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Manifold Hypothesis

* Manifold learning is based on the manifold hypothesis, which states
that high dimensional data can be modeled to lie in the vicinity of a
low dimensional manifold.




Measurements can lie near a manifold

CRYO-ELECTRON MICROSCOPY

A beam of electron is fired at a frozen
protein solution. The emerging
scattered electrons pass through a
lens to create a magnified image on
the detector, from which their
structure can be worked out.
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Typical preprocessed cryo-EM images
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Cryo-EM images

A single Cryo-EM image has 40,000 pixels (shown in the previous slide).
Thus each data point is a vector in 40,000 dimensional Euclidean space.

Assuming the noise is small, these points approximately lie in an orbit
of SO3 which is a 3 dimensional Lie group.

Assuming the molecule is “generic”, the orbit would be a 3-dimensional
manifold diffeomorphic to SO5 .



Assumptions on the target manifold

* We would like to infer the manifold from noisy samples.

In order for this to be possible, we need to place
restrictions on the manifold M.

Assumptions:

1. M CR" has no boundary and is
d—dimensional and CZ.

2. The reach of M is at least 7.

3. The d—dimensional Hausdorfl measure is at most V..



Assumptions on the target manifold

M C IR™ has
no boundary and is d—dimensional and C?
means that for every point x in M
there is € > 0 and a ball B¥ such that B N M
is the graph of a function from a
d—dimensional disc T'an, N BY
to the Normal space Nor, at x.



Reach of a submanifold of R"

7 is the largest number such that for any » < 7

any point at a distance r of M had a unique nearest point on M

Large reach 2 i Small reach



Hausdorff measure on a smooth manifold

For a boundaryless C? manifold M with positive reach the
d—dimensional Hausdorff measure of M is equal to

. wol(M,)
lim :
e—0 vol(Be)

where B, is the e—ball of dimension n — d and M. is the tube of
radius € around M.



Testing the Manifold Hypothesis [Fefferman-Mitter-N,
JAMS'16]

Suppose P is an unknown probability distribution
supported in the unit ball in a separable Hilbert space,

and 1, o, ... are i.i.d random samples from P

Given error €, dimension d, volume V', reach 7 and confidence 1 — ¢

is there an algorithm that takes a number of samples

depending on these parameters and outputs whether or not there is
M < ge — ge(da Va 7_)
such that w.p > 1 -4, [d(z, M)*dP(x) < ¢ P



Sample Complexity of testing the manifold hypothesis

What is the number of samples needed for testing

the hypothesis that data lie near a low dimensional manifold?

the sample complexity of the task depends only on

the intrinsic dimension, volume and reach, but

not ambient dimension



Sample complexity of testing the Manifold
Hypothesis

Loss

L(M,P) = expected squared distance of a random point to M
Empirical Loss

Given a set of data points x1, ..., T4
Y d(@s,M)?

S

Lemp(M)

Sample Complexity

Smallest s such that 3 a rule A given x4, ..., zs i.i.d from P,

PIL(Ma,P) — J\I/tnefgﬁ(M’P) > €] <9



Empirical Risk Minimization

How large must s be to ensure

8

P [sup
Ge

Ring dMr)’ E(M,P)‘ < e] >1-4

L(M,P)

S d(zi,M)?




Fitting manifolds

Theorem:
Let z1,...,xs be i.i.d samples from P, a distribution supported on the ball of
radius 1 in a separable Hilbert space. If

d+o(d)
O(v(\};+$) —|—10g1/5)
s >

then P

D i1 d(ﬂ%'sM)z o Epd(x,M)z

S

sup
Ge

<€] >1—0.

Proof: Approximates manifolds using point clouds and uses the uniform bound
for k—means.



Reduction to k-means

Imagine that the manifold is a dense net of N,(1/eT) points

P |sup | Zim dMr)” E(M,P)‘ < e] >1-6
L ge
U
P | sup |ZimdMa) E(M,P)‘ < e} >1-6
_gcloud




Proving a Uniform bound for k-means

Proving uniform bounds for k-means

reduces to proving a uniform bound over functions of the form

- »
min (a;-2) o <1



Fat-shattering dimension

The fat-shattering dimension fat.(F)

of a class F of real-valued functions is a measure of the complexity

of the function class at a scale e.

fat.(F) is largest s such that there exist zq,...,z;
and thresholds t1,...,ts such that for every {—1,1} s—vector (b,...,bs),
there is a function f* € F such that Vi, (f°(x;) — t;)b; > €.



Bound on sample complexity

Theorem: If
C > 2
s > ) ((fce \/fat,y(f)dfy) +log1/5) :
then
P lsup 2iz1 /(@) —Epf| > e] <1-—0o.
fer S
Proof:

Put together results of Dudley, Rudelson-Vershynin and
Bousquet-Boucheron-Lugosi.



