (Inversion of Ry). The operator Ry: C.(Ry) — C.(R4) is invertible. In particular,
g € Ce(Ry) can be reconstructed from Ryg by means of the reconstruction formula

1d Ti(s/7)
o) = e | o) s

Ty, (s/r)

sy/(s/r)2—1

Tk (s/r) involves values of Ty for x > 1 (while the operator involved in the definition of Ry involves
values of Ty, on [0,1]).

Remark 3. Notice that the inversion involves the operator h — froo h(s) ds, where

Proof. 1t is enough to show that
o Ti(s/T) /OO
Ryg(s) ————=ds = —n t) dt.
/T kg()s 5 E 1 ; 9(t)

Upon writing the double integral:

/OOR g(s \/TZ;/; / / (t)Tk(s/t)Tk(s/r) t22t— = s\/(s/i)Q — dt ds

—2/' g(O K (r.t) dt,

where we have defined

b Te(s/t) Ti(s/r)

ds
r V1= (s/1)25/(s/r)? — 1

The result follows upon proving the rather striking fact that Ky (r,t) = 7 for all 0 < r < ¢ and
k € Ny, which is the object of Exercise 30. O

Ky(r,t) :=

Exercise 30. Ezxercises 52 through 56 + Bonus Exercise 2 in [llmavirta, p27] take you through the
derivation of the magical identity

COTs) T, w )
By Py I s e S A

A consequence of Theorem 20 is as follows:

Corollary 21. Suppose f € C.(R?) is such that there is L > 0 such that Rf(s,0) =0 for all s > L.
Then f(x) =0 for all |x| > L.

Proof. Expanding Rf(s,#) into Fourier harmonics w.r.t. 6, we obtain that Ry fx(s) = 0 for every
s > L and every k € Z. From the inversion formula in Theorem 20, since fi(r) is directly
reconstructed from Ry, f(s) for s > r, this gives that fi(r) = 0 whenever r» > L for all k, and hence
f(rB) =X ez fru(r)et*® = 0 whenever r > L. O
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3.3.4 Approximate inversion and Volterra integral equations

The exact inversion of the transform (55) may have looked like it was pulled out of a hat, in the
sense that the inverse was given to us. Some of the intuition behind the construction of the inverse
may be found in Cormack’s original paper [Cor64]. If the kernel seems too messy to intuit an
inverse, some general form remains amenable to analysis. Specifically, it is worth noting that all
the operators Rj. take the form

/ f(u 2udu_ oy, (56)

’
ViZ =2

where b is uniformly bounded by 1 (in fact smooth) on {(u,s) € Ry x Ry, u > s} and where
b(s,s) =1 for all s > 0, and let’s assume that we can invert the case where b(s,u) = 1 for u > s,
in which case the operator B is Ry, the Radon transform on radial functions.

Reduction to a Volterra Integral Equation of the second kind. Assuming that the original
integrand f is supported in [0, L], we then see that Bf(s) = 0 for any s > L, and thus we may
consider the restriction of B to functions on [0, L], defined by

/ F(u 2“ d“ seo,L). (57)

and suppose we want to reconstruct f from g = B f , in other words solve Bf = g for f.

From what we’ve seen when looking at Abel operators, the relative order of smoothing « that
A, provides really comes from the singularity of the kernel at s = uw. In (57), the only singular
behavior comes from \/— which suggests that its smoothing behavior is close to that of the Abel

operator A;/; or the operator Ry. Upon plugging b(s,u) = 1+ (b(s,u) — 1) into (57), the equation
Bf = g becomes

L
Rof+Ef =g, Ef(s)= [ fu)b(s.)- ) 2uedu

w2 — g2
We then apply the inversion formula of Ry to make appear
1 1
f - Kf = —7871R(]g, Kf = 78’!‘R0[Ef] (58)
mr mr

A bit of work shows that:

Lemma 22. The operator K defined in (58) takes the form K f(r f fuw)k(r,u) du for some
kernel k bounded on [0, L)2.

Proof. We compute
L 2udu  2sds

rase)= [ [ e -y et et
:/rLf(u) (/ru(b(s,u)—l)\/uzl_ S \/ij;) 2u du.

e(u,r)
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Now note that since b(s,s) = 1, we can write b(s,u) — 1 = (u? — s?)h(s,u) for some bounded,

continuous function h. This allows us to write e(u,r) as

and upon changing variable s? = r2 + y(u? — r2?), we arrive at

1 —_
G(U,T):(UQ—’I“Q)/O h(\/r2—|—y(u2—r2),u) L ydy.

