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Highlights of Calderón's Career

• Calderón Zygmund Singular Integral Theory

• Uniqueness for the Cauchy Problem

• The Complex Interpolation Method

• Calderón's Reproducing Formula

• The Calderón Projector

• Calderón-Vaillancourt Theorem
• L2 boundedness of the Cauchy Integral on Lipschitz
Curves (with small constant)

• Inverse Boundary Problem: On an inverse boundary
value problem, in Seminar on Numerical Analysis
and its Applications to Continuum Physics, Río de
Janeiro, 1980.
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CALDERÓN'S PROBLEM and EIT

Ω ⊂ Rn

(n ≥ 2)

Can one determine the electrical conductivity of Ω, γ(x),
by making voltage and current measurements at the
boundary?
(Calderón; Geophysical prospection)

Early breast cancer detection
Normal breast tissue 0.3 mho

Cancerous breast tumor 2.0 mho
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REMINISCENCIA DE MI VIDA MATEMÁTICA

Speech at Universidad Autónoma de Madrid accepting

the `Doctor Honoris Causa':

My work at �Yacimientos Petrolíferos Fiscales"

(YPF) was very interesting, but I was not well

treated, otherwise I would have stayed there.
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Imaging Stroke with EIT

Greenleaf, Lassas, Santacesaria, Siltanen�U, 2018
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Stroke Imaging (Greenleaf�Lassas�Santacesaria�U, 2018)

(Loading Xraystyle.mp4)
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CALDERÓN'S PROBLEM (EIT)

Consider a body Ω ⊂ Rn. An electrical potential u(x)

causes the current

I(x) = γ(x)∇u

The conductivity γ(x) can be isotropic, that is, scalar,

or anisotropic, that is, a matrix valued function. If the

current has no sources or sinks, we have

div(γ(x)∇u) = 0 in Ω
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DN Map

div(γ(x)∇u(x)) = 0

u
∣∣∣
∂Ω

= f

γ = conductivity, γ ≥ c > 0

f = voltage potential at ∂Ω

Current �ux at ∂Ω = (ν · γ∇u)
∣∣∣
∂Ω

were ν is the unit
outer normal.

Information is encoded in

map

Λγ(f) = ν · γ∇u
∣∣∣
∂Ω

Calderón's inverse problem: Does Λγ determine γ ?

Λγ = Dirichlet-to-Neumann map
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Calderón's Paper

Linearized problem at γ = 1:∫
Ω
h∇u · ∇vdx data ∀∆u = ∆v = 0.

Can we recover h?

u = ex·ρ

v = e−x·ρ
, ρ ∈ Cn, ρ · ρ = 0.

ρ =
η − iξ

2
, ρ · ρ = 0 ⇔ |η| = |ξ|, η · ξ = 0.

|ξ|2
∫

Ω
he−ix·ξdx known

we can recover χ̂Ωh(ξ) , therefore h on Ω.
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Boundary Determination
Theorem (Kohn-Vogelius, 1984)

Assume γ ∈ C∞(Ω). From Λγ we can determine ∂αγ
∣∣
∂Ω

, ∀α.

Proof (Sylvester-U, 1988, Lee-U, 1989)

Λγ is a pseudodi�erential operator of order 1 (Calderón).

Λγf(x′) =

∫
eix

′·ξ′λγ(x
′, ξ′)f̂(ξ′)dξ′

λγ(x
′, ξ′) = γ(0, x′)|ξ′|+ a0(x′, ξ′) + · · ·+ aj(x

′, ξ′) + · · ·

with aj(x′, ξ′) pos. homogeneous of degree −j in ξ′:

aj(x
′, λξ′) = λ−jaj(x

′, ξ′), λ > 0.

γ(x′) = lim
|ξ′|→∞

1

|ξ′|
eix

′·ξ′Λγ(e
−ix′·ξ′).

