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Highlights of Calderdon’s Career

Calderon Zygmund Singular Integral Theory
Uniqueness for the Cauchy Problem

The Complex Interpolation Method
Calderdon’s Reproducing Formula

The Calderdn Projector
Calderdon-Vaillancourt Theorem

L2 boundedness of the Cauchy Integral on Lipschitz
Curves (with small constant)

Inverse Boundary Problem: On an inverse boundary
value problem, in Seminar on Numerical Analysis
and its Applications to Continuum Physics, Rio de
Janeiro, 1980.



CALDERON'S PROBLEM and EIT

QCR"?
(n>2)

Can one determine the electrical conductivity of 2, v(x),
by making voltage and current measurements at the
boundary?

(Calderdn; Geophysical prospection)

Early breast cancer detection

Normal breast tissue

0.3 mho
Cancerous breast tumor 2.0 mho



REMINISCENCIA DE MI VIDA MATEMATICA

Speech at Universidad Autonoma de Madrid accepting
the ‘Doctor Honoris Causa’:

My work at “Yacimientos Petroliferos Fiscales"”
(YPF) was very interesting, but I was not well
treated, otherwise I would have stayed there.



Imaging Stroke with EIT

Hemorrhagic stroke:
high conductivity.

Ischemic stroke:
low conductivity.

Simulated hemorrhage in the
brain: higher conductivity be-
cause of excess blood.

Left: original, right: recon-
struction

Simulated ischemic stroke:
lower conductivity resulting
from a clot blocking the flow
of blood.
Left: original, right: recon-
struction

Greenleaf, Lassas, Santacesaria, Siltanen—U, 2018



Stroke Imaging (Greenleaf—Lassas—Santacesaria—U, 2018)

(Loading Xraystyle.mp4)
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CALDERON'S PROBLEM (EIT)

Consider a body 2 C R"™. An electrical potential u(x)
causes the current

I(z) = v(z)Vu

The conductivity v(x) can be isotropic, that is, scalar,
or anisotropic, that is, a matrix valued function. If the

current has no sources or sinks, we have

div(v(z)Vu) =0 in Q



DN Map

div(y(z)Vu(x)) =0 ~ = conductivity, v > ¢ > 0
u|8Q = f f = voltage potential at 92

Current flux at 02 = (v - 7Vu)‘89 were v is the unit
outer normal.

f vV

Information is encoded in

BI
Q _
Ny(f) =v-yVu 50

a6

Calderon’s inverse problem: Does A, determine ~ 7

N~ = Dirichlet-to-Neumann map



Calderdon’s Paper

Linearized problem at v = 1:

/Q hWVau - Vode data VYV Awuw= Ay =0.

Can we recover h?

u = e’P
v=r¢e TP’ peC” p-p=0.
n — i
p=—05 p-p=0 & |n|=1£,n-{£=0.

€2 /Q he @€dz known

we can recover X/Q\h(f) , therefore h on Q.



Boundary Determination

Theorem (Kohn-Vogelius, 1984)

Assume v € C*(£2). From A, we can determine 9% Y a.

Yoe |
Proof (Sylvester-U, 1988, Lee-U, 1989)

A\~ | is a pseudodifferential operator of order 1 (Calderdn).

A () = / N (o, €) () de’

M (@, €) =(0,)[¢] + ao(2/, &) + - + a; (2, €) + -+
with a;(2’,¢’) pos. homogeneous of degree —j in ¢

a;j(z', ) = Xa;(2',¢), X>0.

1 N ! N !
v(z") = lim —e® A, (e ™).
€00 [€] !

Result | From a;, we can determine 47 .
=0
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Uniqueness

Theorem n > 3 (Sylvester-U, 1987)

veC?*(Q), 0<Ci<~(x)<C on®
/\71 — /\’72 iﬁ/l — 72

e Extended to v € C3/2(QQ) (Piivarinta-Panchenko-U, Brown-Torres,
2003)

o v € C1*¢(Q2),v conormal (Greenleaf-Lassas-U, 2003)

oy € C1(2) (Haberman-Tataru, 2013)

o v € WH(Q), (n = 3,4) (Haberman, 2015)

o v Wh>e(Q) (Caro-Rogers, 2016)

