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Calderén problem

Electrical Resistivity Imaging in geophysics (1920's) fimage: Terrabat

General resistivity principle

P1IP2 = Potential electode
C1/C2 = Curront oloctade Raesistivity mater

A.P. Calderén (1980):
» mathematical formulation

» solution of the linearized problem

» exponential solutions

Typical field set-up

Iris Resistivity
Meter

Matal electrode




Calderén problem

Conductivity equation

div(y(x)Vu) =0  in Q,
u=f ondQ

where Q C R” bounded Lipschitz domain, v € L*°(Q) positive
scalar function (electrical conductivity).

Boundary measurements given by Dirichlet- Q
to-Neumann (DN) map!

/\7 f = ’)/VLI : V‘(‘}Q.

Inverse problem: given A, determine .

las a map A, - HY2(0Q) — H™1/2(0Q)



Schrodinger equation

Substitute v = 7~*/?v, conductivity equation div(yVu) =0
reduces to Schrodinger equation (—A + g)v = 0 where

A(y'?)
q= 172

If g € L°(R2), consider Dirichlet problem

(-A+q)u=0 inQ,
u=f on 0f.

The DN map is A, : f — O, ulaq.

Inverse problem: given A, determine q.



Calderén problem

Model case of inverse boundary problems for elliptic equations
(Schrodinger, Maxwell, elasticity).

Related to:
» optical and hybrid imaging methods
> inverse scattering
» geometric problems (boundary rigidity)

» invisibility cloaking



Calderén problem

Uniqueness results:

n>3 q€L>® Sylvester-Uhlmann 1987

g € L2 Chanillo/Jerison-Kenig/Lavine-Nachman 1990

n=2 q&C! Bukhgeim 2008

q € L?>*¢  Blasten-Imanuvilov-Yamamoto 2015

Connections to Carleman estimates and unique continuation
(u vanishes in a ball = u=0).



Local data problem

Prescribe voltages on ', measure currents on [:

Q I

Measure A, f|r for any f with supp(f) C I



Local data problem

Uniqueness known
» if n =2 for any [ C 02 [Imanuvilov-Uhlmann-Yamamoto 2010]

» if n > 3 and inaccessible part has a conformal symmetry
(e.g. flat, cylindrical or part of a surface of revolution)
[Kenig-S 2013, Isakov 2007, Kenig-Sjdstrand-Uhlmann 2007]

Issue: flattening the boundary results in matrix conductivities.

N

Au =0 div(AVu) =0

Calderén problem for div(AVu) = 0, A = (a), open if n > 3!
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Fractional Laplacian

We will study an inverse problem for the fractional Laplacian
(-A)°, 0<s<1,
defined via the Fourier transform by
(D) u=F P}

This operator is nonlocal. it does not preserve supports, and
computing (—A)°u(x) involves values of u far away from x.



Fractional Laplacian

Different models for diffusion:

Oru— Au=0  normal diffusion/BM
Oiu+ (—A)*u =0 superdiffusion/Lévy flight
0fu— Au=0  subdiffusion/CTRW

The fractional Laplacian is related to

» anomalous diffusion involving long range interactions
(turbulent media, population dynamics)

» Lévy processes in probability theory

» financial modelling with jump processes

Many results for time-fractional inverse problems, very few for
space-fractional [Jin-Rundell, tutorial 2015].



Fractional Laplacian

Let Q C R” bounded, g € L*(Q2). Since (—A)® is nonlocal,
the Dirichlet problem becomes

(=AY +qu=0 !n Q, Q
u=rf in Q.

3]

where Q. = R"\ Q is the exterior domain.

Given f € H*(€2.), look for a solution u € H*(R"). DN map
Ny H(Qe) = H2(Qe), Nf = (—A)ulg,..t

Inverse problem: given A, determine q.

Lthe work required to maintain Dirichlet data f.in Qs



Main result

Theorem (Ghosh-S-Uhlmann 2016)

Let 2 C R"” be a bounded open set, let 0 < s < 1, and let
g1, q2 € L®(Q). If W C Q. is any open set, and if

/\Chf’W:/\(mf’Wv fECSO(W%

then g; = go in Q. @

Main features:
» local data result for arbitrary W C €2,
» the same method works for all n > 2

» new mechanism for solving (nonlocal) inverse problems
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3. Approximation property



Calderén problem

Recall the standard Calderén problem:

div(y(x)Vu) =0  in Q,
u=f ondf2

Boundary measurements given by DN map
/\7 f = YVu - l/‘ag.
Inverse problem: given A,, determine .