Result From aj, we can determine ∂jγ
∂νj

∣∣∣
xn=0

.
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Uniqueness

Theorem n ≥ 3 (Sylvester-U, 1987)

γ ∈ C2(Ω), 0 < C1 ≤ γ(x) ≤ C2 on Ω
Λγ1 = Λγ2 ⇒ γ1 = γ2

• Extended to γ ∈ C3/2(Ω) (Päivarinta-Panchenko-U, Brown-Torres,
2003)
• γ ∈ C1+ε(Ω), γ conormal (Greenleaf-Lassas-U, 2003)
•γ ∈ C1(Ω) (Haberman-Tataru, 2013)
• γ ∈W 1,n(Ω), (n = 3,4) (Haberman, 2015)
• γ ∈W 1,∞(Ω) (Caro-Rogers, 2016)

Conjecture n ≥ 3, W 1,n(Ω) is optimal for uniqueness

• Reconstruction A. Nachman (1988)
• Stability G. Alessandrini (1988)
• Numerical Method (Isaacson, Hamilton, Knudsen, Müller, Silta-
nen, · · · )
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DN Map for Schrödinger Equation

Reduction to Schrödinger equation

div(γ∇w) = 0

u =
√
γw

Then the equation is transformed into:

(∆− q)u = 0, q =
∆
√
γ

√
γ

(∆− q)u = 0

u
∣∣∣
∂Ω

= f

De�ne Λq(f) =
∂u

∂ν

∣∣∣
∂Ω

ν = unit-outer normal to ∂Ω.
12



Identity

∫
Ω

(q1 − q2)u1u2 =
∫
∂Ω

(
(Λq1 − Λq2)u1

∣∣∣
∂Ω

)
u2

∣∣∣
∂Ω
dS

(∆− qi)ui = 0

If Λγ1 = Λγ2 ⇒ Λq1 = Λq2 and∫
Ω

(q1 − q2)u1u2 = 0

GOAL: Find MANY solutions of (∆− qi)ui = 0.
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COMPLEX GEOMETRICAL OPTICS

(Sylvester-U) n ≥ 2, q ∈ L∞(Ω)

Let ρ ∈ Cn (ρ = η + ik, η, k ∈ Rn) such that ρ · ρ = 0

(|η| = |k|, η · k = 0).

Then for |ρ| su�ciently large we can �nd solutions of

(∆− q)wρ = 0 on Ω

of the form

wρ = ex·ρ(1 + Ψq(x, ρ))

with Ψq → 0 in Ω as |ρ| → ∞.
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APPLICATIONS

n ≥ 3 (∆− q) = 0, Λq determines q

• EIT Λγ determines γ

• Optical Tomography (Di�usion Approximation)

iωU −∇ ·D(x)∇U + σa(x)U = 0 in Ω

U=Density of photons, D=Di�usion Coe�cient, σa(x)=

optical absorption.

RESULT • If ω 6= 0 we can recover both D(x) and σa(x).
• If ω = 0 we can recover either D(x) or σa(x).
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OTHER APPLICATIONS (Fixed energy)

• Optics (∆− k2n(x))u = 0, n(x) isotropic index of

refraction (q(x) = k2n(x)).

• Acoustic div( 1
ρ(x)∇p) + ω2κ(x)p = 0, ρ density, κ

compressibility (need two frequencies ω).

• Inverse quantum scattering at �xed energy (∆ −
q − λ2)u = 0, q potential.

• Magnetic Schrödinger equation ((−i∇+A)2+q)u =

0.

• Maxwell's Equation (Isotropic)

(Ola-Somersalo): Reduction to (∆−Q), Q an 8×8

matrix.

• Quantitative Photoacoustic Tomography (Bal-U)
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Partial Data

Let Γ1,Γ2 ⊂ ∂Ω be arbitrary open non-empty. The

partial Dirichlet�to�Neumann map,

ΛΓ1,Γ2
γ (f) = (γ∂νu)|Γ2

, supp (f) ⊂ Γ1.

The Calderón problem with partial data: Does ΛΓ1,Γ2
γ

determine γ in Ω? Open in general.
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Partial Data

• Bukhgeim�U, 2002:

Γ1 = ∂Ω, Γ2 = {x ∈ ∂Ω : ξ·ν(x) < ε}, ξ ∈ Sn−1, ε > 0.

Note: Γ2 is slightly more than a half of the boundary

• Ammari�U, 2004: Γ1 = Γ2, γ1 = γ2 near ∂Ω.