Conjecture n > 3, Whn(Q) is optimal for uniqueness

e Reconstruction A. Nachman (1988)

e Stability G. Alessandrini (1988)

e Numerical Method (Isaacson, Hamilton, Knudsen, Miiller, Silta-
nen, )
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DN Map for Schrodinger Equation

Reduction to Schrodinger equation
div(AVw) = 0
u = \/yw

Then the equation is transformed into:

CDNu—0.0= 2V
(A —q) 0,q 7

(A—-qu=0
“‘aQ:f

ou

Define Aq¢(f) = 5,100

v = unit-outer normal to 0f2.



Identity

/Q(fh — q2)ujup = /asz ((/\ql - /\q2)u1‘8§2>u2’8§2ds

(A —gj)u; =0

S — O
/Q(Cﬂ q2)uiuo

GOAL: Find MANY solutions of (A — ¢;)u; = 0.
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COMPLEX GEOMETRICAL OPTICS

(Sylvester-U) n > 2, g € L°°(Q2)
Let pe C" (p=n—+ik,n,k € R™) such that p-p=0
(Inl = |kl,n -k =0).

Then for |p| sufficiently large we can find solutions of

(A —q)wp =0 on

of the form

Wp = e P(1 4 Wy(z,p))

with W, — 0 in € as |p| = oc.
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APPLICATIONS

n>3 (A —gq)=0,/\; determines [q
e EIT (A, | determines |~
e Optical Tomography (Diffusion Approximation)

iwU —V -D(x)VU + 0¢(x)U =0 in

U= Density of photons, D=Diffusion Coefficient, o,(z)=
optical absorption.

RESULT e If w % 0 we can recover both D(x) and oq(x).
e If w = 0 we can recover either D(x) or gq(x).

15



OTHER APPLICATIONS (Fixed energy)
Optics (A —k2n(z))u = 0, n(z) isotropic index of
refraction (q(z) = k?n(z)).

Acoustic div(p(—lx)Vp) + w?k(z)p = 0, p density,
compressibility (need two frequencies w).

Inverse quantum scattering at fixed energy (A —
g — \2)u = 0, ¢ potential.

Magnetic Schrodinger equation ((—iV4+A)24¢)u =
0.

Maxwell's Equation (Isotropic)
(Ola-Somersalo): Reduction to (A—-Q), Q an 8 x 8
matrix.

Quantitative Photoacoustic Tomography (Bal-U)

16



Partial Data

Let '1,I» C 02 be arbitrary open non-empty. The
partial Dirichlet—to—Neumann map,

AT2(f) = (Y0l supp () C .

i \"

(5

The Calderdn problem with partial data: Does /\51’r2

determine ~ in 27 Open in general.

17



Partial Data
e Bukhgeim—U, 2002:
M =00, M={zcdQ ¢tv(z)<e}, eSSt e>0.
Note: 5 is slightly more than a half of the boundary

e Ammari—U, 2004: I'1 =115, 71 = v near 052.
e Kenig—Sjostrand—U, 2007:

[{ = small neighborhood of complement ofl 5

Mo ={z € 0: (|x_mo|)"/(x) <e}, zo ¢ ch(£2), €>0.
x — TQ

Ao

18



Partial Data

e Kenig—Salo, 2014: unifies approaches of Kenig—
Sjostrand—U and Isakov and extends both of them.

1 = 0122, '» as in Kenig—Sjostrand—U.

Theorem (Krupchyk—U, 2016) Let ~v1,7v» € C19(2) n
H2(), § > 0 arbitrarily small. Assume that 71,75 > O
in Q, Y1 = 7v2 and Oyy1 = vy on 92 \ 5. If /\511’r2 =
/\I_l’l_2 then v1 = ~v5 in 2.

Remark. Krupchyk— U 2016: the result holds also for
v1,72 € WHe(Q) N H2+5(Q) 5> 0.
19



CGO SOLUTIONS WITH NON-LINEAR PHASE

Kenig-Sjostrand-U (2007),

w = eTP@) (@) (1) + R(z, 7))

T €R, ¢,y real-valued, R(z,7)— 0 as 7 — oo.