VC dimension

The VC dimension VC(F)

of a class F of {0, 1}-valued functions is a measure of its complexity

VC(F) is the largest n such that there are n data

of which all 2" partitions are induced

by class boundaries of functions in F

If F consists of the indicators of halfspaces in RY, VC(F) = d + 1.



VC dimension

The VC dimension VC'(F)

of a class F of {0, 1}-valued functions is a measure of its complexity

For large s, VC(F)log s is roughly the
logarithm of the max number of partitions of s data

points that can be induced by functions in F



Random projection

Thanks to the Johnson-Lindenstrauss Lemma, a random projection

of robustly linearly separable s data points, is with probability at least %

linearly separable in the k;% > dimensional image space

» g

Random £ I
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Random projection

Using VC theory for halfspaces, the logarithm of the
number of ways in which the level sets of functions of

of the form min (a; - ), ||a;|| <1 can partition s points
1<i<k

in log(s)/e? dimensional image space is O((k/e?)log”(s/€))

This gives fat.(F) < eﬁz 10g2(%)



Bound on sample complexity

Theorem:
If 00 2
C
s > ) ((/;e \/fat,y(}“)dfy) +log1/5) :
then
P [sup 2iz1 /(@) —Epf| > e] <1-0o.
feF 5

Gives a sample complexity of




Algorithmic question

Given N points z1, ...,z in the unit ball in R"
is there a manifold M € G, = G.(d,CV,C~'7)

such that (=) > d(z;, M)? < Ce ?

1<i<N

Here C' is some constant depending only on d.



Theorem
There is a controlled constant C' depending only on d and an Algorithm that uses

linear in n but doubly exponential in d number of operations on real numbers
such that given x1,...,zn € B,,, with probability at least 1 — 0, the Algorithm

outputs

1. “Yes” if there exists a manifold M € G.(d,V, T) such that

N
> d(z,M)* < Ne,

1=1

2. “No” if there exists no manifold M’ € G.(d,CV,7/C) such that

N
> d(z, M')? < NCe,

1=1



Next, a generative model
Fefferman-lvanov-Lassas-N"19]

Let x1,x9,...,xn be li.d draws from a measure,
the logarithm of whose Radon-Nikodym derivative with respect to the
d—dimensional Hausdorfl measure on M is C-Lipschitz.



Data on a manifold with additive Gaussian
noise

Two views of data on an immersed Klein bottle with additive Gaussian noise



Next, a generative model

Let (1,...,(n be a sequence of i.i.d
spherical gaussians independent of x1,...,zN
having a Gaussian distribution whose density at x is

LY e (el
202 202 )’

-
C'dC > a\/ﬁ.

where D is a reduced dimension depending only on d, V and 7 and N is the
number of samples chosen and is roughly V/o?%. We observe y; = z; + (; for
1 =1,2,...

and wish to reconstruct M up to a small error measured in Hausdorff distance.

where we assume




Guarantees provided:

The results of this talk guarantee (for sufficiently small o,) a Hausdorff dis-
tance of Cd(c?/7) = O(c?) with less than O(o~ (2% samples. We guarantee
a reach of 3.



Projection on to Principal Component
Subspace

Projection on to a principal component subspace brings down the ambient

dimension from n to D. The value of D depends only on intrinsic parameters
d, T and V.



Let X be a finite set of points in £ = RP and X N By () := {x,%1,...,Ts}
be a set of points within a Hausdorff distance § of some (unknown) unit d-
dimensional disc D;(x) centered at x. Here Bj(x) is the set of points in R”
whose distance from x is less or equal to 1. We give below a simple algorithm
that finds a unit d-disc centered at & within a Hausdorft distance C'do of Xy :=
X N Bi(x), where C' is an absolute constant.



The basic idea is to choose a near orthonormal basis of d vectors from X

where x is taken to be the origin and let the span of this basis intersected with
B1(x) be the desired disc.



Algorithm FindDisc:

1. Let z1 be a point that minimizes |1 — |x — 2’|| over all 2" € X.

2. Given x1,...x, for m < d— 1, choose x,,.1 such that
max (|1 — [z — 2'[[, (&1 /|z1], 2) |, - .o, (@m/|zm], 27)])
is minimized among all z’ € Xy for 2’ = x,,,41.

Let A, be the affine d-dimensional subspace containing x,x1,...,z4, and the
unit d-disc D1(x) be A, N By(x).



lemma: Suppose there exists a d-dimensional affine subspace A, containing
x such that D (z) = A, N By(x) satisfies di (X, D1(z)) < d. Suppose 0 < § <

o~

2—1(1. Then dy(Xo, D1(x)) < Cdd, where C' is an absolute constant.



