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Non-linearity helps in solving inverse problems!

I Hyperbolic case: Kurylev–Lassas–Uhlmann, 2018,
Lassas–Uhlmann–Wang, 2019, Sá Barreto–Wang, 2018,
Chen–Lassas–Oksanen–Paternain, 2019, 2020, Hintz–Uhlmann, 2018,
Feizmohammadi–Lassas–Oksanen, 2020,
Lassas–Liimatainen–Potenciano-Machado–Tyni, 2020, Hintz–
Uhlmann–Zhai, 2020, ...

I Elliptic case: Feizmohammadi–Oksanen;
Lassas–Liimatainen–Lin–Salo, 2019, K.–Uhlmann, 2019, Ma–Tzou, 2020,
Lai–Zhou, 2020, Cârstea–Feizmohammadi, 2020, ...

A common feature of these works is that the presence of a nonlinear-
ity allows one to solve inverse problems for non-linear equations in
cases where the corresponding inverse problem in the linear setting
is open.
The purpose of the first part of the talk is to demonstrate this phe-
nomenon for inverse boundary problems for semilinear elliptic PDE
in both full and partial data cases.



The Calderón problem with partial data
Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with smooth bound-
ary, and let q ∈ C∞(Ω). Consider the Dirichlet problem for the
Schrödinger equation,{

(−∆ + q)u = 0 in Ω,

u|∂Ω = f .

Assume that 0 is not an eigenvalue of −∆ + q. Let Γ1, Γ2 ⊂ ∂Ω be
arbitrary open non-empty. The partial Dirichlet–to–Neumann map,

ΛΓ1,Γ2
q (f ) = ∂νu|Γ2 , supp (f ) ⊂ Γ1.

The Calderón problem with partial data: Does ΛΓ1,Γ2
q determine q in

Ω?



Known results
I n ≥ 3: the problem is open in general. The problem is solved

when
I Γ2 = {x ∈ ∂Ω : (x−x0)

|x−x0| · ν(x) < ε}, x0 /∈ ch(Ω), ε > 0,
Γ1 = neigh(∂Ω \ Γ2, ∂Ω) (Kenig–Sjöstrand–Uhlmann, 2007). 

Note: when Ω is strictly convex, Γ2 could be arbitrarily
small

I n = 2: open when Γ1 ∩ Γ2 = ∅. The problem is solved
I when Γ1 = Γ2 is an arbitrary open non-empty portion of ∂Ω

and q ∈ C 1,α(Ω) (Imanuvilov–Uhlmann–Yamamoto, 2010,
Guillarmou–Tzou, 2011 (in the case of Riemann surfaces)),

I when Γ1 ∩ Γ2 = ∅, provided that some additional
geometric assumptions are satisfied, and q ∈ C 2,α(Ω)
(Imanuvilov–Uhlmann–Yamamoto, 2011).

Counterexamples to non-uniqueness for anisotropic Calderón problem in the case
of measurements on disjoint sets: Daudé–Kamran–Nicoleau, 2019, 2020.



Partial data inverse boundary problems for
semilinear elliptic PDE

Let Ω ⊂ Rn, n ≥ 2, be a connected bounded open set with C∞

boundary.

Consider the Dirichlet problem for the following semilinear elliptic
equation, {

−∆u + q(x)um = 0 in Ω,

u = f on ∂Ω,
(1)

where m ≥ 2, q ∈ Cα(Ω), 0 < α < 1 (the Hölder space).

There exist δ > 0 and C > 0 such that when f ∈ Bδ(∂Ω) := {f ∈
C 2,α(∂Ω) : ‖f ‖C2,α(∂Ω) < δ}, the problem (1) has a unique solution
u = uf ∈ C 2,α(Ω) satisfying ‖u‖C2,α(Ω) ≤ Cδ.



Let Γ1, Γ2 ⊂ ∂Ω be arbitrary open non-empty. Define the partial
Dirichlet–to–Neumann map,

ΛΓ1,Γ2
q (f ) = ∂νu|Γ2 , supp (f ) ⊂ Γ1.

Theorem (K.–Uhlmann; Lassas–Liimatainen–Lin–Salo, 2019)
ΛΓ1,Γ2
q1 = ΛΓ1,Γ2

q2 =⇒ q1 = q2 in Ω.



Remark. We can also consider more general semilinear elliptic equa-
tions,

−∆u + V (x , u) = 0 in Ω,

where the function V : Ω×C→ C satisfies the following conditions:

(i) the map C 3 z 7→ V (·, z) is holomorphic with values in
Cα(Ω), for some 0 < α < 1,

(ii) V (x , 0) = ∂zV (x , 0) = 0, for all x ∈ Ω.
Hence,

V (x , z) =
∞∑
k=2

Vk(x)
zk

k!
, Vk(x) := ∂kz V (x , 0) ∈ Cα(M),

which converges in the Cα(Ω) topology.