In particular, e(r,r) = 0 for all r. Finally,

Kf(r) %&ROE f

L

— % (27‘f(7’)e(7’, T) —|—/ f(uw)ore(u,r) 2u du)
1 [F )

=— [ f(wore(u,r) 2u du.

r J,
We see that K is thus an integral operator with kernel

k(r,u) = Q—U&e(u,r).

r

The lemma is concluded once one shows that & is bounded on [0, L]. This is left as an exercise. [J

Exercise 31. Finish the proof of Lemma 22 by showing that the kernel k is uniformly bounded on
[0, L].

With this lemma and the work of the next paragraph, equation (58) can be inverted via the
Neumann series solution

> 1
- K? | —— T )
f pZO [ mﬁ Rog}

Thereby implying that f can indeed be recovered from ¢ in a semi-explicit manner (modulo an
infinite sum !). This method applies to several cases beyond the case of integration along lines: it
generalizes to more general integration curves, provided that

e This family has rotational summetry with respect to a distinguished point o.

e Each curve v(t) satisfies %h(t) —o| > 0, and at the “vertex” ~(tg) where |y(tg) — ol is
minimal, () has first order of contact with the circle to which it is tangent.

Example of articles dealing with such families are: the study of the geodesic X-ray transform for
spherically symmetric metrics [Sha97], integration certain kinds of ellipses [AK15] and “Cormack-
type curves” [RLL14].

Exercise 32. What about families of curves with higher order of contact ?
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Volterra operators of the first kind. Some of this material is inspired from [Eps08, §2.5.4].

Define an operator K f(r) = er f(u)k(r,u) du for r € [0, L], where the kernel function k(r,u)
satisfies a uniform estimate |k(r,u)| < M for all r,u € [0, L]. The operator K is called a Volterra
integral operator of the first kind, and with such an operator, an equation of the form

f—Kf=h on [0, L], (59)

to be solved for f, is called a Volterra equation of the second kind. See [Wid1l6] for a general
treatment. We show the following

Theorem 23. Let K an operator as above, with kernel k(r,u) uniformly bounded by M on [0, L]?
and vanishing for u < r. Then for any h € L*([0,L]), equation (59) has a unique solution
f € L*°([0, L)) of the form f = h+Y 32, KPh, where the second summand is a continuous function.

Particular cases include:

e if h is continuous on [0, L], then so is f.

e if h=0o0n [0,L], then f =0 on [0, L].

Proof. Let us inspect the convergence properties of the series Z;io K7h. Bounding the j = 1 term,
we obtain

L
|Kh(r)| = / E(r,u)h(u) du

< M||Aloo(L = 7).

Notice also that, similarly,
[EKh(r) — Kh(r')] < M||h]lso|r — 7’|,

and thus Kh is (Lipschitz-) continuous on [0, L], in particular bounded on [0, L]. By induction,
every term K7h will be continuous and bounded. Moreover, using the same bounding technique,
one may prove by induction that

MI(L —r)

. i
[K7h(r)| < i [Plloc; € [0, L],

this yields the uniform estimate ||K7|o < (A/‘;.!L)thHoo. Since the series of upper bounds is

summable, the Weierstrass M-test ensures that the limit exists and is bounded, with sup-norm
oo
Y Kn| < eMh|.
§=0
oo

Since all terms but possibly the first one are continuous, then Z;’il K7h is continuous as a uniform
limit of continuous functions. O
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3.3.5 The exterior problem and Helgason’s support theorem

The geometry of lines is such that if K C R? is compact and convex set, the problem of recon-
structing f from Rf admits a natural 'triangular’ structure. Namely, if we write f = f|x + f|xe
(where each restriction is extended by zero to R?) and set Zj the set of lines which intersect K,
then an obvious observation is that the Radon transform of f|x is zero on any line that does not
intersect K. Hence, the operator R splits into

{RflzK}:[* *} [ f‘K}
As for any triangular system, it is then worth inferring first the reconstructibility of f|xe from
Rf|ze.. This is called:

The exterior problem: given K a compact and convex domain and f € C>°(R?),
(i) does Rf(L) = 0 for every L not intersecting K imply that f = 0 outside K ?
(ii) If the answer to (i) is "yes’, how to recover f|ke from Rf|ze ?

We will address (i), and this is called the Helgason support theorem, whose proof follows from
the work done in the previous sections. Recall that the support of a function (or a distribution)
f is the complement of the largest open set on which f = 0.

Theorem 24 (Helgason support theorem). Let K C R? be a compact and conver set. Suppose
I € C.(R?) integrates to zero over all lines L C R? for which LN K = (. Then flr2\x = 0.

Proof. Case 1: a disk. Suppose K = D, (xo). Upon considering the function f(x) = f(x —x0),
the goal is to show that if Rf(s,0) = 0 for s > r, then f(x) = 0 for x| > . But this follows directly
from Corollary 21.

