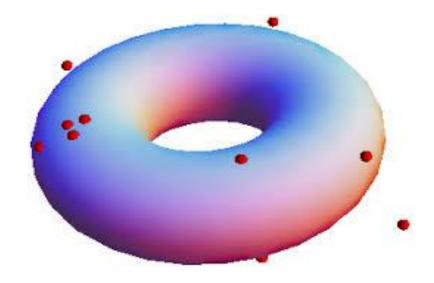
Fitting a manifold of large reach to noisy data

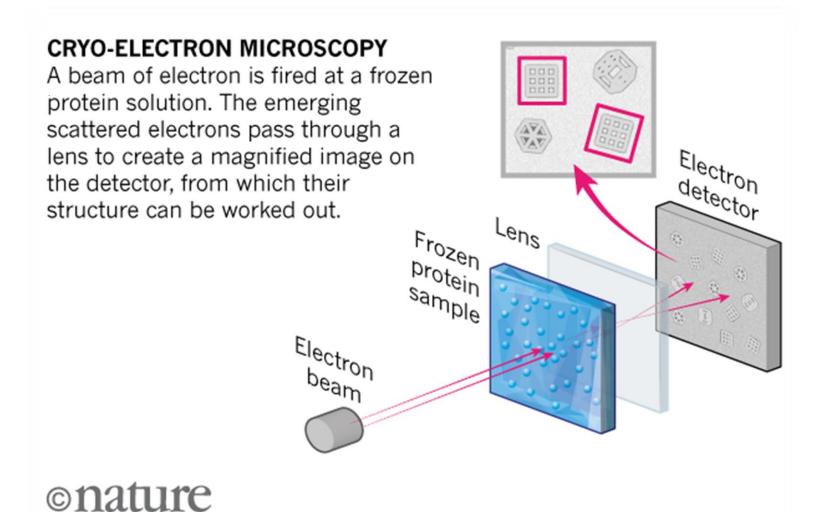
Charles Fefferman, Sergei Ivanov, Matti Lassas, Hari Narayanan

Manifold Hypothesis

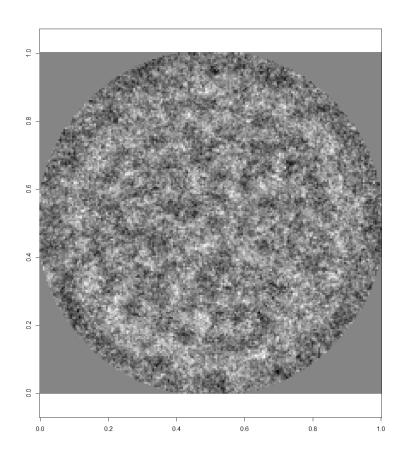
 Manifold learning is based on the manifold hypothesis, which states that high dimensional data can be modeled to lie in the vicinity of a low dimensional manifold.

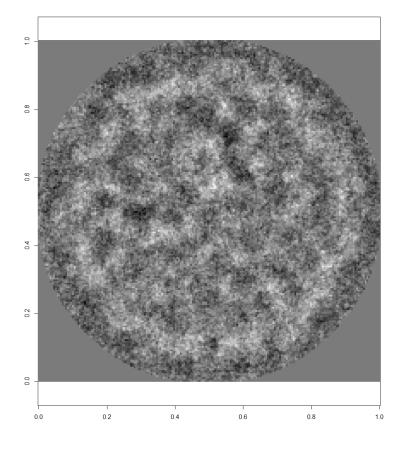


Measurements can lie near a manifold



Typical preprocessed cryo-EM images





Cryo-EM images

A single Cryo-EM image has 40,000 pixels (shown in the previous slide). Thus each data point is a vector in 40,000 dimensional Euclidean space.

Assuming the noise is small, these points approximately lie in an orbit of SO_3 which is a 3 dimensional Lie group.

Assuming the molecule is "generic", the orbit would be a 3-dimensional manifold diffeomorphic to $SO_3\,$.

Assumptions on the target manifold

• We would like to infer the manifold from noisy samples.

In order for this to be possible, we need to place restrictions on the manifold \mathcal{M} .