Theorem (K.–Uhlmann; Lassas–Liimatainen–Lin–Salo, 2019)
ΛΓ1,Γ2
V1

= ΛΓ1,Γ2
V2

=⇒ V1 = V2 in Ω× C.



Consider next the following Dirichlet problem,{
−∆u + q(x)(∇u)2 = 0 in Ω,

u = f on ∂Ω.

Here q ∈ Cα(Ω) for some 0 < α < 1, (∇u)2 = ∇u · ∇u.

For any f ∈ C 2,α(∂Ω) small, there exists a unique small solution
u ∈ C 2,α(Ω). Define the partial Dirichlet–to–Neumann map,

ΛΓ1,Γ2
q (f ) = ∂νu|Γ2 , supp (f ) ⊂ Γ1.

Theorem (K.–Uhlmann, 2019)
ΛΓ1,Γ2
q1 = ΛΓ1,Γ2

q2 =⇒ q1 = q2 in Ω.

Remark. Slightly more general nonlinearities can also be treated.



Idea of the proof (higher order linearization: Feizmohammadi–Oksanen;

Lassas–Liimatainen–Lin–Salo, 2019)

Consider first, for j = 1, 2,{
−∆uj + qj(x)umj = 0 in Ω,

uj = f on ∂Ω,

Let m = 2 and let us perform a second order linearization of this
problem.

To that end, let ε = (ε1, ε2) ∈ C2, and let fj ∈ C∞(∂Ω), supp (fj) ⊂
Γ1, j = 1, 2. The problem{

−∆uj + qj(x)u2
j = 0 in Ω,

uj = ε1f1 + ε2f2 on ∂Ω,

has a unique small solution uj = uj(·, ε) ∈ C 2,α(Ω), which depends
holomorphically on ε ∈ neigh(0,C2) with values in C 2,α(Ω).

Differentiating with respect to εl , l = 1, 2, taking ε = 0, and using
that uj(x , 0) = 0, we get the first order linearization,



{
∆v

(l)
j = 0 in Ω,

v
(l)
j = fl on ∂Ω,

where v
(l)
j = ∂εluj |ε=0, l = 1, 2. By the uniqueness and the elliptic

regularity for the Dirichlet problem, we see that v (l) := v
(l)
1 = v

(l)
2 ∈

C∞(Ω), l = 1, 2.

Applying ∂ε1∂ε2 |ε=0, we get the second order linearization,{
−∆wj + 2qj(x)v (1)v (2) = 0 in Ω,

wj = 0 on ∂Ω.

where wj = ∂ε1∂ε2uj |ε=0. The fact that

ΛΓ1,Γ2
q1

(ε1f1 + ε2f2) = ΛΓ1,Γ2
q2

(ε1f1 + ε2f2)

for all small ε1, ε2 and all f1, f2 ∈ C∞(∂Ω) with supp (f1), supp (f2) ⊂
Γ1 implies that ∂νw1|Γ2 = ∂νw2|Γ2 .



Multiplying the last equation by v (3) ∈ C∞(Ω) harmonic in Ω and
applying Green’s formula, we get

2
∫

Ω
(q1 − q2)v (1)v (2)v (3)dx =

∫
∂Ω\Γ2

(∂νw1 − ∂νw2)v (3)dS = 0,

provided that supp (v (3)|∂Ω) ⊂ Γ2. Hence, we obtain that∫
Ω

(q1 − q2)v (1)v (2)v (3)dx = 0,

for any v (l) ∈ C∞(Ω) harmonic in Ω, l = 1, 2, 3, such that
supp (v (l)|∂Ω) ⊂ Γ1, l = 1, 2, and supp (v (3)|∂Ω) ⊂ Γ2.
Take v (3) 6≡ 0.

Theorem (Dos Santos Ferreira–Kenig–Sjöstrand–Uhlmann, 2009)
Span{v (1)v (2) : v (l) ∈ C∞(Ω) harmonic, v (l)|∂Ω\Γ1 = 0, l = 1, 2} is dense in
L1(Ω).

Using this result, we conclude that q1 = q2.



Let us now consider{
−∆uj + qj(x)(∇uj)2 = 0 in Ω,

uj = ε1f1 + ε2f2 on ∂Ω.

Similarly, performing a second order linearization, we get∫
Ω

(q1 − q2)(∇v (1) · ∇v (2))v (3)dx = 0,

for any v (l) ∈ C∞(Ω) harmonic in Ω, l = 1, 2, 3, such that
supp (v (l)|∂Ω) ⊂ Γ1, l = 1, 2, and supp (v (3)|∂Ω) ⊂ Γ2. Our inverse
theorem follows therefore from the following density result.