@ limiting Carleman weight,

e.gd. o(z)=In|x —xg|, xg ¢ ch(2)
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Complex Spherical Waves

u = 67(90(33)+2¢($))a’7(x) — 67(¢($)+Z¢(I))(ao(x) i R(QZ,T))
R(z,7) =30 in Q

p(z) = Infz —x0l, =z0 ¢ ch(S2)

Eikonal: Ve V¢ =0, |Ve| = |V
W(z) = d(g £0|,w),w e S7~1: smooth
for z € Q.

Transport: (Vo +iVYy) - -Var =0

(Cauchy-Riemann equation in plane generated by Vo, V)

21



Carleman Estimates

>
ulgo = %bg}_ =0 0Ny = {x €02, Vyp-v <0}
C
/ < Vp,v> |e_7¢(x)%|2ds < —/ (A — q)ue_“a(x)|2ds
8Q+ ov T J
This gives control of %|39+,5,

02y 5 ={z €02, Vp v =>4}

22



Partial Data
Linearization (Analog of Calderdn)

Theorem (Dos Santos Ferreira, Kenig, Sjostrand-U, 2009;
Sjostrand-U, 2016)

/huv=0
Q

[ C 0€2, [ open,
(A —q@)u= (A —q)v=0, g is analytic, u,v € C*°(Q),
SUpp ulpn, Supp vl C I,

= h=20.

23



Complex Spherical Waves

w, = e (PTi)
(@) = In|a — o, w0 ¢ (<)

Also used to determine inclusions, obstacles, etc.

a) Conductivity Ide-Isozaki-Nakata-Siltanen-U, 2007
b) Helmholtz Nakamura-Yosida, 2007
c) Elasticity J.-N. Wang-U, 2007

d) Maxwell T. Zhou, 2010

24



Complex Spherical Waves

(Loading reconperfectl.mpg)
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Anisotropic Case
y= (Wij) positive-definite, symmetric
conductivity matrix

2 C R", Q2bounded. Under assumptions of no sources
or sinks of current the potential v satisfies

"9 20U .
div(AVu) =0 Z O, (7]62131) =0 e (*)

ij=1
u‘@Q =f

f = voltage potential at boundary

8u
89 a0

/\v(f)_ Z V?’

,7=1

83

Calderon Problem: Can we recover « in €2 from Ay 7
26



Invariance

div(hVu) =0 ou

Ny (f) = Z ’ywl/a—ﬁQ Ny = 7

u‘aQ =/ i.j=1
Answer: NO Nopory = Ny

where ¢ : 2 — 2 change of variables
Y|go = Identity

(DY) oyo Dy 1
ww—( det D] )Ow

vzuozp_l

Open problem: Is this the only obstruction (v € C*®(£2))7
27



Geometric Inverse Problem (Lee-U, 1989)

(M, g) compact Riemannian manifold with boundary.
n > 3, Ay Laplace-Beltrami operator g = (g;;) pos. def.
symmetric matrix

1 o0 - Ou g
gu —detg Z o, (’\/ gg s ) (g ) (gzy)

ij=1 j

f v

Agu=0o0on M @ Conductivity:
_ i = /det g g
u’aM = Y detgg
a6
no . du
Ng(f) = ) vgW—/dety
i,j=1 oz; OM

28



ANOTHER MOTIVATION (STRING THEORY)

HOLOGRAPHY

Dirichlet-to-Neumann map is the “boundary-2pt func-
tion"

Inverse problem: Can we recover (M,g) (bulk) from
boundary-2pt function 7

M. Parrati and R. Rabadan, Boundary rigidity and holog-
raphy, JHEP 0401 (2004) 034

29



Anisotropic (n > 3)

Theorem (n > 3) (Lassas-U 2001, Lassas-Taylor-U 2003)
(M, g;),1 = 1,2, real-analytic, connected, compact, Rie-
mannian manifolds with boundary. Let " C oM, [ open.
Assume

Ng1(F)Ir = Ngo(F)IFs VS, f supported in I

Then d¢Y : M — M diffeomorphism, = Identity, so
that

g1 =1 g2
In fact one can determine topology of M, as well (only
need to know Ay, OM).