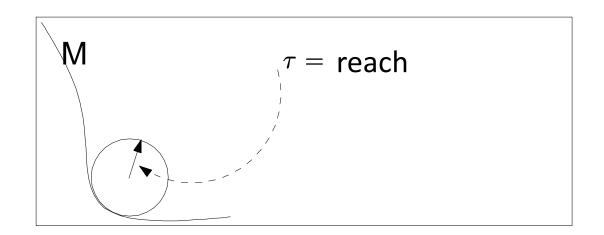
Assumptions:

- 1. $\mathcal{M} \subseteq \mathbb{R}^n$ has no boundary and is d-dimensional and C^2 .
- 2. The reach of \mathcal{M} is at least τ .
- 3. The d-dimensional Hausdorff measure is at most V.

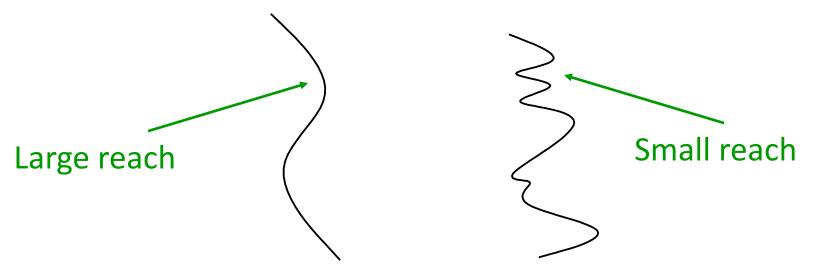
Assumptions on the target manifold

 $\mathcal{M} \subseteq \mathbb{R}^n$ has no boundary and is d-dimensional and C^2 means that for every point x in \mathcal{M} there is $\epsilon > 0$ and a ball B^x_{ϵ} such that $B^x_{\epsilon} \cap \mathcal{M}$ is the graph of a function from a d-dimensional disc $Tan_x \cap B_{\epsilon}^x$ to the Normal space Nor_x at x.

Reach of a submanifold of Rⁿ



 τ is the largest number such that for any $r < \tau$ any point at a distance r of \mathcal{M} had a unique nearest point on \mathcal{M}



Hausdorff measure on a smooth manifold

For a boundaryless C^2 manifold \mathcal{M} with positive reach the d-dimensional Hausdorff measure of \mathcal{M} is equal to

$$\lim_{\epsilon \to 0} \frac{vol(\mathcal{M}_{\epsilon})}{vol(B_{\epsilon})},$$

where B_{ϵ} is the ϵ -ball of dimension n-d and \mathcal{M}_{ϵ} is the tube of radius ϵ around \mathcal{M} .

Testing the Manifold Hypothesis [Fefferman-Mitter-N, JAMS'16]

Suppose \mathcal{P} is an unknown probability distribution supported in the unit ball in a separable Hilbert space, and $x_1, x_2, ...$ are i.i.d random samples from \mathcal{P}

Given error ϵ , dimension d, volume V, reach τ and confidence $1 - \delta$ is there an algorithm that takes a number of samples depending on these parameters and outputs whether or not there is

$$\mathcal{M} \in \mathcal{G}_e = \mathcal{G}_e(d, V, \tau)$$

such that w.p $\geq 1 - \delta$, $\int \mathbf{d}(x, \mathcal{M})^2 d\mathcal{P}(x) < \epsilon$

Sample Complexity of testing the manifold hypothesis

What is the number of samples needed for testing the hypothesis that data lie near a low dimensional manifold?

the sample complexity of the task depends only on the intrinsic dimension, volume and reach, but

not ambient dimension

Sample complexity of testing the Manifold Hypothesis

Loss

 $\mathcal{L}(\mathcal{M}, \mathcal{P}) = \text{expected squared distance of a random point to } \mathcal{M}$

Empirical Loss

Given a set of data points $x_1, ..., x_s$

$$L_{emp}(\mathcal{M}) = \frac{\sum_{i} \mathbf{d}(x_i, \mathcal{M})^2}{s}$$

Sample Complexity

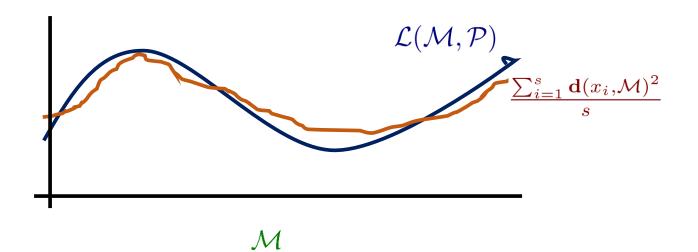
Smallest s such that \exists a rule \mathcal{A} given $x_1, ..., x_s$ i.i.d from \mathcal{P} ,

$$\mathbb{P}[\mathcal{L}(\mathcal{M}_{\mathcal{A}}, \mathcal{P}) - \inf_{\mathcal{M} \in \mathcal{G}} \mathcal{L}(\mathcal{M}, \mathcal{P}) > \epsilon] < \delta$$