Theorem (K.–Uhlmann, 2019)
Let Ω ⊂ Rn, n ≥ 2, be a connected bounded open set with C∞ boundary, let
Γ ⊂ ∂Ω be an open nonempty subset of ∂Ω, and let Γ̃ = ∂Ω \ Γ. Then

Span{∇u · ∇v : u, v ∈ C∞(Ω) harmonic, u|Γ̃ = v |Γ̃ = 0}

is dense in L1(Ω).

Lai–Zhou, 2020: partial data inverse problem for nonlinear magnetic Schrödinger
equation.



Inverse boundary problem for nonlinear magnetic
Schrödinger equation

Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 2 with smooth boundary. To introduce the nonlinear magnetic
Schrödinger operator, we consider 1-forms and scalar functions de-
pending holomorphically on a parameter z ∈ C. Specifically, let
A : M × C→ T ∗M and V : M × C 7→ C satisfy the conditions:
(Ai) the map C 3 z 7→ A(·, z) is holomorphic with values in

C 1,1(M,T ∗M), the space of 1-forms with complex valued
C 1,1(M) coefficients,

(Vi) the map C 3 z 7→ V (·, z) is holomorphic with values in
C 1,1(M),

(Vii) V (x , 0) = 0, for all x ∈ M.
We have

A(x , z) =
∞∑
k=0

Ak(x)
zk

k!
, Ak(x) := ∂k

z A(x , 0) ∈ C 1,1(M,T ∗M),

V (x , z) =
∞∑
k=1

Vk(x)
zk

k!
, Vk(x) := ∂k

zV (x , 0) ∈ C 1,1(M).



Consider the nonlinear magnetic Schrödinger operator,

LA,V u =d∗
A(·,u)

dA(·,u)u + V (·, u)

=−∆gu + d∗(iA(·, u)u)− i〈A(·, u), du〉g
+ 〈A(·, u),A(·, u)〉gu + V (·, u),

for u ∈ C∞(M). Here dA = d + iA, d : C∞(M) → C∞(M,T ∗M)
is the de Rham differential, and d∗A is the formal L2–adjoint of dA.

Notice that the first order linearization of LA,V is the standard linear
magnetic Schrödinger operator d∗

A0
dA0 + V1.

Furthermore, we also assume that A0 ∈ C∞(M,T ∗M), V1 ∈ C∞(M),
and that 0 is not a Dirichlet eigenvalue of the operator d∗

A0
dA0 +V1.



Consider the Dirichlet problem for the nonlinear magnetic Schrödinger
operator, {

LA,V u = 0 in M,

u|∂M = f .

Under the above assumptions, there exist δ > 0 and C > 0 such
that when f ∈ Bδ(∂M) := {f ∈ C 2,α(∂M) : ‖f ‖C2,α(∂M) < δ},
0 < α < 1, the problem has a unique solution u = uf ∈ C 2,α(M)
satisfying ‖u‖C2,α(M) < Cδ. We define the Dirichlet–to–Neumann
map

ΛA,V f = ∂νuf |∂M ,

where f ∈ Bδ(∂M) and ν is the unit outer normal to the boundary.

Inverse problem: Given ΛA,V , determine the nonlinear magnetic and
electric potentials, A and V , respectively.



When A = 0 and V (x , z) = V1(x)z , the problem reduces to the
inverse problem for the linear Schrödinger operator −∆g +V1 which
asks: given Λ0,V1 , determine V1.

When A = A0(x) and V (x , z) = V1(x)z , the problem reduces to
the inverse problem for the linear magnetic Schrödinger operator
d∗
A0
dA0 + V1 which asks: given ΛA0,V1 , determine dA0 and V1.

I n = 2: the problem is solved (Imanuvilov–Uhlmann–Yamamoto,
2012, Guillarmou–Tzou, 2011).

I n ≥ 3: the problem is open in general. Known results:

I in the Euclidean setting (Sylvester–Uhlmann, 1987,
Nakamura–Sun–Uhlmann, 1995),

I for hyperbolic manifolds (Isozaki, 2004),
I real analytic setting (Lee–Uhlmann, 1989, Kohn–Vogelius, 1984,

Lassas–Uhlmann, 2001).



Going beyond these settings in dimension n ≥ 3, the problem was
only solved in the case when (M, g) is conformally transversally
anisotropic (CTA) and under the assumption that the geodesic X-ray
transform on the transversal manifold (M0, g0) is injective.

I in the case of Schrödinger operators: Dos Santos
Ferreira–Kenig–Salo-Uhlmann, 2009, Dos Santos
Ferreira–Kurylev–Lassas–Salo, 2016.