• Kenig�Sjöstrand�U, 2007:

Γ1 = small neighborhood of complement ofΓ2

Γ2 = {x ∈ ∂Ω :
(x− x0)

|x− x0|
·ν(x) < ε}, x0 /∈ ch(Ω), ε > 0.
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Partial Data

• Kenig�Salo, 2014: uni�es approaches of Kenig�

Sjöstrand�U and Isakov and extends both of them.

Γ1 = ∂Ω, Γ2 as in Kenig�Sjöstrand�U.

Theorem (Krupchyk�U, 2016) Let γ1, γ2 ∈ C1,δ(Ω) ∩
H

3
2(Ω), δ > 0 arbitrarily small. Assume that γ1, γ2 > 0

in Ω, γ1 = γ2 and ∂νγ1 = ∂νγ2 on ∂Ω \ Γ2. If ΛΓ1,Γ2
γ1 =

ΛΓ1,Γ2
γ2 then γ1 = γ2 in Ω.

Remark. Krupchyk�U, 2016: the result holds also for

γ1, γ2 ∈W1,∞(Ω) ∩H
3
2+δ(Ω), δ > 0.
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CGO SOLUTIONS WITH NON-LINEAR PHASE

Kenig-Sjöstrand-U (2007),

u = eτ(ϕ(x)+iψ(x))(a(x) +R(x, τ))

τ ∈ R, ϕ, ψ real-valued, R(x, τ)→ 0 as τ →∞.

ϕ limiting Carleman weight,

e.g. ϕ(x) = ln |x− x0|, x0 /∈ ch(Ω)
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Complex Spherical Waves

u = eτ(ϕ(x)+iψ(x))aτ(x) = eτ(ϕ(x)+iψ(x))(a0(x) +R(x, τ))

R(x, τ)
τ→∞−→ 0 in Ω

ϕ(x) = ln |x− x0|, x0 /∈ ch(Ω)

Eikonal: ∇ϕ · ∇ψ = 0, |∇ϕ| = |∇ψ|
ψ(x) = d( x−x0

|x−x0|
, ω), ω ∈ Sn−1: smooth

for x ∈ Ω̄.

Transport: (∇ϕ+ i∇ψ) · ∇aτ = 0

(Cauchy-Riemann equation in plane generated by ∇ϕ,∇ψ)
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Carleman Estimates

u|∂Ω = ∂u
∂ν |∂Ω− = 0 ∂Ω± = {x ∈ ∂Ω;∇ϕ·ν

>
< 0}

∫
∂Ω+

< ∇ϕ, ν > |e−τϕ(x)∂u

∂ν
|2ds ≤

C

τ

∫
Ω
|(∆− q)ue−τϕ(x)|2ds

This gives control of ∂u∂ν |∂Ω+,δ
,

∂Ω+,δ = {x ∈ ∂Ω,∇ϕ · ν ≥ δ}
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Partial Data

Linearization (Analog of Calderón)

Theorem (Dos Santos Ferreira, Kenig, Sjöstrand-U, 2009;

Sjöstrand-U, 2016)

∫
Ω
huv = 0

Γ ⊆ ∂Ω, Γ open,

(∆− q)u = (∆− q)v = 0, q is analytic, u, v ∈ C∞(Ω),

supp u|∂Ω, supp v|∂Ω ⊆ Γ,

⇒ h = 0 .
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Complex Spherical Waves

uτ = eτ(ϕ+iψ)aτ

ϕ(x) = ln |x− x0|, x0 /∈ ch(Ω)

Also used to determine inclusions, obstacles, etc.

a) Conductivity Ide-Isozaki-Nakata-Siltanen-U, 2007

b) Helmholtz Nakamura-Yosida, 2007

c) Elasticity J.-N. Wang-U, 2007

d) Maxwell T. Zhou, 2010
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Complex Spherical Waves

(Loading reconperfect1.mpg)
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Anisotropic Case