Empirical Risk Minimization

How large must s be to ensure

$$\mathbf{P}\left[\sup_{\mathcal{G}_e} \left| \frac{\sum_{i=1}^s \mathbf{d}(\mathcal{M}, x_i)^2}{s} - \mathcal{L}(\mathcal{M}, \mathcal{P}) \right| < \epsilon \right] > 1 - \delta$$



Fitting manifolds

Theorem:

Let x_1, \ldots, x_s be i.i.d samples from \mathcal{P} , a distribution supported on the ball of radius 1 in a separable Hilbert space. If

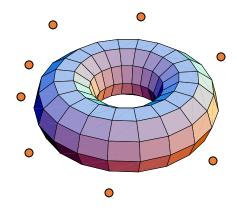
$$s \ge \frac{C\left(V\left(\frac{1}{\sqrt{\epsilon\tau}} + \frac{1}{\tau}\right)^{d + o(d)} + \log 1/\delta\right)}{\epsilon^2}$$

then
$$\mathbb{P}\left[\sup_{\mathcal{G}_e}\left|\frac{\sum_{i=1}^s \mathbf{d}(x_i,\mathcal{M})^2}{s} - \mathbb{E}_{\mathcal{P}}\mathbf{d}(x,\mathcal{M})^2\right| < \epsilon\right] > 1 - \delta.$$

Proof: Approximates manifolds using point clouds and uses the uniform bound for k-means.

Reduction to k-means

Imagine that the manifold is a dense net of $N_p(\sqrt{\epsilon\tau})$ points



$$\mathbf{P}\left[\sup_{\mathcal{G}_e} \left| \frac{\sum_{i=1}^s \mathbf{d}(\mathcal{M}, x_i)^2}{s} - \mathcal{L}(\mathcal{M}, \mathcal{P}) \right| < \epsilon \right] > 1 - \delta$$

$$\mathbf{P}\left[\sup_{\mathcal{G}_{cloud}} \left| \frac{\sum_{i=1}^{s} \mathbf{d}(\mathcal{M}, x_i)^2}{s} - \mathcal{L}(\mathcal{M}, \mathcal{P}) \right| < \epsilon \right] > 1 - \delta$$

Proving a Uniform bound for k-means

Proving uniform bounds for k-means

reduces to proving a uniform bound over functions of the form

$$\min_{1 \le i \le k} (a_i \cdot x) \qquad ||a_i|| \le 1$$

Fat-shattering dimension

The fat-shattering dimension $fat_{\epsilon}(\mathcal{F})$ of a class \mathcal{F} of real-valued functions is a measure of the complexity of the function class at a scale ϵ .

 $fat_{\epsilon}(\mathcal{F})$ is largest s such that there exist x_1, \ldots, x_s and thresholds t_1, \ldots, t_s such that for every $\{-1, 1\}$ s-vector (b_1, \ldots, b_s) , there is a function $f^b \in \mathcal{F}$ such that $\forall i, (f^b(x_i) - t_i)b_i \geq \epsilon$.

Bound on sample complexity

Theorem: If

$$s \ge \frac{C}{\epsilon^2} \left(\left(\int_{c\epsilon}^{\infty} \sqrt{\operatorname{fat}_{\gamma}(\mathcal{F})} d\gamma \right)^2 + \log 1/\delta \right),$$

then

$$\mathbb{P}\left[\sup_{f\in\mathcal{F}}\left|\frac{\sum_{i=1}^{s}f(x_i)}{s}-\mathbb{E}_{\mathcal{P}}f\right|\geq\epsilon\right]\leq 1-\delta.$$

Proof:

Put together results of Dudley, Rudelson-Vershynin and Bousquet-Boucheron-Lugosi.

VC dimension

The VC dimension $VC(\mathcal{F})$ of a class \mathcal{F} of $\{0,1\}$ -valued functions is a measure of its complexity

 $VC(\mathcal{F})$ is the largest n such that there are n data of which all 2^n partitions are induced by class boundaries of functions in \mathcal{F}

If \mathcal{F} consists of the indicators of halfspaces in \mathbb{R}^d , $VC(\mathcal{F}) = d + 1$.