I in the case of magnetic Schrödinger operators: Cekić, 2017,
K.–Uhlmann, 2018.

(M, g) is conformally transversally anisotropic (CTA) if there ex-
ists an (n − 1)–dimensional smooth compact Riemannian manifold
(M0, g0) with smooth boundary such that M ⊂⊂ R × M0 and
g = c(e ⊕ g0) where e is the Euclidean metric on R and c is a
positive smooth function on M.

Figure: Source: Mikko Salo’s slides



Problem: remove the assumption that the geodesic X-ray transform
on the transversal manifold (M0, g0) is injective.

I Open in the case of linear Schrödinger equation −∆g + V1.
I Known for L0,V u = −∆gu + V (·, u) = 0.

Theorem (Feizmohammadi–Oksanen; Lassas–Liimatainen–Lin–Salo, 2019)
Let (M, g) be conformally transversally anisotropic manifold of dimension n ≥ 3.
If V satisfies the assumptions (Vi ), (Vii ), and

(Viii) ∂zV (x , 0) = ∂2
zV (x , 0) = 0, for all x ∈ M,

then Λ0,V determines V in M × C uniquely.

V (x , z) =
∞∑
k=3

Vk(x)
zk

k!
.

No assumptions on the transversal manifold.



The proof of this result relies on higher order linearizations of the
Dirichlet–to–Neumann map, which allows one to reduce the inverse
problem to the following density result,

Proposition (Lassas–Liimatainen–Lin–Salo, 2019)
Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥
3, and let q ∈ C 1,1(M). If ∫

M

qu1u2u3u4dVg = 0,

for all harmonic functions uj ∈ C∞(M), j = 1, 2, 3, 4, then q ≡ 0.



We extend the result of Feizmohammadi–Oksanen; Lassas–Liimatainen–Lin–
Salo, 2019 to the nonlinear magnetic Schrödinger equation,

LA,V u =d∗
A(·,u)

dA(·,u)u + V (·, u)

=−∆gu + d∗(iA(·, u)u)− i〈A(·, u), du〉g
+ 〈A(·, u),A(·, u)〉gu + V (·, u) = 0,

Similarly to the assumption (Viii ) on V , we suppose that
(Aii) A(x , 0) = ∂zA(x , 0) = 0, for all x ∈ M.

Theorem (K.–Uhlmann, 2020)
Let (M, g) be a conformally transversally anisotropic manifold of dimension
n ≥ 3. Let A(1),A(2) : M×C→ T ∗M and V (1),V (2) : M×C 7→ C satisfy the as-
sumptions (Ai ), (Aii ) and (Vi ), (Vii ), (Viii ), respectively. If ΛA(1),V (1) = ΛA(2),V (2)

then A(1) = A(2) and V (1) = V (2) in M × C.

A(x , z) =
∞∑
k=2

Ak(x)
zk

k!
, V (x , z) =

∞∑
k=3

Vk(x)
zk

k!
.

No assumptions on the transversal manifold whereas the corresponding inverse
boundary problem for the linear magnetic Schrödinger operator is still open in
this generality.



Idea of the proof

Similarly to Feizmohammadi–Oksanen; Lassas–Liimatainen–Lin–Salo, 2019,
our proof relies on higher order linearizations of ΛA,V , as well as a
suitable consequence of the following density result, which may be
of some independent interest.

Proposition (K.–Uhlmann, 2020)
Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥
3, and let A ∈ C 1,1(M,T ∗M) be a 1-form. If∫

M

〈A, d(u1u2u3)〉gu4dVg = 0, (2)

for all harmonic functions uj ∈ C∞(M), j = 1, 2, 3, 4, then A ≡ 0.



Idea of the proof of Proposition in a simplified
setting

We follow the strategy of Lassas–Liimatainen–Lin–Salo, 2019.

Assume that each point p ∈ M int
0 is the unique intersection point of

two distinct nontangential non-self-intersecting geodesics γ and η.
Assume furthermore that the conformal factor c = 1.
Step 1. Boundary determination. Substitute u2 = u3 = 1 in the
orthogonality relation (2).

Proposition
Let A ∈ C 1,1(M,T ∗M) be a 1-form. If∫

M

〈A, du1〉gu2dVg = 0,

for all harmonic functions u1, u2 ∈ C∞(M), then A|∂M = 0 and ∂νA|∂M = 0.

This allows us to extend A by zero to R×M0 \M, while preserving
its regularity.



By density, (2) also holds for all harmonic functions uj ∈ C 2,α(M),
0 < α < 1, j = 1, . . . , 4.

