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Inverse problem

The energy density u of multiply-scattered light in an absorbing medium

obeys the diffusion equation

−∆u+ σ(x)u = 0 in Ω ,

u = g on ∂Ω .

The inverse problem is to recover the absorption σ from the Dirichlet

to Neumann map

Λσ : g 7→
∂u

∂n

∣∣∣∣
∂Ω

.

This problem is severely ill-posed with logarithmic stability, due to ex-

ponential decay of the energy density.

Even with large data sets and fast algorithms, there is a fundamental

limit to what can be done.
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Acousto-optic imaging

• To overcome the problem of low image resolution requires a new

physical idea.

• Internal measurements of the optical field directly determine the

coefficient σ.

• Replace inverse boundary value problems by inverse problems with

internal data.

• Internal data obtained from control of boundary measurements by

an acoustic wave.



Acousto-optic effect

!	
  

Ω	
  

!	
  



Acousto-optic imaging

Data of Lihong Wang (Cal Tech)



Inverse problem

Acousto-optic imaging utilizes two interacting wave fields. In some

sense, it uses the best of both waves. The acoustic wave provides high

spatial resolution while the optical field is sensitive to the contrast of

interest.

The inverse problem consists of two steps.

1. Recover an internal functional of the coefficients from acousto-optic

measurements. The internal functional is defined at every point of

the medium and serves as a proxy for measurements of the optical

field within the medium.

2. Reconstruct the coefficients from the internal functional.



Coherent vs incoherent acousto-optics

In incoherent acousto-optics an intensity measurement of the scattered

light at the fundamental frequency is performed. This takes advantage

of the separation of scales Ω � ω so that the medium changes slowly

(the measurement is effectively instantaneous). A direct image of the

medium is not formed. However, an inverse problem can be formulated

in this setting.

In coherent acousto-optics an interferometric measurement of the scat-

tered light at the shifted frequencies ω±Ω is performed. A direct image

of the medium is formed.



Incoherent inverse problem

The energy density u obeys the diffusion equation

−∇ ·D(x)∇u+ σ(x)u = 0 in Ω ,

u = g on ∂Ω .

Here D is the diffusion coefficient and σ is the attenuation coefficient.

It can be shown [Bal-S] that the internal functional is of the form

H(x) = D(x)|∇u|2 − σ(x)u2 , x ∈ Ω .

Making use of sufficiently many boundary sources, leads to a nonlinear

elliptic system.



Related work

• Bal-Chung-S

— inverse diffusion

— inverse transport

— inverse source problem (diffusion and transport)

• Ammari-Garnier-Seppecher

— inverse diffusion

— iterative reconstruction method

• Arridge-Powell

— optimization method



Outline

• First-principles theory of coherent acousto-optic effect

— mechanics

— light propagation

• Acousto-optics in random media

— radiative transport and diffusion

• Inverse problem
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Mechanics

We consider an acoustic wave propagating in a medium consisting of

identical particles suspended in a fluid. If the amplitude of the acoustic

wave is sufficiently small, the particles will oscillate about their equilib-

rium positions. It is then possible to treat the motion of each particle

as independent, neglecting hydrodynamic interactions.

The equation of motion of a single particle is of the form

%
du

dt
= −∇p+

4πaη

V
(v − u) .

Here u denotes the velocity of the particle, p is the pressure, v is the

velocity field in the fluid, η is the viscosity, a is the radius of the particle,

% is its mass density and V is its volume. The second term is due to

the relative motion of the particles (Stokes-Einstein).



Consider a standing time-harmonic acoustic wave with pressure

p(x, t) = p0 cos(Ωt) cos(Q · x) ,

where p0 is the amplitude of the wave, Ω is its frequency and Q is

the wave vector. Here we have assumed that the speed of sound cs is

constant with Q = Ω/cs.

The number density of particles is modulated by the acoustic wave. Let

x1, . . . ,xN denote the positions of the particles and

ρ(x, t) =
N∑
j=1

δ(x− xj(t))

be their density. Since each particle is independent, it follows from

integration of the equations of motion that ρ is modulated according to

ρ(x, t) = ρ0(x) [1 + δ cos(Ωt) cos(Q · x)] ,

where ρ0 is the number density of the particles in the absence of the

acoustic wave and δ = p0/(ρc2s)� 1.



Propagation of light

The optical field u(x, t) is taken to obey the wave equation

1

c2
∂2

∂t2
(ε(x, t)u) = ∆u .