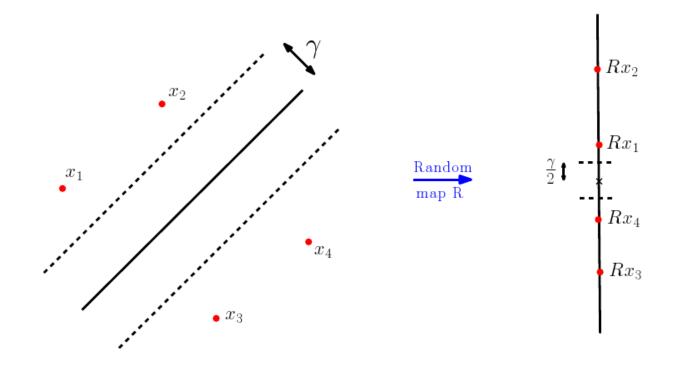
VC dimension

The VC dimension $VC(\mathcal{F})$ of a class \mathcal{F} of $\{0,1\}$ -valued functions is a measure of its complexity

For large s, $VC(\mathcal{F}) \log s$ is roughly the logarithm of the max number of partitions of s data points that can be induced by functions in \mathcal{F}

Random projection

Thanks to the Johnson-Lindenstrauss Lemma, a random projection of robustly linearly separable s data points, is with probability at least $\frac{1}{2}$ linearly separable in the $\frac{\log s}{\epsilon^2}$ dimensional image space



Random projection

Using VC theory for halfspaces, the logarithm of the number of ways in which the level sets of functions of of the form $\min_{1 \le i \le k} (a_i \cdot x), ||a_i|| \le 1$ can partition s points in $\log(s)/\epsilon^2$ dimensional image space is $O((k/\epsilon^2)\log^2(s/\epsilon))$

This gives
$$fat_{\epsilon}(\mathcal{F}) \leq \frac{k}{\epsilon^2} \log^2(\frac{k}{\epsilon})$$

Bound on sample complexity

Theorem:

If
$$s \ge \frac{C}{\epsilon^2} \left(\left(\int_{c\epsilon}^{\infty} \sqrt{\operatorname{fat}_{\gamma}(\mathcal{F})} d\gamma \right)^2 + \log 1/\delta \right),$$

then

$$\mathbb{P}\left[\sup_{f\in\mathcal{F}}\left|\frac{\sum_{i=1}^{s}f(x_i)}{s}-\mathbb{E}_{\mathcal{P}}f\right|\geq\epsilon\right]\leq 1-\delta.$$

Gives a sample complexity of

$$O\left(\frac{k}{\epsilon^2}\log^4\frac{k}{\epsilon} + \frac{\log\frac{1}{\delta}}{\epsilon^2}\right)$$

Algorithmic question

Given N points $x_1, ..., x_N$ in the unit ball in \mathbb{R}^n is there a manifold $\mathcal{M} \in \mathcal{G}_e = \mathcal{G}_e(d, CV, C^{-1}\tau)$ such that $\left(\frac{1}{N}\right) \sum_{1 \leq i \leq N} \mathbf{d}(x_i, \mathcal{M})^2 \leq C\epsilon$

Here C is some constant depending only on d.

Theorem

There is a controlled constant C depending only on d and an Algorithm that uses linear in n but doubly exponential in d number of operations on real numbers such that given $x_1, \ldots, x_N \in B_n$, with probability at least $1 - \delta$, the Algorithm outputs

1. "Yes" if there exists a manifold $\mathcal{M} \in \mathcal{G}_e(d, V, \tau)$ such that

$$\sum_{i=1}^{N} \mathbf{d}(x, \mathcal{M})^2 \le N\epsilon,$$

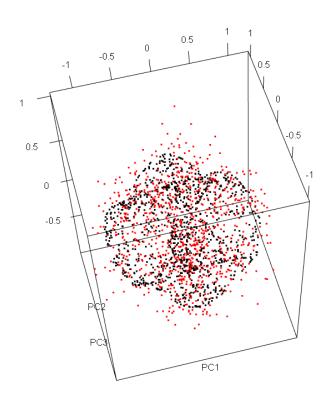
2. "No" if there exists no manifold $\mathcal{M}' \in \mathcal{G}_e(d, CV, \tau/C)$ such that