Step 2. Let s = 1
h , with λ ∈ R being fixed. We construct harmonic

functions uj ∈ C 3(M), j = 1, . . . , 4, on (M, g) of the form

u1 = e−(s+iλ)x1(v + r1), u2 = e(s+iλ)x1(v + r2),

u3 = e−sx1(w + r3), u4 = esx1(w + r4),

where
‖rj‖C1(M) = O(s−K ),

as s → ∞, K � 1. Here v = v(·; s),w = w(·; s) ∈ C∞(M0) are
Gaussian beams quasimodes concentrating near the geodesics η and
γ, respectively.

‖v‖L4(M0) = ‖w‖L4(M0) = O(1),

as s →∞.



We have

v(x ′; s) = s
n−2
8 e i(s+iλ)ϕ(x ′)a(x ′; s), w(x ′; s) = s

n−2
8 e isψ(x ′)b(x ′; s),

where

ϕ(η(t)) = t, ∇ϕ(η(t)) = η̇(t), Im (∇2ϕ(η(t))) ≥ 0, Im (∇2ϕ)|η̇(t)⊥ > 0,

ψ(γ(τ)) = τ, ∇ψ(γ(τ)) = γ̇(τ), Im (∇2ψ(γ(τ))) ≥ 0, Im (∇2ψ)|γ̇(τ)⊥ > 0,

and

a(t, y ; s) =

( N∑
j=0

τ−jaj

)
χ

(
y

δ′

)
, b(τ, z ; s) =

( N∑
j=0

τ−jbj

)
χ

(
z

δ′

)
,

a0(t, y) = a
(l)
00 (t) +O(|y |), a00(t) 6= 0, ∀t,

b0(τ, z) = a00(τ) +O(|z |), b00(τ) 6= 0, ∀τ .

Here (t, y) and (τ, z) are the Fermi coordinates for the geodesics η
and γ, χ ∈ C∞0 (Rn−2) is such that 0 ≤ χ ≤ 1, χ = 1 for |y | ≤ 1/4
and χ = 0 for |y | ≥ 1/2, and δ′ > 0 is a fixed number.



Step 3. Writing A = (A1,A
′), substituting our harmonic functions

into (2), and denoting the partial Fourier transform of A in the x1
variable by Â(λ, x ′), we get∫
M0

(−sÂ1(2λ, ·)|v |2|w |2 +〈Â′(2λ, ·), dx ′(|v |2w)w〉g0)dVg0 = O(1),

as s →∞. Since v and w can be chosen to be supported in arbitrarily
small but fixed neighborhoods of η and γ, respectively, and since η
and γ only intersect at p, the products |v |2|w |2 and dx ′(|v |2w)w
concentrate in a small neighborhood U of p.
Using the expressions for the Gaussian beams v and w , and dividing
by s

1
2 , we obtain that

s
n−1
2

∫
U

(−Â1(2λ, ·) + i〈Â′(2λ, ·), 2id Imϕ+ dψ〉g0)e−2λReϕ

|a0|2|b0|2e−sΨdVg0 = O(s−
1
2 ),

as s →∞, where

Ψ = 2(Imϕ+ Imψ) ≥ 0.



By the properties of the phases of our Gaussian beams, we have

Ψ(p) = 0, dΨ(p) = 0, ∇2Ψ(p) > 0,

where the later inequality is a consequence of the fact that the Hes-
sians of Imϕ and Imψ at p are positive definite in the directions
orthogonal to η and γ, respectively.
Passing to the limit as s → ∞ and using the rough version of sta-
tionary phase lemma (Laplace method), we get

(−Â1(2λ, p) + i Â′(2λ, p)(γ̇(t0))e−2λReϕ(p)|a00(p)|2|b00(p)|2 = 0,

where p = γ(t0), for all λ ∈ R. As a00(p) 6= 0, b00(p) 6= 0, and λ is
arbitrary, we see that

−A1(x1, p) + iA′(x1, p)(γ̇(t0)) = 0,

which is equivalent to

(iA1,A
′)(x1, p)(1, γ̇(t0)) = 0.

Spanning the tangent space TpM0 by the tangent vectors of the
geodesics which are small perturbations of γ, we get A = 0. The
proof of Proposition in the simplified case is complete.



In the case of a general transversal manifold M0, the non-tangential
geodesics γ and η might have self-intersections and may intersect in
more than one point, which complicates the proof. Here additionally
to the stationary phase argument, we also rely on non-stationary
phase, where we have to integrate by parts twice. This is precisely
the motivation for our regularity assumption on A ∈ C 1,1(M,T ∗M).