The dielectric permittivity ε has contributions from the fluid and the
particles:

ε(x, t) = ε0(x, t) + 4πη(x, t) ,

where ε0 is the permittivity of the fluid and η is the dielectric sus-
ceptibility of the particles. The permittivity of the fluid is acoustically
modulated due to Brillouin scattering and is given by

ε0(x, t) = ε0 [1 + δγ cos(Ωt) cos(Q · x)] ,

where ε0 is constant and γ is the elasto-optical constant. The suscep-
tibility is proportional to ρ and is given by

η(x, t) = αρ0(x) [1 + δ cos(Ωt) cos(Q · x)] ,

where α is the polarizability of a single particle.



Mode decomposition

We suppose that the incident optical field is monochromatic with fre-
quency ω and decompose u in harmonics of the acoustic frequency:

u(x, t) =
∞∑

n=−∞
e−i(ω+nΩ)tun(x) .

The frequency components un obey the system of coupled Helmholtz
equations

∆un + k2
n (ε0 + 4πη(x))un = −

δk2
n

2
(γε0 + 4πη(x)) cos(Q · x)

(
un−1 + un+1

)
,

where kn = (ω + nΩ)/c and η(x) = αρ0(x). Note that if u0 = O(1)
then un = O(δn). We close the equations for the lowest order modes
according to

∆u0 + k2
0 (ε0 + 4πη(x))u0 = 0 ,

∆u1 + k2
1 (ε0 + 4πη(x))u1 = −

δk2
1

2
(γε0 + 4πη(x)) cos(Q · x)u0 ,

∆u−1 + k2
−1 (ε0 + 4πη(x))u−1 = −

δk2
−1

2
(γε0 + 4πη(x)) cos(Q · x)u0 .



Homogeneous medium

Consider the case of a homogeneous medium without scatterers. The

fundamental mode u0 acts as a source of the first harmonics u±1. If

the field u0 is a unit-amplitude plane wave:

u0 = eik·x , k =
√
ε0k0 ,

we find that u1 is given by

u1 =
1

4
δk′2

 1

(Q + k)2 − k′2
ei(k+Q)·x +

1

(Q− k)2 − k′2
ei(k−Q)·x

 ,
where k′ =

√
ε0k1. For fixed Q, there is a resonance if the incident wave

vector k obeys the condition

|Q± k| = k′ .

We note that the presence of absorption in the fluid prohibits the for-

mation of a resonance.



Bragg condition

The direction of k is set by

sin θ = ±
λ

2Λ
.
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Acousto-optics in random media

We now discuss radiative transport theory for the acousto-optic effect.

We consider the propagation of light in random media.

∆u0 + k2
0 (ε0 + 4πη(x))u0 = 0 ,

∆u1 + k2
1 (ε0 + 4πη(x))u1 = −

δk2
1

2
(γε0 + 4πη(x)) cos(Q · x)u0 .

The random medium is statistically homogeneous and isotropic with

correlations

〈η〉 = 0 , 〈η(x)η(x′)〉 = C(x− x′) ,

where 〈· · · 〉 denotes statistical averaging.



The modes u0 and u1 oscillate on the scale of the wavelength. We

are interested in high-frequency asymptotics. For such solutions, the

propagation distance is long compared to the wavelength and η is slowly

varying.

We introduce a slow space coordinate x → x/ε, where ε is small. The

rescaled amplitudes uε(x) = u0(x/ε) and vε(x) = u1(x/ε) satisfy

ε2∆uε + k2
0
(
ε0 + 4π

√
εη(x/ε)

)
uε = 0 ,

ε2∆vε + k2
1
(
ε0 + 4π

√
εη(x/ε)

)
vε = −δk

2
1

2

(
γε0 + 4π

√
εη(x/ε)

)
cos(Q · x)uε .

We consider the high-frequency limit ε → 0 and rescale η so that the

randomness is sufficiently weak and take C to be O(ε).



Wigner transform

The approach to radiative transport is through the Wigner transform

Wε(x,k) =
∫
d3x′eik·x

′
φε(x− εx′/2)φ∗ε(x+ εx′/2) ,

where φε = (uε, vε). Wε plays the role of an angularly resolved phase-

space energy density. In the high-frequency limit, Wε can be interpreted

as the specific intensity in radiative transport theory.

The diagonal elements of Wε are real-valued, but not generally non-

negative. However, in the high-frequency limit ε → 0, Wε becomes

nonnegative.

The high-frequency, weak disorder regime is precisely the setting in

which radiative transport theory holds.