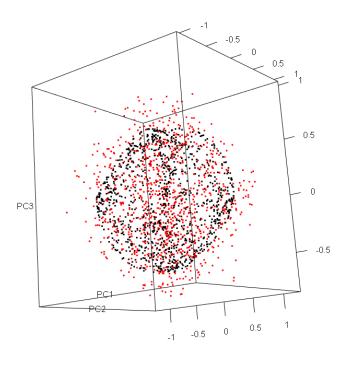
$$\sum_{i=1}^{N} \mathbf{d}(x, \mathcal{M}')^2 \le NC\epsilon,$$

Next, a generative model [Fefferman-Ivanov-Lassas-N'19]

Let x_1, x_2, \ldots, x_N be i.i.d draws from a measure, the logarithm of whose Radon-Nikodym derivative with respect to the d-dimensional Hausdorff measure on \mathcal{M} is C-Lipschitz.

Data on a manifold with additive Gaussian noise





Two views of data on an immersed Klein bottle with additive Gaussian noise

Next, a generative model

Let ζ_1, \ldots, ζ_N be a sequence of i.i.d spherical gaussians independent of x_1, \ldots, x_N having a Gaussian distribution whose density at x is

$$\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right),\,$$

where we assume

$$\frac{\tau}{Cd^C} > \sigma\sqrt{D}.$$

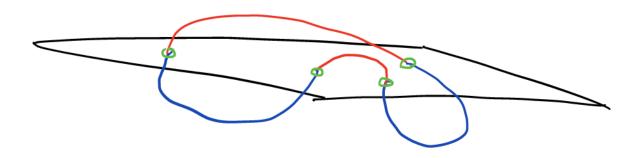
where D is a reduced dimension depending only on d, V and τ and N is the number of samples chosen and is roughly V/σ^d . We observe $y_i = x_i + \zeta_i$ for i = 1, 2, ...

and wish to reconstruct \mathcal{M} up to a small error measured in Hausdorff distance.

Guarantees provided:

The results of this talk guarantee (for sufficiently small σ ,) a Hausdorff distance of $Cd(\sigma^2/\tau) = O(\sigma^2)$ with less than $O(\sigma^{-(2d+4)})$ samples. We guarantee a reach of $\frac{\tau}{Cd^6}$.

Projection on to Principal Component Subspace



Projection on to a principal component subspace brings down the ambient dimension from n to D. The value of D depends only on intrinsic parameters d, τ and V.

Let X be a finite set of points in $E = \mathbb{R}^D$ and $X \cap B_1(x) := \{x, \tilde{x}_1, \dots, \tilde{x}_s\}$ be a set of points within a Hausdorff distance δ of some (unknown) unit d-dimensional disc $D_1(x)$ centered at x. Here $B_1(x)$ is the set of points in \mathbb{R}^D whose distance from x is less or equal to 1. We give below a simple algorithm that finds a unit d-disc centered at x within a Hausdorff distance $Cd\delta$ of $X_0 := X \cap B_1(x)$, where C is an absolute constant.

The basic idea is to choose a near orthonormal basis of d vectors from X_0 where x is taken to be the origin and let the span of this basis intersected with $B_1(x)$ be the desired disc.

Algorithm FindDisc:

- 1. Let x_1 be a point that minimizes |1 |x x'|| over all $x' \in X_0$.
- 2. Given $x_1, \ldots x_m$ for $m \leq d-1$, choose x_{m+1} such that

$$\max(|1 - |x - x'||, |\langle x_1/|x_1|, x'\rangle|, \dots, |\langle x_m/|x_m|, x'\rangle|)$$

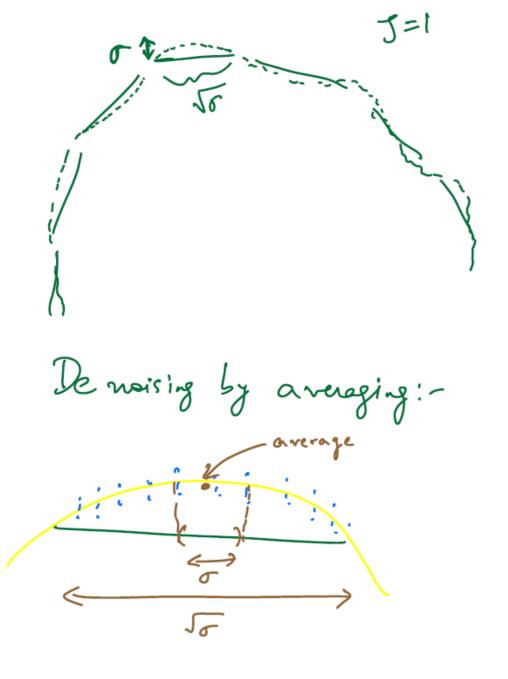
is minimized among all $x' \in X_0$ for $x' = x_{m+1}$.

