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Diffusion

Diffusion describes the spreading out of particles or ”intensity”
from regions of high concentration to low.



Mathematical model

Let u(x , t) be the intensity at point x ∈ Rn at
time t. If V ⊂ Rn is a smooth subdomain,

∂

∂t

[∫
V
u(x , t) dx

]
︸ ︷︷ ︸
intensity change in V

= −
∫
∂V

J(x , t) · ν(x) dS(x)︸ ︷︷ ︸
total flux through ∂V

=⇒
∫
V

∂u

∂t
(x , t) dx = −

∫
V
divx J(x , t)︸ ︷︷ ︸∑n

j=1
∂Jk
∂xk

dx
(

Gauss divergence
theorem

)

=⇒ ∂u

∂t
(x , t) = −divx J(x , t).

(
V arbitrary

)



Mathematical model

In diffusion, the flux J is from regions of higher to lower
concentration. The simplest model is

J(x , t) = −D∇xu(x , t) (D > 0). (∗)

If u denotes the


chemical concentration

temperature

electric potential

 ,

then (∗) is


Fick’s law of diffusion

Fourier’s law of heat conduction

Ohm’s law of electrical conduction

 .



Mathematical model

Letting D ≡ 1
2

and combining{
∂u
∂t

= −divx J ,

J = −1
2
∇xu

leads to the equations

∂u
∂t

= 1
2
∆u, (heat equation)

∆u = 0. (Laplace equation)1

Here ∆ is the Laplace operator

∆u = div(∇u) =
n∑

j=1

∂2u

∂x2
j

.

1steady state heat equation, where u is independent of t



Brownian motion

R. Brown (1827) observed the continuous jittery motion of
microscopic particles suspended in water, due to the particle
being pushed around by water molecules in thermal motion.

Molecular scale Microscopic Macroscopic



Brownian motion

1D Brownian motion (Bt)t≥0 is a scaling limit of random walk:

Suppose that when time increases from t to t + ∆t, the
particle is pushed ∆x units either left or right. Then

BN∆t ≈ (∆x)(X1 + . . . + XN)

where Xj are i.i.d. with P(Xj = ±1) = 1
2
. If ∆t = 1

N
, then

E[ |B1|2 ] ≈ (∆x)2E[ (X1 + . . . + XN)2 ] = N(∆x)2.

Normalizing B1 to have variance 1 forces ∆x = 1√
N

.



Brownian motion

Try to define 1D Brownian motion (Bt)t≥0 by

Bt = lim
N→∞

B
(N)
t , B

(N)
t =

X1 + . . . + XbtNc√
N

.

Central limit theorem (connection to normal distribution N(0, t))

=⇒ limit exists (for each fixed t) and Bt ∼ N(0, t).

Donsker’s theorem: (B
(N)
t )t≥0 converges in

distribution to (Wt)t≥0 (Wiener process),
a process with independent Gaussian incre-
ments and almost surely continuous paths.

(In Rn, treat each coordinate separately.)



Macroscopic picture

Let u(x , t) be the density of Brownian particles at x at time t,
if the initial density is f (x). Heuristically,

u(x , t) =

∫
Rn

#{particles jumping to x in time t from y} dy

=

∫
Rn

f (y)pt(x − y) dy

where pt(x) = 1
(2πt)n/2 e−

|x|2
2t is the probability density of Bt .

Thus u(x , t) solves the heat equation{
∂u
∂t

= 1
2
∆u in Rn × {t > 0},

u|t=0 = f .



Universality

Central limit and Donsker’s theorems: microscopic particles
follow Brownian motion, no matter what the probability law
for the i.i.d. jumps Xj (assuming mean zero and finite variance).

Partly explains the success of the normal diffusion model,
based on the heat and Laplace equations

∂u
∂t

= 1
2
∆u,

∆u = 0.
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Anomalous diffusion

Normal diffusion arises in environments ”close to equilibrium”,
and when the conditions of the Central Limit Theorem are
met. In other cases, the diffusion will be called anomalous.

We will describe a model for anomalous diffusion that enjoys
both a probabilistic and PDE interpretation.

I Probabilistically, this will involve random walks having
infinite variance jumps, or where the waiting time
between jumps is also random.

I Analytically, this will involve heat and Laplace type
equations with fractional derivatives.



Turbulent fluids

Trajectories of particles in a rotating annulus filled with water.



Lévy flight foraging hypothesis

Predators may follow Brownian motion in prey-abundant areas,
but switch to Lévy flights in regions where prey is sparsely and
unpredictably distributed.



Financial modelling
Extreme events in financial markets seem to occur with a
significant probability. B. Mandelbrot and E. Fama (1963)
suggested heavy-tailed probability distributions, such as stable
ones, to model stock market returns and prices.



Generalised central limit theorem

Random walk where jumps may have infinite mean or variance:

Theorem (Gnedenko-Kolmogorov 1949)
Let X1,X2, . . . be i.i.d. random variables. There are ak , bk with

X1 + . . . + Xk

ak
− bk

d→ Z

if and only if the limit Z has a stable distribution.

