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Manifold Hypothesis

• Manifold learning is based on the manifold hypothesis, which states 
that high dimensional data can be modeled to lie in the vicinity of a 
low dimensional manifold. 



Measurements can lie near a manifold



Typical preprocessed cryo-EM images



Cryo-EM images

A single Cryo-EM image has 40,000 pixels (shown in the previous slide). 
Thus each data point is a vector in 40,000 dimensional Euclidean space.

Assuming the noise is small, these points approximately lie in an orbit 
of            which is a 3 dimensional Lie group.

Assuming the molecule is “generic”, the orbit would be a 3-dimensional 
manifold diffeomorphic to           .  



• We would like to infer the manifold from noisy samples.

Assumptions on the target manifold



Assumptions on the target manifold



Reach of a submanifold of Rn

Large reach Small reach

M reach



Hausdorff measure on a smooth manifold



Testing the Manifold Hypothesis [Fefferman-Mitter-N, 
JAMS’16]



Sample Complexity of testing the manifold hypothesis 



Sample complexity of testing the Manifold 
Hypothesis 



Empirical Risk Minimization 



Fitting manifolds
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Reduction to k-means 



Proving a Uniform bound for k-means 



Fat-shattering dimension



Bound on sample complexity 



VC dimension



VC dimension



Random projection 



Random projection 



Bound on sample complexity 



Algorithmic question 





Next, a generative model 
[Fefferman-Ivanov-Lassas-N’19]



Data on a manifold with additive Gaussian 
noise

Two views of data on an immersed Klein bottle with additive Gaussian noise



Next, a generative model



Guarantees provided:



Projection on to Principal Component 
Subspace

















Bump functions



Weights



Patching together zero sets



Projection on to the span of eigenvectors



Defining the manifold





Main theorem



More on bump functions:



Local definition of the manifold





Quantitative implicit function Theorem:



Quantitative implicit function Theorem:



Conclusion

• We bring down the Hausdorff distance between the true and output 
manifolds to                       while bringing down the sample and 
computational complexities to depend only on the intrinsic dimension 
when the manifold is      .

Open Problems: 

• For k larger than 2, can one do better if the manifold is 

• Are there suitable conditions under which one can learn manifolds 

even when  



Thank You!