Let \tilde{A}_x be the affine d-dimensional subspace containing x, x_1, \ldots, x_d , and the unit d-disc $\tilde{D}_1(x)$ be $\tilde{A}_x \cap B_1(x)$.

lemma: Suppose there exists a d-dimensional affine subspace A_x containing x such that $D_1(x) = A_x \cap B_1(x)$ satisfies $d_H(X_0, D_1(x)) \leq \delta$. Suppose $0 < \delta < \frac{1}{2d}$. Then $d_H(X_0, \tilde{D}_1(x)) \leq Cd\delta$, where C is an absolute constant.

We introduce a family of n dimensional balls of radius r, $\{U_i\}_{i\in[\bar{N}]}$ where the center of U_i is p_i and a family of d-dimensional embedded discs of radius r $\{D_i\}_{i\in[\bar{N}]}, D_i\subseteq U_i$ where D_i is centered at p_i . The D_i and the p_i are chosen by a procedure described earlier. We will need the following properties of (D_i, p_i) :

- 1. The Hausdorff distance between $\cup_i D_i$ and \mathcal{M} is less than $\frac{Cdr^2}{\tau} = \delta$.
- 2. For any $i \neq j$, $|p_i p_j| > \frac{cr}{d}$.
- 3. For every $z \in \mathcal{M}$, there exists a point p_i such that $|z p_i| < 3 \inf_{i \neq j}, |p_i p_j|$.



First, set $r = O(\sqrt{\sigma})$.

Find discs. Then using the discs as reference, at scale σ find the average of the displacements using $O(1/\sigma^{Cd})$ samples.

If the Radon-Nikodym derivative of the measure on the manifold (wrt the Hausdorff measure) is log-Lipschitz, the average is within $O(\sigma^2)$ of the average. The set of all such averages can be arranged to be within $O(\sigma^2)$ of the true manifold, in Hausdorff distance.

De noising by averaging:liscs at distance $O(\sigma^2)$

Bump functions

Consider the bump function $\tilde{\alpha}_i$ given by

$$\tilde{\alpha}_i(p_i + rv) = c_i(1 - ||v||^2)^{d+2}$$

for any $v \in B_n$ and 0 otherwise. Let

$$\tilde{\alpha}(x) := \sum_{i} \tilde{\alpha}_{i}(x).$$

Let

$$\alpha_i(x) = \frac{\tilde{\alpha}_i(x)}{\sum_i \tilde{\alpha}_i(x)},$$

for each i.

Weights

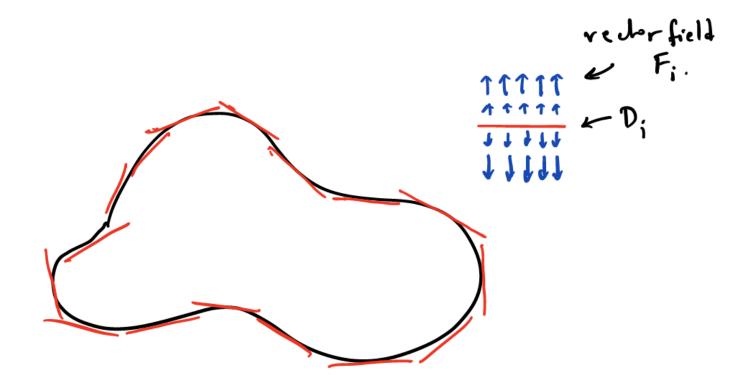
Lemma:

It is possible to choose c_i such that for any z in a $\frac{r}{4d}$ neighborhood of \mathcal{M} ,

$$c^{-1} > \tilde{\alpha}(z) > c,$$

where c is a small universal constant. Further, such c_i can be computed using no more than $N_0(Cd)^{2d}$ operations involving vectors of dimension D.

Patching together zero sets



We wish to patch together the zero sets of the vector fields F; in some nice way.

Projection on to the span of eigenvectors

Let Π^i be the orthogonal projection onto the n-d-dimensional subspace containing the origin that is orthogonal to the affine span of D_i .