30



Non-Uniqueness (Anisotropic, n > 3)

Counterexamples (Daudé-Kamran-Nicoleau, 2019)

e [{ =T[5, vissmooth in the interior but only HOlder
up to the boundary (based on Miller's counterex-
amples for unique continuation).

e [1 and [ 5 are disjoint, v is smooth up to the bound-
ary.

31



Moding Out the Diffeomorphism Group
Some conformal class Ngg=Ng, BeC®(M)
—— B =17

More general problem

(Ag—q)u=0, g€ C®(M)
u|8M — ng
Ng(f) = a—ﬁglaM-

Inverse Problem: Does Ay, determines q 7

32



Moding Out the Diffeomorphism Group
(n>3)

(Dg—q)u=0, g€ C(M)

ulons = f, O )

_ 9
Ng(f) = gy lonm-

Theorem (Dos Santos-Kenig-Salo-U, 2009) Assume that
there is a global coordinate system so that (*) is true.
In addition gg|is simple. Then Ay determines uniquely

q .

Extension: Dos Santos-Kurylev-Lassas-Salo, 2016
33



Moding Out the Diffeomorphism Group

g(x1,7) = c(z) ( (1) go?ac/) ) = R7 1

Examples

(a) g(x) conformal to Euclidean metric (Sylvester-U, 1987)

(b) g(x) conformal to hyperbolic metric (Isozaki, 2004)

(c) g(x) conformal to metric on sphere (minus a point)

34



Non-uniqueness for EIT (Cloaking)

Motivation (Greenleaf-Lassas-U, MRL, 2003)

When bridge connecting the two parts
of the manifold gets narrower the
boundary measurements give less infor-
mation about isolated area.

When we realize the manifold in Euclidean space we
should obtain conductivities whose boundary measure-
ments give no information about certain parts of the
domain.

35



Transformation Optics

virtual space

physical space

36







Cloaking
g = identity on B(0,2),
F*’}/ on B(Oa 2)\8(07 1)7
metric associated to #.

Let

Q) )2
|

In spherical coordinates
(r,$,0) — (rsinfcoso,rsinfdsing,rcosb),

2(r —1)2sin® 0 0
5 = 0 2sin6 0
0 0 2(sing)1

Let ¥ (resp. g) be the conductivity (resp. metric) in
B(0,2) such that ¥ =~ (resp. g = g) on B(0,2)\B(0,1)
and arbitrarily positive definite on B(0,1). Then

Theorem (Greenleaf-Lassas-U 2003)

38



The Two Dimensional Case

Theorem (n =2) Let v, € C%(Q), j =1,2.

Assume Ay, =Ny, . Then vy =2

e Nachman (1996)
e Brown-U (1997) Improved to v; Lipschitz
e Astala-Pdivdrinta (2006) Improved to v; € L(£2)

39



Schrodinger (n=2)

This follows from more general result

Theorem (n = 2, Bukhgeim, 2008) Let q; € L*(2),
7 =1,2.

Assume Ay = Ny Then g1 =qo.

Bukhgeim, ¢; € C1(Q)
Extension: Bldsten, Imanuvilov, Yamamoto, 2016

40



CGO (n=2)
Ng1 = Ngo = q1 =@
Sketch of proof New class of CGO solutions
ui(z,7) = €™ (1 +r1(z,7))
us(z,7) = e 77 (1 +ra(z, 7))

§é)sl¥§ (A —g;)u; = 0 with r;(z,7) — 0 on € sufficiently

> 1

Notation 2z =u2x1+ x>

Remark 22 = CB% — x% + 2ix1x0 = © + 1Y

Ve -Vip =0, [Vo|= |V

@ harmonic, ¢ conjugate harmonic.

General result: Ag—q, M Riemann surface (Guillarmou-
Tzou , 2010)

41



Partial Data for Second Order Elliptic Equations (n=2)
(Imanuvilov—U—-Yamamoto, 2011)

0 0
Ag—I—A(z)£+B(z)£—|—q z = x1 + 122

g = (g4;) positive definite symmetric matrix;

1
Agu = det(Q)QU—) Z] — (gz]) !
\ det(g) 1,j= 1
Includes

e Anisotropic Calderdon’s Problem
e Magnetic Schrodinger Equation

e Convection terms
42



Anisotropic (n=2)

Theorem (Imanuvilov—U-Yamamoto, 2011) Q C RZ?,
rC 0, I open, v, = (7)) € C®(),k = 1,2, positive
definite symmetric. Assume

Ny (ONr = N (HDIr, Vf suppf CT.