Back to nonlinear magnetic Schrödinger equation

Considering themth order linearization, m ≥ 3, leads to the following
integral identity,∫

M

(
(m + 1)i〈A, d(u1 · · · um)〉gum+1dVg

=
(
mid∗(A) + V

)
u1 · · · um+1

)
dVg ,

where A = A
(1)
m−1 − A

(2)
m−1 and V = V

(1)
m − V

(2)
m , which is valid for

any uj ∈ C 2,α(M) harmonic, j = 1, . . . ,m + 1. Setting u1 = · · · =
um−3 = 1 gives the identity

(m + 1)i

∫
M
〈A, d(um−2um−1um)〉gum+1dVg

=

∫
M

(mid∗(A) + V )um−2um−1umum+1
)
dVg .

We first show that A|∂M = 0 and ∂νA|∂M = 0, and then use a
consequence of our Proposition to obtain that A ≡ 0. To recover V ,
we let A = 0, and rely on the density result of Lassas–Liimatainen–Lin–
Salo, 2019.



Back to the Calderón problem for −∆g + V1

The Calderón problem is solved under the assumption that (M, g) is CTA of
dimension n ≥ 3 and the geodesic X-ray transform on (M0, g0) is injective.
(Dos Santos Ferreira–Kenig–Salo–Uhlmann, 2009, Dos Santos Ferreira–Kurylev–
Lassas–Salo, 2016).

Problem. Remove or propose an alternative condition to the injec-
tivity of the geodesic X-ray transform.

This can be done for the linearized version (at V1 = 0) of the above
problem:
If f ∈ L∞(M) satisfies ∫

M

fu1u2 dVg = 0

for all uj ∈ L2(M) with −∆guj = 0 in M, j = 1, 2, is it true that f ≡ 0?



Geometric condition on transversal manifold

Definition (Dos Santos Ferreira–Kurylev–Lassas–Liimatainen–Salo, 2017)
We say that (x ′0, ξ

′
0) ∈ S∗M int

0 is generated by an admissible pair of geodesics, if
there are two nontangential unit speed geodesics

γ1 : [−T1,T2]→ M0, γ2 : [−S1, S2]→ M0,

0 < T1,T2, S1, S2 <∞, such that

(i) γ1(0) = γ2(0) = x ′0,

(ii) γ̇1(0) + γ̇2(0) = t0ξ
′
0, for some 0 < t0 < 2, where ξ′0 is understood as an

element of Tx0M
int
0 by the Riemannian duality,

(iii) γ1, γ2 do not have self-intersections at the point x ′0, and x ′0 is the only
point of their intersections, i.e.

γ1(t) = x ′0 ⇔ t = 0, γ2(s) = x ′0 ⇔ s = 0,

γ1(t) = γ2(s)⇒ γ1(t) = γ2(s) = x ′0.



We have the following analytic microlocal result, which is an analog
of the result of Dos Santos Ferreira–Kurylev–Lassas–Liimatainen–Salo, 2017,
established in the C∞–case.
Theorem (K.–Liimatainen–Salo, 2020)
Let (M, g) be a transversally anisotropic manifold and assume that the transver-
sal manifold (M0, g0) is real analytic with real analytic boundary and real analytic
metric g0, up to the boundary. Assume furthermore that f ∈ L∞(M) satisfies∫

M

fu1u2 dVg = 0,

for all uj ∈ L2(M) with −∆guj = 0 in M int . Let (x ′0, ξ
′
0) ∈ S∗M int

0 be generated
by an admissible pair of geodesics. Then for any λ ∈ R, one has

(x ′0, ξ
′
0) /∈WFa(f̂ (λ, ·)) ⊂ T ∗M int

0 \ {0}.

Here we extend f ∈ L∞(M) by zero to (R × M0) \ M. Writing
x = (x1, x

′) where x1 ∈ R, and x ′ are local coordinates M0, we let

f̂ (λ, x ′) =

∫ ∞
−∞

e−iλx1f (x1, x
′) dx1, λ ∈ R,

be the Fourier transform of f with respect to x1.



We have the following global result, which gives the positive answer
to the linearized Calderón problem under suitable geometric assump-
tions.

Theorem (K.–Liimatainen–Salo, 2020)
Let (M, g) be a transversally anisotropic manifold and assume that the transver-
sal manifold (M0, g0) is connected, M int

0 as well as g0 in M int
0 are real analytic.

Assume that every point (x ′0, ξ
′
0) ∈ S∗M int

0 is generated by an admissible pair of
geodesics. Moreover, assume that f ∈ L∞(M) satisfies∫

M

fu1u2 dVg = 0,

for all uj ∈ L2(M) with −∆guj = 0 in M int. Then f = 0 in M.

Note that while (M0, g0) is real analytic, our Theorem does not follow
from the existing results in the real analytic setting, as it corresponds
to deforming the zero potential by an L∞ perturbation.