We define the function $F_i: U_i \to \mathbb{R}^n$ by $F_i(x) = \Pi^i(x - p_i)$. Let $\bigcup_i U_i = U$. We define

$$F:U\to\mathbb{R}^n$$

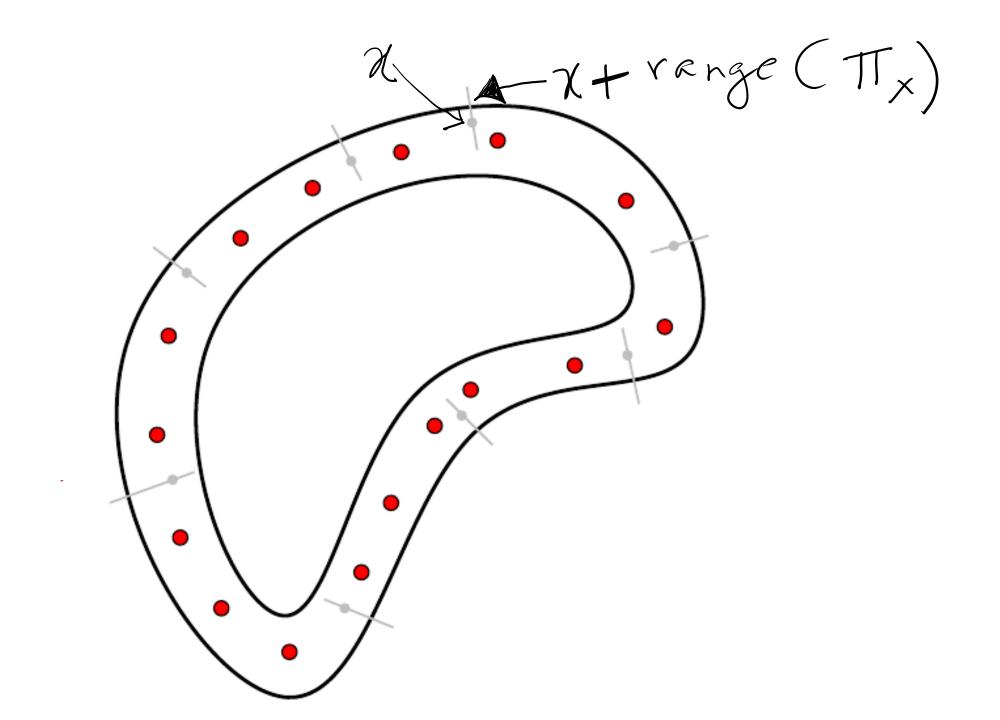
by
$$F(x) = \sum_{i} \alpha_{i}(x) F_{i}(x)$$
.

Given a symmetric matrix A such that A has n-d eigenvalues in (1/2, 3/2) and d eigenvalues in (-1/2, 1/2), let $\Pi_{hi}(A)$ denote the projection onto the span of the eigenvectors corresponding to the top n-d eigenvalues.

Defining the manifold

For $x \in \bigcup_i U_i$, we define $\Pi_x = \Pi_{hi}(A_x)$ where $A_x = \sum_i \alpha_i(x)\Pi^i$. Let U_i be defined as the $\frac{cr}{d}$ -Eucidean neighborhood of D_i inside U_i . Note that Π_x is C^2 when restricted to $\bigcup_i \tilde{U}_i$, because the $\alpha_i(x)$ are C^2 and when x is in this set, $c < \sum_i \tilde{\alpha}_i(x) < c^{-1}$, and for any i, j such that $\alpha_i(x) \neq 0 \neq a_j(x)$, we have $\|\Pi^i - \Pi^j\|_F < Cd\delta$.

We define the output manifold \mathcal{M}_o to be the set of all points x such that $x \in \tilde{U}_i$ for some i and $\Pi_x F(x) = 0$.



Main theorem

Theorem:Suppose $C\sigma\sqrt{D}$ is less than $\frac{\tau}{Cd^C}$. The reach of \mathcal{M}_o is at least $\frac{1}{Cd^6}\tau$ and the Hausdorff distance between \mathcal{M}_o and \mathcal{M} is less or equal to

$$\frac{Cd\sigma^2}{\tau}$$
.

Proof: Use Cauchy's Integral formula, to write

$$\Pi_x = \frac{1}{2\pi\iota} \oint_{\gamma} (zI - A_x)^{-1} dz,$$

for suitable γ . Use Hölder Inequalities to get good bounds on the first and second derivatives of $\Pi_x F(x)$ and then apply a dimension-free quantitative form of the implicit function theorem.