Stable distributions include the symmetric ones defined by

E[e itZ ] = e−|t|
α

, 0 < α ≤ 2.

If α = 2 this is normal distribution, but if α < 2 the probability
density is ∼ |x |−1−α for large |x | =⇒ infinite variance.



Generalised central limit theorem

Theorem. Let X1,X2, . . . be i.i.d. If for some an, bn

X1 + . . .+ Xn

an
− bn

d→ Z , then Z has a stable distribution.

Proof idea. Let Znk = X1+...+Xnk

ank
− bnk . Break in k blocks:[

X1 + . . .+ Xn

an
− bn

]
︸ ︷︷ ︸

Z
(1)
n

+ . . .+

[
Xn(k−1)+1 + . . .+ Xnk

an
− bn

]
︸ ︷︷ ︸

Z
(k)
n

= cnk Znk︸︷︷︸
d→Z

+dnk .

Here Z
(j)
n

d→ Z (j) where Z (j) are i.i.d. copies Z . For such Z (j),

Z (1) + . . . + Z (k) d
= ckZ + dk (self-similarity!).

Z infinitely divisible =⇒ E[ e itZ ] has special form [Lévy-Khintchine].



Lévy processes

The continuous-time version of the
previous random walk is an example
of a Lévy process (Xt)t≥0. This is
a process with independent stationary
increments, but paths are in general
discontinuous.

Consider (Xt)t≥0 in Rn related to α-stable distribution,

E[ e−iXt ·ξ ] = e−t|ξ|
α

.

This induces an anomalous diffusion, where microscopic
particles follow paths of Xt instead of Brownian motion.
Next we derive the corresponding diffusion equation.



Fourier transform

If f is a nice function in Rn, its Fourier transform is

f̂ (ξ) =

∫
Rn

e−ix ·ξf (x) dx , ξ ∈ Rn.

Example. If pt(x) is the probability density function of Xt , its
Fourier transform is p̂t(ξ) = E[ e−iXt ·ξ ] = e−t|ξ|

α
.

One can recover f from f̂ (Fourier inversion), and

(∂j f )̂ (ξ) = iξj f̂ (ξ),
(

derivatives
→ polynomials

)
[∫

f ( · − y)g(y) dy

]
(̂ξ) = f̂ (ξ)ĝ(ξ)

(
convolutions
→ products

)
In particular, (−∆f )̂ (ξ) = |ξ|2f̂ (ξ)

(
Laplacian
→ |ξ|2

)
.



Diffusion equation
Let u(x , t) be the density of Lévy particles at x at time t, if
the initial density is f (x). Heuristically,

u(x , t) =

∫
Rn

f (y)pt(x − y) dy

where p̂t(ξ) = e−t|ξ|
α

. Taking Fourier transforms in x ,

û(ξ, t) = p̂t(ξ)f̂ (ξ) = e−t|ξ|
α

f̂ (ξ)

=⇒ ∂t û(ξ, t) = − |ξ|αû(ξ, t)︸ ︷︷ ︸
↔ fractional Laplacian (−∆)α/2

Thus u(x , t) solves the fractional heat equation{
∂u
∂t

+ (−∆)α/2u = 0 in Rn × {t > 0},
u|t=0 = f .



Diffusion equation

Anomalous diffusion modelled by Lévy flights leads to
space-fractional heat and Laplace equations

∂u
∂t

+ (−∆)α/2u = 0,

(−∆)α/2u = 0.

Similarly, diffusion where waiting times between jumps follow a
stable distribution leads to time-fractional diffusion equations

∂αt u −∆u = 0.

The study of such equations is currently an active topic in PDE.
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Calderón problem

Electrical Resistivity Imaging in geophysics (1920’s) [image: TerraDat]

A.P. Calderón (1980):

I mathematical formulation

I solution of the linearized problem

I exponential solutions



Calderón problem

Conductivity equation{
div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω

where Ω ⊂ Rn bounded domain, γ ∈ L∞(Ω) positive scalar
function (electrical conductivity).

Boundary measurements given by Dirichlet-
to-Neumann (DN) map1

Λγ : f 7→ γ∇u · ν|∂Ω.

Inverse problem: given Λγ, determine γ.

1as a map Λγ : H1/2(∂Ω)→ H−1/2(∂Ω)



Schrödinger equation

Substitute u = γ−1/2v , conductivity equation div(γ∇u) = 0
reduces to Schrödinger equation (−∆ + q)v = 0 where

q =
∆(γ1/2)

γ1/2
.

If q ∈ L∞(Ω), consider Dirichlet problem{
(−∆ + q)u = 0 in Ω,

u = f on ∂Ω.

The DN map is Λq : f 7→ ∂νu|∂Ω.

Inverse problem: given Λq, determine q.



Calderón problem

Uniqueness results, also for local data
(measurements only on a subset Γ ⊂ ∂Ω):

n ≥ 3 q ∈ L∞ Sylvester-Uhlmann 1987

local data Kenig-S 2013, Kenig-Sjöstrand-Uhlmann 2007 (partial results)

n = 2 q ∈ C 1 Bukhgeim 2008

local data Imanuvilov-Uhlmann-Yamamoto 2010



Fractional Laplacian

We will study an inverse problem for the fractional Laplacian

(−∆)s , 0 < s < 1,

defined via the Fourier transform by

((−∆)su)̂ (ξ) = |ξ|2s û(ξ).