γ = (γij)

conductivity

positive-de�nite, symmetric

matrix

Ω ⊆ Rn,Ωbounded. Under assumptions of no sources
or sinks of current the potential u satis�es

div(γ∇u) = 0

n∑
i,j=1

∂

∂xi

(
γij

∂u

∂xi

)
=0 in Ω

u
∣∣
∂Ω

=f

(*)

f = voltage potential at boundary

Λγ(f) =
n∑

i,j=1

νiγij
∂u

∂xj

∣∣∣∣∣∣
∂Ω

Calderón Problem: Can we recover γ in Ω from Λγ ?
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Invariance

div(γ∇u) = 0

u
∣∣∣
∂Ω

= f
Λγ(f) =

n∑
i,j=1

γijνi
∂u

∂xj

∣∣∣
∂Ω

Λγ ⇒ γ ?

Answer: No Λψ∗γ = Λγ

where ψ : Ω→ Ω change of variables

ψ|∂Ω = Identity

ψ∗γ =

(Dψ)T ◦ γ ◦Dψ
|detDψ|

 ◦ ψ−1

v = u ◦ ψ−1

Open problem: Is this the only obstruction (γ ∈ C∞(Ω̄))?
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Geometric Inverse Problem (Lee-U, 1989)

(M, g) compact Riemannian manifold with boundary.

n ≥ 3, ∆g Laplace-Beltrami operator g = (gij) pos. def.

symmetric matrix

∆gu =
1

√
det g

n∑
i,j=1

∂

∂xi

√det g gij ∂u
∂xj

 (gij) = (gij)
−1

∆gu = 0 onM

u
∣∣∣
∂M

= f

Conductivity:

γij =
√
det g gij

Λg(f) =
n∑

i,j=1

νjgij
∂u

∂xi

√
det g

∣∣∣∣∣
∂M
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ANOTHER MOTIVATION (STRING THEORY)

HOLOGRAPHY

Dirichlet-to-Neumann map is the �boundary-2pt func-

tion"

Inverse problem: Can we recover (M, g) (bulk) from

boundary-2pt function ?

M. Parrati and R. Rabadan, Boundary rigidity and holog-

raphy, JHEP 0401 (2004) 034
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Anisotropic (n ≥ 3)

Theorem (n ≥ 3) (Lassas-U 2001, Lassas-Taylor-U 2003)

(M, gi), i = 1,2, real-analytic, connected, compact, Rie-

mannian manifolds with boundary. Let Γ ⊆ ∂M , Γ open.

Assume

Λg1(f)|Γ = Λg2(f)|Γ, ∀f, f supported in Γ

Then ∃ψ : M → M di�eomorphism, ψ
∣∣∣
Γ

= Identity, so

that

g1 = ψ∗g2

In fact one can determine topology of M, as well (only

need to know Λg, ∂M).
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Non-Uniqueness (Anisotropic, n ≥ 3)

Counterexamples (Daudé-Kamran-Nicoleau, 2019)

• Γ1 = Γ2, γ is smooth in the interior but only Hölder

up to the boundary (based on Müller's counterex-

amples for unique continuation).

• Γ1 and Γ2 are disjoint, γ is smooth up to the bound-

ary.
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Moding Out the Di�eomorphism Group

Some conformal class Λβg = Λg , β ∈ C∞(M)

=⇒ β = 1?

More general problem

(∆g − q)u = 0, q ∈ C∞(M)
u|∂M = f,

Λg(f) = ∂u
∂νg
|∂M .

Inverse Problem: Does Λg determines q ?
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Moding Out the Di�eomorphism Group
(n ≥ 3)

(∗) g(x1, x
′) = c(x)

(
1 0
0 g0(x′)

)
, c > 0.

Theorem (Dos Santos-Kenig-Salo-U, 2009) Assume that
there is a global coordinate system so that (*) is true.
In addition g0 is simple. Then Λg determines uniquely
q .

Extension: Dos Santos-Kurylev-Lassas-Salo, 2016
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Moding Out the Di�eomorphism Group

g(x1, x
′) = c(x)

(
1 0
0 g0(x′)

)
, x′ ∈ Rn−1

Examples

(a) g(x) conformal to Euclidean metric (Sylvester-U, 1987)

(b) g(x) conformal to hyperbolic metric (Isozaki, 2004)

(c) g(x) conformal to metric on sphere (minus a point)
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Non-uniqueness for EIT (Cloaking)

Motivation (Greenleaf-Lassas-U, MRL, 2003)

When bridge connecting the two parts

of the manifold gets narrower the

boundary measurements give less infor-

mation about isolated area.