Case 2: general. Now that this is proved for a general disk, this can be proved provided that
for any compact and convex set K, we have

K= (] D (60)

DDK,D disk

The inclusion C is obvious, and to prove the converse, one must show that for every point = ¢ K,
there is a disk D such that K C D and = ¢ D.
Once (60) is proved: for every disk containing K, Rf vanishes at lines not passing through D,
60
so by case 1, f vanishes on the complement of D. Then f vanishes on |JD¢ = ([ D)¢ (&) Ke,
which is what we had to prove. O

Exercise 33. Prove the D part of (60).

Remark 4. Note that although the exterior problem is injective, and unlike K is at most a point,
this problem is severely ill-posed.



Math 264 - Fall ’20 - Francois Monard 52

3.4 Approach by complexification and Riemann-Hilbert problem

Further elaboration on this material can be found in [Ball2, Sec. 2.4].

3.4.1 The transport viewpoint

In this section, we take the transport viewpoint to define the X-ray/Radon transform on the plane:
given f € C°(R?), we define the X-ray transform of f as I f(x,0) := lim;_,o u(x + t0, 8), where u
is the unique solution to the equation

0-Vu=f (R?>xS!), Jim u(x —16,6) = 0.
——00

Originally we can think of it as a function of (x, ) € R? x S, though we see that If(x + uf,0) =
If(x,0) for any u € R. Writing x = (x- 0)0 + (x- 61)0", we see that If(x,0) = Rf(x-0+,0+I),
where Rf is the Radon transform in the previous sections. In this convention, integration is done
along 0 instead of 6.

Note that R? x S! can be thought of as the unit tangent bundle of R?, and the equation above
can be thought of as a transport equation posed there (in this viewpoint, even the integrand f can
be viewed as a function of # also). The vector field whose integral curves are those over which f is
being integrated over is 8 - V = cos 09, + sin03,. It is the geodesic vector field on Euclidean R?,
whose integral curves (in R? x S!, projected back onto R?) are straight lines.

3.4.2 Complex preliminaries

We introduce complex coordinates z = x + iy, Z = x — 1y, and the induced complex derivatives

0. — %(am _ia,), 06— %(@m +id,).

In these coordinates, the area form looks like dxdy = ﬁé\idz =:dp(z).

e Green’s formula in complex coordinates. [y, Pdx + Qdy = [, (%—g - %—5) dx dy yields

ou
udz:Qi/d z
/| [ 5 dulz)

e The fundamental solution to dzu = f with limy,|_. u(z) = 0 for f € Ce(R?).

1

u(z) T Je ﬁ dp(Q).
e Plemelj-Sokhotsky formula: For all f € C°(R),
. () , . / f(z) -
21_1)"1(1) R dx = —ip.v. S dx + sign(e)mw f(0). (61)
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3.4.3 A example of a Riemann-Hilbert problem

Call T the unit circle in R? traversed counterclockwise, and let D the open unit disk, and D_
the complement of the closed unit disk. If ¢ is smooth on Dy U D_ and has limits at T, we let

¢+ (t) = lim, o+ ¢((1 F £)t), and call (t) := ¢4 (t) — ¢_(t) the jump of ¢ across T.
The RHP associated to T and ¢ is formulated as follows:
Problem 1 (Riemann-Hilbert problem across T'). Find ¢ satisfying:
(i) ¢ is analytic on Dy U D_
(ii) Ap(N) is bounded as |\ — oo.
(iii) The jump of ¢ across T is 1.

In their full generality, Riemann-Hilbert problems may include more general jump contours
than T, matrix-valued integrands, other normalization conditions than (ii). They appear in several
fields of mathematics related to special functions, random matrix theory, orthogonal polynomials,
integrable PDEs and more. See [AFF03], and [TO15] for more numerical and practical aspects.

As far as the problem above goes the following result holds and is crucial for what follows.

Theorem 25. The solution to Problem 1 exists and is unique, given by

()

dt ANET.
271'@ t—A ¢

P(A) =
Proof. (Existence) That the solution written above solves the problem follows immediately from
Plemelj’s formula (61), or rather, an adaptation of it to the unit circle. We can also check the jump
condition by computing left and right limits and expanding ¥(¢?®) into a Fourier series. Specifically,
let us decompose ¢ (e?) = 3", ; axe™™, and write

27 6
_ Y(e”)
p(N) = o |, e = /\e de.