More on bump functions:

Recall the bump function $\tilde{\alpha}_i$ given by

$$\tilde{\alpha}_i(p_i + rv) = c_i(1 - ||v||^2)^{d+2}$$

for any $v \in B_n$ and 0 otherwise.

Observe that

$$\sum_{i} |\partial_v \tilde{\alpha}_i(x)|^{\frac{d+2}{d+1}} \le Cd \|(\tilde{\alpha}_i(x))_i\|_1 \le Cd.$$

Recall

$$\tilde{\alpha}(x) := \sum_{i} \tilde{\alpha}_{i}(x).$$

Thus by the Hölder inequality,

$$|\partial_v \tilde{\alpha}| \le ||\partial_v \tilde{\alpha}_i(x)||_{\frac{d+2}{d+1}} (\mathbf{1})_{d+2} \le Cd^2.$$

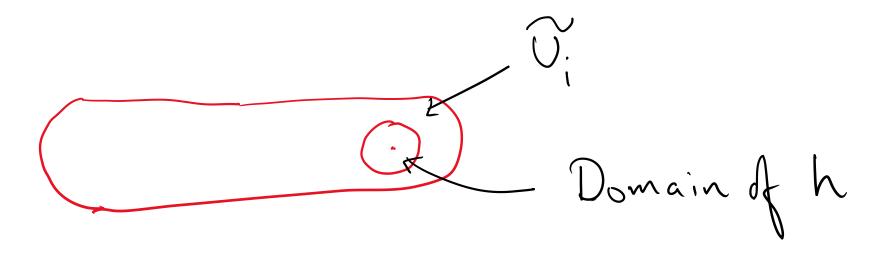
Local definition of the manifold

We define the output manifold \mathcal{M}_o to be the set of all points x such that $x \in \tilde{U}_i$ for some i and $\Pi_x F(x) = 0$.

Restricted to \tilde{U}_i , if $\Pi_x F(x) \neq 0$, then $\Pi^i \Pi_x F(x) \neq 0$.

Let T denote a translation composed with a scaling, mapping from a ball of radius 1 around the origin to a ball of radius $\frac{cr}{d}$ around x_0 , contained in \tilde{U}_i . Let

$$h = \prod_i \prod_x F \circ T.$$



Quantitative implicit function Theorem:

Let $h: \mathbb{R}^{m+n} \to \mathbb{R}^n$ be a C^2 -function, $h: (x,y) \mapsto h(x,y)$. Let $g: B_{m+n} \to \mathbb{R}^{m+n}$ be defined by $g: (x,y) \mapsto (x,h(x,y))$.

Suppose the Jacobian of g, Jac_g satisfies $||Jac_g - I|| < \epsilon^2/4$ on B_{m+n} and that for any vector $v \in \mathbb{R}^{m+n}$,

$$\left\| \frac{\partial^2 g(x)}{\partial v^2} \right\| \le \left(\frac{\epsilon^2}{4} \right) \|v\|^2$$

where $\epsilon \in [0, 1]$. Suppose also that $||g(0)|| < \frac{\epsilon^2}{20}$ for the same ϵ .

Quantitative implicit function Theorem:

On the domain of definition of f, $g(B_{m+n})$

$$f((x,y)) = (x, e(x,y))$$

for an appropriate e and in particular, for $||x|| \leq \frac{\eta}{2}$, where $\eta \in [0,1]$,

$$f((x,0)) = (x, e(x,0))$$

and

$$||(x, e(x, 0))|| \le \frac{8}{5} \left(\frac{\epsilon^2}{20} + \frac{\eta}{2}\right).$$

Finally, for any $w \in \mathbb{R}^n$ such that ||w|| = 1, $||Hess(e \cdot w)|| \leq \frac{16\epsilon^2}{(4-\epsilon)^3}$.

Conclusion

• We bring down the Hausdorff distance between the true and output manifolds to $O(\sigma^2 d/\tau)$ while bringing down the sample and computational complexities to depend only on the intrinsic dimension when the manifold is \mathcal{C}^2 .

Open Problems:

- For k larger than 2, can one do better if the manifold is \mathcal{C}^k ?
- Are there suitable conditions under which one can learn manifolds even when $\sigma >> \tau$?

Thank You!