When we realize the manifold in Euclidean space we
should obtain conductivities whose boundary measure-
ments give no information about certain parts of the
domain.
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Transformation Optics

virtual space physical space
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Cloaking

Greenleaf-Lassas-U, 2003

Let
Ω = B(0,2) ⊂ R3,
D = B(0,1),

where B(0, r) = {x ∈ R3; |x| < r}

F : Ω \ {0} → Ω\D

F (x) =

(
|x|
2

+ 1

)
x

|x|

F - di�eomorphism, F |∂Ω = Identity
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Cloaking

Let
γ = g = identity on B(0,2),
γ̂ = F∗γ on B(0,2)\B(0,1),
ĝ = metric associated to γ̂.

In spherical coordinates

(r, φ, θ)→ (r sin θ cosφ, r sin θ sinφ, r cos θ),

γ̂ =

 2(r − 1)2 sin θ 0 0
0 2 sin θ 0
0 0 2(sin θ)−1


Let γ̃ (resp. g̃) be the conductivity (resp. metric) in
B(0,2) such that γ̃ = γ̂ (resp. g̃ = ĝ) on B(0,2)\B(0,1)
and arbitrarily positive de�nite on B(0,1). Then

Theorem (Greenleaf-Lassas-U 2003)

Λγ̃ = Λγ

(
resp. Λg̃ = Λg

)
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The Two Dimensional Case

Theorem (n = 2) Let γj ∈ C2(Ω), j = 1,2.

Assume Λγ1 = Λγ2 . Then γ1 = γ2 .

• Nachman (1996)

• Brown-U (1997) Improved to γj Lipschitz

• Astala-Päivärinta (2006) Improved to γj ∈ L∞(Ω)
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Schrödinger (n=2)

This follows from more general result

Theorem (n = 2, Bukhgeim, 2008) Let qj ∈ L∞(Ω),

j = 1,2.

Assume Λq1 = Λq2 . Then q1 = q2 .

Bukhgeim, qj ∈ C1(Ω̄)

Extension: Blåsten, Imanuvilov, Yamamoto, 2016
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CGO (n=2)

Λq1 = Λq2 ⇒ q1 = q2

Sketch of proof New class of CGO solutions

u1(z, τ) = eτz
2 (

1 + r1(z, τ)
)

u2(z, τ) = e−τ z̄
2 (

1 + r2(z, τ)
) τ � 1

solve (∆− qj)uj = 0 with rj(z, τ)→ 0 on Ω su�ciently
fast.

Notation z = x1 + ix2

Remark z2 = x2
1 − x

2
2 + 2ix1x2 = ϕ+ iψ

∇ϕ · ∇ψ = 0, |∇ϕ| = |∇ψ|
ϕ harmonic, ψ conjugate harmonic.

General result: ∆g−q, M Riemann surface (Guillarmou-
Tzou , 2010)
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Partial Data for Second Order Elliptic Equations (n=2)

(Imanuvilov�U�Yamamoto, 2011)

∆g +A(z)
∂

∂z
+B(z)

∂

∂z
+ q z = x1 + ix2

g = (gij) positive de�nite symmetric matrix;

∆gu =
1√

det(g)

n∑
i,j=1

∂

∂xi
(
√
det(g)gij

∂u

∂xj
) gij = (gij)

−1

Includes :

• Anisotropic Calderón's Problem

• Magnetic Schrödinger Equation

• Convection terms
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Anisotropic (n=2)

Theorem (Imanuvilov�U�Yamamoto, 2011) Ω ⊂ R2,
Γ ⊂ ∂Ω, Γ open, γk = (γijk ) ∈ C∞(Ω̄), k = 1,2, positive
de�nite symmetric. Assume

Λγ1(f)|Γ = Λγ2(f)|Γ, ∀f suppf ⊂ Γ.

Then ∃F : Ω̄ → Ω̄, C∞ di�eomorphism, F |Γ = Identity
such that

F∗γ1 = γ2.