We introduce a family of n dimensional balls of radius r, {U;};c;x; where
the center of U; is p; and a family of d—dimensional embedded discs of radius r
{D’i}ie[ N> Di € U; where D; is centered at p;. The D; and the p; are chosen by
a procedure described earlier. We will need the following properties of (D;, p;):

1. The Hausdorff distance between U;D; and M 1is less than Cff”z = 9.

2. For any i # j, |pi —pj| > 5.

3. For every z € M, there exists a point p; such that |z —p;| < 3inf;-;, |p; —
Pjl-



N

First, set r = O(y/0).
Find discs. Then using the discs as
reference, at scale o find the average of the

displacements using O(1/0%?) samples.

If the Radon-Nikodym derivative of
the measure on the manifold
(wrt the Hausdorff measure) is
log-Lipschitz, the average is within
O(c?) of the average. The set
of all such averages can be arranged to be
within O(0?) of the true manifold,
in Hausdorff distance.






Bump functions

Consider the bump function &; given by
& (pi +1v) = ¢i(1 — o))

for any v € B,, and 0 otherwise. Let
a(z) =Y a(=).

Let

for each 1.



Weights

Lemma:
.

It is possible to choose ¢; such that for any z in a ;5 neighborhood of M,

c > a(z) >

where c is a small universal constant. Further, such ¢; can be computed using
no more than Ny(Cd)?*? operations involving vectors of dimension D.



Patching together zero sets
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Projection on to the span of eigenvectors

Let II* be the orthogonal projection onto the n — d—dimensional subspace
containing the origin that is orthogonal to the affine span of D,.
We define the function F; : U; — R" by F;(x) = II*(xz — p;). Let U;U; = U.
We define
F:U—R"

by F(z) = 32, as(2) Fi(@).
Given a symmetric matrix A such that A has n — d eigenvalues in (1/2,3/2)
and d eigenvalues in (—1/2,1/2), let I1;,;(A) denote the projection onto the span

of the eigenvectors corresponding to the top n — d eigenvalues.



Defining the manifold

For z & Uqu;, we define Hm = th(Am) where Aa; = Z@ CEZ(ZIZ')HZ Let Uz be

defined as the < —Eucidean neighborhood of D; inside U;. Note that 11, is C?

when restricted to U;U;, because the a;(x) are C? and when z is in this set,
¢ < Y. a;(z) < ¢!, and for any i,j such that a;(z) # 0 # a;(z), we have
I — 11| p < C'do.

We define the output manifold M, to be the set of all points = such that
x € U; for some i and I, F(z) = 0.



=




Main theorem

Theorem:Suppose Cov/' D is less than cqc- The reach of M, is at least

#7‘ and the Hausdorff distance between M, and M is less or equal to

Cdo?

.

T

Proof: Use Cauchy’s Integral formula, to write

1
I, = — ¢ (21 — A,) 'dz,

2L y

for suitable v. Use Holder Inequalities to get good bounds on the first and second
derivatives of II, F'(x) and then apply a dimension-free quantitative form of the
implicit function theorem.



More on bump functions:

Recall the bump function «; given by
& (pi 4 1v) = ci(1 = [Jof|*)

for any v € B,, and 0 otherwise.
Observe that

D 19ui(@)| 7 < Cdl|(@s())illy < Cd.

Recall

Thus by the Holder inequality,

0,3] < 10y (2)]| az2 (1)d42 < Cd”.

d+1



Local definition of the manifold

We define the output manifold M, to be the set of all points x such that
x € U; for some i and I, F'(x) = 0.
Restricted to U;, if 1, F'(z) # 0, then II'II, F(x) # 0.



Let T' denote a translation composed with a scaling, mapping from a ball of

radius 1 around the origin to a ball of radius < around x(, contained in U;.

d
Let
h=ILII,FoT.

7\
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Quantitative implicit function Theorem:

Let h : R™T™ — R™ be a C?*—function, h : (z,y) — h(x,y). Let g : Bpan —
R™*" be defined by g : (z,y) — (z, h(x,y)).
Suppose the Jacobian of g, Jac, satisfies ||Jac, — I|| < €°/4 on By,1, and
that for any vector v € R™*",
.2
< (& 2
< ()

H 0%g(z)
where € € [0, 1]. Suppose also that [|g(0)| < ;—2 for the same e.

Ov?
0



Quantitative implicit function Theorem:
On the domain of definition of f, g(B.1n)

f((z,y)) = (z,e(z,y))

for an appropriate e and in particular, for ||z|| < F, where n € |0, 1],

f((:l?,())) — (3736(3770))

and

larew0)l <5 (55+2)

Finally, for any w € R™ such that ||w|| =1, |Hess(e - w)]|| < = 6)3



Conclusion

* We bring down the Hausdorff distance between the true and output
manifolds to O(O‘Qd/T) while bringing down the sample and
computational complexities to depend only on the intrinsic dimension
when the manifold is C2.

Open Problems:
* For k larger than 2, can one do better if the manifold is C*?
 Are there suitable conditions under which one can learn manifolds

even when g >> 77



Thank You!