There are transversally anisotropic manifolds (M, g) with a transver-
sal manifold (M0, g0) satisfying the geometric conditions of our The-
orem and with a non-invertible geodesic X -ray transform. Therefore,
the geometric Calderón problem is still open on such manifolds while
our Theorem gives a positive solution to the corresponding linearized
problem.

Example
Let M0 = S1 × [0, a], a > 0, be a cylinder with its usual flat metric
g0. The geodesics on M0 are straight lines, circular cross sections,
and helices that wind around the cylinder. The geodesic X-ray
transform is not invertible, since the kernel contains functions of
the form f (e it , s) = h(s) where h ∈ C∞0 ((0, a)) integrates to zero
over [0, a]. However, one can check that every point
(x ′0, ξ

′
0) ∈ S∗M int

0 is generated by an admissible pair of geodesics.



Gaussian beam quasimodes with exponentially
small errors

We have the following essentially well known result (see Sjöstrand, 1975,
1982, Babich, 1996).

Theorem
Let (X , g) be a compact real analytic Riemannian manifold of dimen-
sion n ≥ 2 with real analytic boundary and real analytic metric g ,
up to the boundary. Let γ : [−T1,T2]→ X , 0 < T1,T2 <∞, be a
unit speed non-tangential geodesic, and let λ ∈ R. There is a family
of C∞ functions v(x ; h) on X , 0 < h ≤ 1, and C > 0 such that
supp (v(·; h)) is confined to a small neighborhood of γ([−T1,T2])
and

‖(−h2∆g − (hs)2)v‖L2(X ) = O(e−
1
Ch ), ‖v‖L2(X ) � 1,

as h→ 0. Here s = 1
h + iλ.



Theorem (continuation)
The local structure of the family v(x ; h) is as follows: let p ∈
γ([−T1,T2]) and let t1 < · · · < tNp be the times in (−T1,T2)
when γ(tl) = p, l = 1, . . . ,Np. In a sufficiently small neighborhood
V of a point p ∈ γ([−T1,T2]), we have

v |V = v (1) + · · ·+ v (Np),

where each v (l) has the form

v (l)(x ; h) = h−
(n−1)

4 e isϕ
(l)(x)a(l)(x ; h).

Here ϕ = ϕ(l) is real analytic in V satisfying for t near tl ,

ϕ(γ(t)) = t, ∇ϕ(γ(t)) = γ̇(t), Im (∇2ϕ(γ(t))) ≥ 0, Im (∇2ϕ)|γ̇(t)⊥ > 0,

and a(l) is an elliptic classical analytic symbol in a complex neigh-
borhood of p.



Idea of the construction of quasimodes

Boutet de Monvel–Krée, 1967, Sjöstrand, 1982: Let V ⊂ Cn be an open set.
We say that a(x ; h) =

∑∞
k=0 h

kak(x) is a (formal) classical analytic symbol in V

if ak ∈ Hol(V ), k = 0, 1, 2, . . . , and for every Ṽ ⊂⊂ V , there exists C = CṼ > 0
such that

|ak(x)| ≤ C k+1kk , x ∈ Ṽ ,

k = 0, 1, 2, . . . . The classical analytic symbol a(x ; h) is said to be elliptic if
a0 6= 0.

We work in the Fermi coordinates where the γ is given by {x =
(t, y) : y = 0}. Consider the following Gaussian beam ansatz,

v(t, y ; h) = e isϕ(t,y)a(t, y ; h), s =
1
h

+ iλ, λ ∈ R,

where the phase ϕ is complex valued with Imϕ(t, y) ≥ 0 and a is an
amplitude. As usual, this leads to solving the eikonal equation for ϕ
and a sequence of transport equations for a.



In the usual Gaussian beam construction in the C∞–setting, one
solves the eikonal equation to a large, and sometimes infinite, order
along the geodesic. Working in the real analytic setting, it is natural
to solve the eikonal equation,

〈dϕ, dϕ〉g − 1 = p(x , ϕ′x(x)) = 0.

in a complex neighborhood of a geodesic segment of γ. Here p(x , ξ) =
|ξ|2g(x)−1, holomorphically continued to the complex domain. When
solving the Hamilton-Jacobi equation, we proceed by a geomet-
ric argument, constructing a suitable complex Lagrangian manifold
Λ ⊂ p−1(0) in a complex neighborhood of the null bicharacteristic
corresponding to the geodesic segment. Furthermore, we construct
Λ so that it is positive and so that it stays transversal to the fiber
along the entire bicharacteristic. The solution ϕ is then obtained as
a generating function of Λ.