Full Data (Γ = ∂Ω):

• γk ∈ C2(Ω̄), Nachman (1996)

• γk Lipschitz, Sun�U (2001)

• γk ∈ L∞(Ω), Astala�Lassas�Pävärinta (2006)
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Fractional Laplacian

Consider the fractional Laplacian

(−∆)s, 0 < s < 1,

de�ned via the Fourier transform by

(−∆)su = F−1{|ξ|2s û(ξ)}.

This operator is nonlocal: it does not preserve supports,

and computing (−∆)su(x) involves values of u far away

from x.
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Fractional Laplacian

Di�erent models for di�usion:

∂tu−∆u = 0 normal di�usion/BM

∂tu+ (−∆)su = 0 superdi�usion/Lévy �ight

∂αt u−∆u = 0 subdi�usion/CTRW

The fractional Laplacian is related to

• anomalous di�usion involving long range interac-

tions (turbulent media, population dynamics)

• Lévy processes in probability theory

• �nancial modelling with jump processes

Many results for time-fractional inverse problems, very

few for space-fractional [Jin-Rundell, 2015].
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Fractional Laplacian

Let Ω ⊂ Rn bounded, q ∈ L∞(Ω). Since (−∆)s is

nonlocal, the Dirichlet problem becomes{
((−∆)s + q)u = 0 in Ω,

u = f in Ωe

where Ωe = Rn \Ω is the exterior domain.

Given f ∈ Hs(Ωe), look for a solution u ∈ Hs(Rn). DN

map

Λq : Hs(Ωe)→ H−s(Ωe), Λqf = (−∆)su|Ωe.

Inverse problem: given Λq, determine q.
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First Result

Theorem(Ghosh�Salo�U, 2020)

Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and
let q1, q2 ∈ L∞(Ω). If W,W ′ ⊂ Ωe are open sets, and if

Λq1f |W ′ = Λq2f |W ′, f ∈ C∞c (W ),

then q1 = q2 in Ω.

Main features:

• local data result for arbitrary W,W ′ ⊂ Ωe

• the same method works for all n ≥ 2
• new mechanism for solving (nonlocal) inverse prob-
lems
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Main tools 1: uniqueness

Theorem

If u ∈ H−r(Rn) for some r ∈ R, and if u|W = (−∆)su|W =
0 for some open set W ⊂ Rn, then u ≡ 0.

Proof (sketch). If u is nice enough, then

(−∆)su ∼ lim
y→0

y1−2s∂yw( · , y)

where w(x, y) is the Ca�arelli-Silvestre extension of u:{
divx,y(y1−2s∇x,yw) = 0 in Rn × {y > 0},

w|y=0 = u.

Thus (−∆)su is obtained from a local equation, which
is degenerate elliptic with A2 weight y1−2s. Carleman
estimates [Rüland 2015] and u|W = (−∆)su|W = 0 im-
ply uniqueness.
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Main tools 2: approximation

Theorem(Ghosh�Salo�U, 2020)

Any f ∈ L2(Ω) can be approximated in L2(Ω) by solu-

tions u|Ω, where

((−∆)s + q)u = 0 in Ω, supp(u) ⊂ Ω ∪W. (∗)

If everything is C∞, any f ∈ Ck(Ω) can be approximated

in Ck(Ω) by functions d(x)−su|Ω with u as in (∗).

Proof. Apply this to∫
Ω

(q1 − q2)u1u2 = 0, (−∆)s + qj)uj = 0 (j = 1,2)
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Further Results

• Variable coe�cients fractional elliptic operators
(Ghosh�Lin�Xiao, 2017)

• Regularity and stability (Rüland�Salo, 2017)

• Reconstruction and single Measurement (Ghosh�
Rüland�Salo�U, 2018)

• Fractional Schrödinger equation with drift (Ceki¢�
Lin�Rüland, 2018)

• Non-local Perturbations (Bhattacharyya�ghosh�U,
2019)

• Fractional magnetic operators (Covi, 2019, Li, 2020)

• Any local perturbation of fractional Laplacian (Covi�
Mönkkönen�Railo�U, 2020)
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