Then JF : Q — Q, C° diffeomorphism, F|r = Identity
such that

Fyy1 = 2.
Full Data (I' = 0%2):

e v, €C?%(Q), Nachman (1996)
e - Lipschitz, Sun—U (2001)
e . € L°(2), Astala—Lassas—Pdvadrinta (2006)
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Fractional Laplacian

Consider the fractional Laplacian
(=A)°, 0<s<1,
defined via the Fourier transform by

(—A)5u = F g% a()}.

This operator is nonlocal: it does not preserve supports,
and computing (—A)%u(x) involves values of u far away

from z.

44



Fractional Laplacian

Different models for diffusion:

oy — Au =20 normal diffusion/BM
oru + (—A)Su = O superdiffusion/Lévy flight
Ofu—Au=0 subdiffusion/CTRW

The fractional Laplacian is related to

e anomalous diffusion involving long range interac-
tions (turbulent media, population dynamics)

e Lévy processes in probability theory

e financial modelling with jump processes

Many results for time-fractional inverse problems, very

few for space-fractional [Jin-Rundell, 2015].
45



Fractional Laplacian

Let Q2 C R™ bounded, ¢ € L*®°(£2). Since (—A)% is
nonlocal, the Dirichlet problem becomes

{ (mA)Y+@u=0 inQ,
u=7f in ¢

where Q. = R"\ Q is the exterior domain.

Given f € H%(L2.), look for a solution v € H5(R™). DN
map

Ny HS () = H3(Q0), Agf = (—A)ulq,.

Inverse problem: given A4, determine gq.
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First Result
Theorem(Ghosh—Salo—U, 2020)

Let 2 C R™ be a bounded open set, let 0 < s < 1, and
let q1,q0 € L°(2). If W, W' C Q. are open sets, and if

Ny flwr = N flwr, f € CZ (W),
then g1 = ¢o in 2.

Main features:

e local data result for arbitrary W, W' C Q.
e the same method works for all n > 2

e new mechanism for solving (nonlocal) inverse prob-
lems

47



Main tools 1: unigueness

Theorem
Ifu e H-"(R™) forsomer € R, and if ulyy = (—A)%uly =
0 for some open set W C R", then u = 0.

Proof (sketch). If u is nice enough, then
(—A)Su ~ lim y172%9,w( -, y)
y—0
where w(x,y) is the Caffarelli-Silvestre extension of w:
dive y(y1 725V w) = 0 in R” x {y > 0},
w|y:o = u.

Thus (—A)%u is obtained from a local equation, which
is degenerate elliptic with A, weight y1=2%. Carleman
estimates [Ruland 2015] and uly = (—A)%ulyy = 0 im-
ply unigueness.
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Main tools 2: approximation

Theorem(Ghosh—Salo—U, 2020)
Any f € L?2(Q) can be approximated in L2() by solu-
tions u|o, where

(=AY 4+ q@u=0in €, supp(u) CQUW. (%)

If everything is C*°, any f € C’“(ﬁ) can be approximated
in Ck(Q) by functions d(z) Su|o with u as in (x).

Proof. Apply this to

| (a1 —a2)uruz =0, (=2)"+q))u; =0( =1,2)
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Further Results

Variable coefficients fractional elliptic operators
(Ghosh—Lin—Xiao, 2017)

Regularity and stability (Riland—Salo, 2017)

Reconstruction and single Measurement (Ghosh—
Riland—Salo—U, 2018)

Fractional Schrodinger equation with drift (Cekic—
Lin—Riland, 2018)

Non-local Perturbations (Bhattacharyya—ghosh—U,
2019)

Fractional magnetic operators (Covi, 2019, Li, 2020)

Any local perturbation of fractional Laplacian (Covi—
Monkkdnen—Railo—U, 2020)

50