We next show, by adapting the nested neighborhood method of Sjös-
trand, 1982, to cover the entire geodesic segment, that the solution
a(x , h) of the transport equations is given by an elliptic classical
analytic symbol. Thus, we get for N = 1, 2, . . . ,

e−isϕ(−h2∆g − (hs)2)e isϕ
( N∑

j=0

hjaj

)
= hN+2T2(aN), (3)

where T2 is a second order differential operator with analytic coeffi-
cients. Cauchy’s estimates and the definition of analytic symbol then
yield that the right hand side in (3) is bounded by hN+2CN+1NN .
Letting the order N of the expansions of a depend on h as N =
N(h) = [ 1

heC ] gives the exponentially small error in the theorem.

Remark. Here our quasimodes construction is performed along the
entire geodesic segment contrary to the standard constructions in a
neighborhood of a point by Dencker–Sjöstrand–Zworski, 2004.



Idea of the proof of analytic microlocal result

Let α0 = (x ′0, ξ
′
0) ∈ S∗M int

0 be generated by an admissible pair of
geodesics γ1(α0) and γ2(α0) on M0.
Step 1. Show that there exists a neighborhood V of α0 in S∗M int

0
such that every point α = (αx ′ , αξ′) ∈ V is generated by an ad-
missible pair of geodesics γ1(α) and γ2(α) on M, which depend
real-analytically on α.

Step 2. Let s1 = 1
h + iλ and s2 = 1

h , where λ ∈ R. We construct two
families of Gaussian beam quasimodes v1(x ′, α; h) and v2(x ′, α; h),
associated to γ1(α) and γ2(α), depending real analytically on α ∈ V
such that

‖vj(·, α; h)‖L2(M) � 1, ‖(−h2∆g0−(hs)2)vj(·, α; h)‖L2(M) = O(e−
1
Ch ),

as h→ 0, for some C > 0, uniformly in α ∈ V .



The fact that (M, g) is transversally anisotropic provides us with the
limiting Carleman weight φ(x) = x1 for the Laplacian, and using the
technique of Carleman estimates, we convert the families of Gaussian
beams v1 and v2 into two families of harmonic functions on M,

u1(x , α; h) = e−s1x1(v1(x ′, α; h) + r1(x , α; h)),

u2(x , α; h) = es2x1(v2(x ′, α; h) + r2(x , α; h)),

where
‖rj‖L2(M) = O(e−

1
Ch ), C > 0,

as h→ 0, uniformly in α ∈ V .
Step 3. Testing the orthogonally relation with the constructed fam-
ilies of harmonic functions leads to∫

M
fe−iλx1v1(x ′, α; h)v2(x ′, α; h)dVg = O(e−

1
Ch ), C > 0,

uniformly in α ∈ V . Extending f ∈ L∞(M) by zero to (R×M0)\M,
we obtain that∫

M0

f̂ (λ, x ′)v1(x ′, α; h)v2(x ′, α; h)dVg0 = O(e−
1
Ch ), C > 0,

uniformly in α ∈ V .



Recalling that the geodesics γ1(α) and γ2(α) intersect at αx ′ only
and that

supp (vj(·, α; h)) ⊂ small neigh(γj(α)), j = 1, 2,

we get∫
neigh(αx′ ,M0)

f̂ (λ, x ′)v1(x ′, α; h)v2(x ′, α; h)
√
g0(x ′)dx ′ = O(e−

1
Ch ),

uniformly in α ∈ V . Recalling that the geodesics γ1(α), γ2(α) do
not have self-intersections at αx ′ , we have in a small neighborhood
of αx ′ ,

v1(x ′, α; h) = h−
(n−2)

4 e is1ϕ1(x ′,α)a1(x ′, α; h),

v2(x ′, α; h) = h−
(n−2)

4 e is2ϕ2(x ′,α)a2(x ′, α; h).



Thus, we have∫
neigh(αx′ ,M0)

e
iϕ(x′,α)

h f̂ (λ, x ′)a(x ′, α; h)dx ′ = O(e−
1
Ch ), h→ 0,

uniformly in α ∈ V . Here ϕ(x ′, α) = ϕ1(x ′, α)+ϕ2(x ′, α) is analytic
in a neighborhood of (x ′0, α0), and

a(x ′, α; h) = e−λϕ1(x ′,α)a1(x ′, α; h)a2(x ′, α; h)
√

g0(x ′)

is an elliptic classical analytic symbol in a neighborhood of (x ′0, α0).
We have

ϕ(x ′, α)|x′=αx′
= 0, ϕ′x′(x

′, α)|x′=αx′
= t0αξ′ ,

Imϕ(x , α) ≥ C0|x − αx |2, x , α real,

for some C0 > 0.
Using the FBI characterization of the analytic wave front set of Sjös-
trand, 1982, we conclude that α0 /∈WFa(f̂ (λ, ·)) for all λ ∈ R.
Note that we need to work with families of Gaussian beams to fill up
an entire neighborhood of α0.
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