If |A] < 1 we use the Neumann series 1_/\%19 =) 50 Ne~ P9 to rewrite ¢(\) as
—ipl 9
27r/ Ze PNY() di =y ap .
p>0
As X\ — €' € T, this converges tQ o4 (e io‘) =2 0 ape, and the convergence is justiﬁed by the
original regularity imposed on 1 (e?). If |\| > 1, we use the Neumann series 7 — = § Zoo A "Peird
to write
—(p+1
- Za—(zﬂrl))‘ L
p=>0

As )\ — €@ € T, this converges to ¢_(¢'*) = — Z,;:l_oo are™®. We indeed see that ¢ (e'®)—¢_(e'®)
recovers exactly 1 (e).

(Uniqueness) That the solution is unique follows from Liouville and Morera’s theorems: if two
solutions ¢1, @2 both solve Problem 1, then ®; — ®4 is entire and bounded near infinity: it must be
a constant. Since its limit as |z| — oo is zero, it is identically zero. O
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3.4.4 Inversion of the X-ray transform through a Riemann Hilbert problem

The idea of this method of inversion is as follows: u(x,6) can be extended to A ¢ T U {0} by
complexifying the transport equation, starting from the observation that 8-V = €9, + e~"9; and
setting A = e and e = A~!, the augmented function u(x, A) solves the problem

(A0, 4+ A710)u(z, \) = f(2), lim u(z,A) =0, (62)

|z| =00

(here we write u(z) but we are not implying that u is complex-analytic). The method of resolution
then goes as follows:

1. Freezing A ¢ T'U {0}, equation (62) turns out to be a complex Cauchy-Riemann equation
in the variable { = A~z — Az, in the sense that A3, + A~'9z = (J]A|7* — [\[*)J. Using the
fundamental solution of this problem, we arrive at the expression (denote ui+ = u|p,)

ui(Z, /\) - /CG:N:(Z - Zl? )‘)f(zl) d/‘('zl)? Gi(z’ )\) - 7T()\_1:Z’1—)\Z)

2. From the expression above, now freeze z and study wu(z, A) for A ¢ T'U{0}: uy are obviously
complex-analytic on their domains of definition, and w4 is in fact analytic all the way down
to A = 0, with limit 0. u_ also has the right decay as |A\| — oo, so u(z,-) satisfies a RHP
across the unit circle. By Theorem 25, u(z,-) can be globally expressed as a Cauchy integral
in terms of its jump across the unit circle. Namely, we also arrive at

1 P(z,t) 1 (2, e)
N=— | B0 g = [ 50T g
u(zA) 2m'/T pY o Jo1 T— he—i® O

where 1(z, ) == lim._,+ (uy(z, (1 —€)e?”) —u_(z, (1 +¢€)e®)) is the jump of u across the
unit circle. From using Plemelj formula, one may find that ¢ is in fact only expressed in
terms of known data. More specifically, one may show that

. 1
lim Ge(x =y, N f(y) dy = £ (HRof)(x - 67) + (Do f)(x),
A—ei® \eDy R2 27
where Dyf(x) := 1 [osign (t)f(x + t0) dt is the so-called divergent beam transform. This
term is of course unknown from data, but disappears when computing the jump of u across
T.

3. To obtain a reconstruction formula for f(z), we now set A — 0 in the “complex transport”
equation to obtain

— 1 —19_
f(z)= )1\12%)\ Ozu(z, \).

Combining the expression of u in terms of ¢ and of ¢ in terms of Ry f, we recover the usual
Filtered-Backprojection formula.
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3.4.5 The attenuated X-ray transform

One of the powers of this method is that it can also deal with the presence of an attenuation
coefficient. More specifically, suppose an attenuation function a € C°(R?) is known, and for
f € C®(R?), let us consider the transform I, f(x,0) = lim;_,oo u(x + t0,0), where u solves the
transport problem

0-Vut+au=f  (R*>xSh), Jim u(x —16,60) =0.

Upon complexifying A = e, the equation becomes
(AD: + A0 )u(z, N) + a(2)u(z, \) = f(2).
Here it is then customary to introduce h(z, A), for A ¢ T'U {0}, the unique solution to the problem

(A, + A71ao)h = a, lim h(z,\) =0,

|z]—o0
so that the complex transport equation becomes
(A, + A 7102 (ueh) = aeh.

As in the unattenuated problem, hy are holomorphic in A\ and the jump of Ay is known (in fact,
even the radial limits of hy are known since a is known).

Solving the last equation gives two expressions of v for A € Dy, that is,
us(z,\) = e N / Gz — 2, NN () du(2).
C

Again, it can then be shown that such an expression, with z frozen, is sectionally analytic in A,
with limit 0 at A = 0, and with the right decay at infinity. Then u can be parameterized from its
jump across T' which can be expressed in terms of known data (that this step is true requires some
careful calculations).

Finally, the reconstruction formula for f will be again obtained from computing the expression

f(2) = lim A1 05u(z, \).
A—0
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