This operator is nonlocal, as opposed to the usual Laplacian:

I (−∆)s does not preserve supports

I computing (−∆)su(x) needs values of u far away from x



Fractional Laplacian

Recall different models for diffusion:

∂tu −∆u = 0 normal diffusion/BM

∂tu + (−∆)su = 0 superdiffusion/Lévy flight

∂αt u −∆u = 0 subdiffusion/CTRW

Many results for time-fractional inverse problems, very few for
space-fractional [Jin-Rundell, survey 2015].



Fractional Laplacian

Let Ω ⊂ Rn bounded, q ∈ L∞(Ω). Since (−∆)s is nonlocal,
the boundary value problem becomes{

((−∆)s + q)u = 0 in Ω,
u = f in Ωe

where Ωe = Rn \ Ω is the exterior domain.

Given f in Ωe , look for a solution u in Rn. DN map

Λq : H s(Ωe)→ H−s(Ωe), Λqf = (−∆)su|Ωe .
1

Inverse problem: given Λq, determine q.

1the work required to maintain exterior data f in Ωe



Main result

Theorem (Ghosh-S-Uhlmann 2016)
Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and let
q1, q2 ∈ L∞(Ω). If Wj ⊂ Ωe are open sets, and if

Λq1f |W2 = Λq2f |W2 , f ∈ C∞c (W1),

then q1 = q2 in Ω.

Main features:

I local data result for arbitrary Wj ⊂ Ωe

I the same method works for all n ≥ 2

I new mechanism for solving (nonlocal) inverse problems



Main tools: uniqueness

The fractional equation has strong uniqueness properties:

Theorem
If u ∈ H−r (Rn) for some r ∈ R, and if both u and (−∆)su
vanish in some open set, then u ≡ 0.

Essentially due to [M. Riesz 1938], also have strong unique
continuation results [Fall-Felli 2014, Rüland 2015].

Such a result could never hold for the Laplacian:
if u ∈ C∞c (Rn), then both u and ∆u vanish in a large set.



Main tools: uniqueness

Theorem
If u ∈ H−r (Rn) for some r ∈ R, and if u|W = (−∆)su|W = 0
for some open set W ⊂ Rn, then u ≡ 0.

Proof (sketch). If u is nice enough, then

(−∆)su ∼ lim
y→0

y 1−2s∂yw( · , y)

where w(x , y) is the Caffarelli-Silvestre extension of u:{
divx ,y (y 1−2s∇x ,yw) = 0 in Rn × {y > 0},

w |y=0 = u.

Thus (−∆)su is obtained from a local equation, which is
degenerate elliptic with A2 weight y 1−2s . Carleman estimates
[Rüland 2015] and u|W = (−∆)su|W = 0 imply uniqueness.



Main tools: approximation

Solutions of ∆u = 0 (harmonic functions) in Ω ⊂ Rn are rigid:

I if n = 1, then u′′ = 0 =⇒ u(x) = ax + b

I u has no interior minima or maxima (maximum principle)

I if u|B = 0 in B ⊂ Ω, then u ≡ 0 (unique continuation)

Moreover, if uj → f in L2(Ω) where ∆uj = 0, then also ∆f = 0
(harmonic functions can only approximate harmonic functions).

In contrast, solutions of (−∆)su = 0 turn out to be flexible.



Main tools: approximation

Theorem (Ghosh-S-Uhlmann 2016)
Any f ∈ L2(Ω) can be approximated in L2(Ω) by solutions u|Ω,
where

((−∆)s + q)u = 0 in Ω, supp(u) ⊂ Ω ∪W .

If everything is C∞, can approximate in C k(Ω).

Earlier [Dipierro-Savin-Valdinoci 2016]: C k

approximation by solutions of (−∆)su = 0
in B1, but with no control over supp(u).



Main tools: approximation

The approximation property follows by duality from the
uniqueness result.

This uses Fredholm properties of the solution operator for{
((−∆)s + q)u = F in Ω,

u = 0 in Ωe ,

mapping F ∈ Hα−2s(Ω) to u in the special space H s(α)(Ω),
adapted to the fractional Dirichlet problem, for α > 1/2
[s-transmission property, Hörmander 1965, Grubb 2015]. One has

Hα
comp(Ω) ⊂ H s(α)(Ω) ⊂ Hα

loc(Ω)

but solutions in H s(α)(Ω) may have singularities near ∂Ω.



Summary

1. Normal diffusion can be described either by the heat
equation or by Brownian motion.

2. Anomalous diffusion gives rise to fractional differential
equations.

3. The fractional operator (−∆)s , 0 < s < 1, is nonlocal.
Boundary value problems are replaced by exterior
problems.

4. Fractional equations may have strong uniqueness and
approximation properties, replacing standard methods and
leading to strong results in inverse problems.