We find that I = 〈W 〉 obeys the system of radiative transport equations

k̂ · ∇xI00 + µsI00 − µsLI00 = 0 ,

k̂ · ∇xI01 + µsI01 − µsLI01 =
1

4
γε0k0 cos(Q · x)I00 ,

k̂ · ∇xI11 + µsI11 − µsLI11 =
1

2
γε0k0 cos(Q · x)I01 ,

where

LI(x, k̂) =
∫
f(k̂, k̂′)I(x, k̂′)dk̂′ .

Here the scattering coefficient µs and the scattering kernel f are defined

by

µs = k4
0

∫
C̃(k0(k̂− k̂′))dk̂′, f(k̂, k̂′) =

C̃(k0(k̂− k̂′))∫
C̃(k0(k̂− k̂′))dk̂′

.

This is a long story. The quantity I00 is the specific intensity of light at

the fundamental frequency. Similarly, I11 is the specific intensity of the

first harmonic. Note that I01 is related to correlations of the modes u0

and u1 and can be obtained in an interferometric experiment.



Key ingredients

• We consider Wε in the high-frequency limit ε → 0 and introduce a

multiscale expansion of the form

Wε(x,k) = W0(x,k) +
√
εW1(x,X,k) + εW2(x,X,k) + · · · ,

where X = x/ε is a fast variable and W0 is taken to be deterministic.

• By separating terms of order O(1), O(
√
ε) and O(ε), we obtain a

hierarchy of kinetic equations. By averaging over η and introducing

a suitable closure, we get the required radiative transport equations.



Diffusion limit

In the multiple-scattering regime with weak absorption (µa � µs), the

specific intensity is slowly varying in k̂:

I00(x, k̂) =
1

4π

(
U00 − `∗k̂ · ∇U00

)
,

I01(x, k̂) =
1

4π

(
U01 − `∗k̂ · ∇U01

)
,

I11(x, k̂) =
1

4π

(
U11 − `∗k̂ · ∇U11

)
.

The energy densities obey the diffusion equations

−D∆U00 + σU00 = 0 ,

−D∆U01 + σU01 =
1

4
γε0ω cos(Q · x)U00 ,

−D∆U11 + σU11 =
1

2
γε0ω cos(Q · x)U01 ,

The diffusion coefficient is defined by D = 1/3c`∗, where the transport

mean free path `∗ is given by `∗ = 1/ [(1− g)µs + µa] and σ = cµa.



Inverse problem

Consider the forward problem

−∇ ·D(x)∇U00 + σ(x)U00 = 0 in Ω ,

−∇ ·D(x)∇U01 + σ(x)U01 = A cos(Q · x + ϕ)U00 in Ω ,

together with the boundary conditions

U00 + `n̂ · ∇U00 = g on ∂Ω ,

U01 + `n̂ · ∇U01 = 0 on ∂Ω .

The inverse problem is to recover σ and D from boundary measurements

of U01: Λ(σ,D) : (Q, ϕ) 7→ ∂nU01|∂Ω, where the source g is fixed.



Internal functional

The identity

1

Al

∫
∂Ω

D(x)U01(x)g(x)dx =
∫

Ω
U2

00(x) cos(Q · x + ϕ)dx ,

follows from an integration by parts and use of the boundary conditions,

we obtain

Since g, D and σ are nonnegative, it follows that the internal functional

H(x) = U00(x) , x ∈ Ω

can be determined from the data by Fourier inversion.

The above should be compared to the incoherent internal functional

H(x) = D(x)|∇U00|2 − σ(x)U2
00 , x ∈ Ω ,

which leads to a nonlinear elliptic system.



Inversion formulas

If the diffusion coefficient D is constant, it follows that

σ(x) = D
∆H(x)

H(x)
.

Here we utilize a single boundary source. Note that H cannot vanish.

If D is not constant, we can recover (σ,D) from a pair of boundary

sources. Suppose H1 and H2 are internal functionals corresponding to

two well chosen boundary sources. Then D can be obtained by solving

the transport equation

A · ∇D +BD = 0 in Ω ,

D = D0 on ∂Ω ,

where

A = ∇H1/H2 , B = H1/H2 .



Once D is known, we can find σ from the formula

σ(x) =
∇ ·D(x)∇H(x)

H(x)
.

It can be shown that (σ,D) can be recovered with Holder stability. See

Bal-Uhlmann (2013).



Reconstructions
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Summary

• We have developed the theory of the acousto-optic effect in random

media.

• We have studied the inverse problem of coherent acousto-optic

imaging in the diffusion limit.

• The coherent inverse problem is considerably simpler than the cor-

responding incoherent problem. This comes at the expense of some

increase in experimental complexity.

• We have also investigated the corresponding inverse transport prob-

lem.
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