Two methods:
1. Runge approximation property

2. Complex geometrical optics solutions



Runge approximation

Classical Runge property (for u = 0):

analytic functions in simply connected U C C
can be approximated by complex polynomials.

General Runge property (for elliptic PDE):

any solution in U, where U C Q C R”", can
be approximated using solutions in Q.

Reduces by duality to the unique continuation principle
[Lax, Malgrange 1956], cf. approximate controllability.



Runge approximation

Theorem (cf. localized potentials, Harrach 2008)

Let [ C OQ open, v € W1°(Q) positive. If Uy, Uy C Q are
open sets so that

UonU; =0, Q\(UpUU;) meets T,

Q
then 3 u; € HY(Q), div(yVu;) = 0, with
j j
I
Uj’ ~ 0, uj|U1 %_j,
supp(ujlaa) C T.

Proof. Apply Runge approximation to piecewise constant
solutions w; € H'(Up U Uz) with wj|y, =0, wi|y, = J.



Runge approximation

Produce solutions with u|y, ~ 0 and
uly, > 1 (region of interest), but with r

very little control outside Uy U U, . Useful
in the Calderén problem for

boundary determination [Kohn-Vogelius 1984]

v

» piecewise analytic conductivities [Kohn-Vogelius 1985]

v

local data if y is known near 92 [Ammari-Uhimann 2004]
detecting shapes of obstacles (v known near 02), e.g.

v

» singular solutions [Isakov 1988]

» probe method [Ikehata 1998]

» oscillating-decaying solutions [Nakamura-Uhlmann-Wang 2005]
» monotonicity tests [Harrach 2008]



Complex geometrical optics

Runge type results use that + is known near OS2, or employ
monotonicity conditions. They do not allow to determine

conductivities in C*°(2), which may oscillate near 0.
Complex geometrical optics solutions [Sylvester-Uhlmann 1987]
u=e"(1+r), peC", p-p=0

where [|r||;2@q) — 0 as |p| = oo.

These solutions are small in {Re(p) - x < 0}, large in

{Re(p) - x > 0}, and oscillate in the direction of Im(p). Unlike
in Runge approximation, solutions are controlled in all of €2,
and yield the Fourier transform of the unknown coefficient.



Fractional problem

Return to fractional problem: Q C R” bounded, g € L*(Q),

{ (AP +qu=0 inQ,
u=rf in Q..

DN map

Ng: f = (—A)u

Qe-

Theorem (Ghosh—S—UhImann 2016)

Let 0 <s <1, and let g1,q, € L2(). If W C Q. is any open
set, and if

ACI1f|W = Aq2f|W7 fe CSO(W),

then g1 = g in Q.



Main tools 1: uniqueness

The fractional equation has strong uniqueness properties:

Theorem
If u e H7"(R") for some r € R, and if both u and (—A)*u
vanish in some open set, then u = 0.

Essentially due to [M. Riesz 1938], also have strong unique
continuation results [Fall-Felli 2014, Riiland 2015].

Such a result could never hold for the Laplacian:
if e C°(R"), then both u and Au vanish in a large set.



Main tools 1: uniqueness

Theorem
If u e H"(R") for some r € R, and if u|yy = (=A)°ulw =0
for some open set W C R”, then u = 0.

Proof (sketch). If u is nice enough, then
_ S~ i 1-2s .
(=AY u~ limy==0,w(-,y)
where w(x, y) is the Caffarelli-Silvestre extension of u:

{ divy, (y1"#V,,w) =0 in R” x {y > 0},

wly—o = u.

Thus (—A)*u is obtained from a local equation, which is
degenerate elliptic with A, weight y1=2°. Carleman estimates
[Riland 2015] and u|y = (—A)°u|w = 0 imply uniqueness. [



Main tools 2: approximation
The fractional equation has strong approximation properties
(approximate control in all of €, this could never hold for A):
Theorem (Ghosh—S—UhImann 2016)

Any f € L?(Q) can be approximated in L?(Q) by solutions ulq,
where

((=A)° +q)u=10in Q, supp(u) C QU W. (%)

If everything is C>°, any f € C*(Q) can be approximated in
Ck(Q) by functions d(x) *u|q with u as in (*).

Earlier [Dipierro-Savin-Valdinoci 2016]: any @
f € CX(B;) can be approximated in C*(B;)

by solutions of (—A)°u = 0 in By, but with

very little control over supp(u).



Main tools 2: approximation

The approximation property follows by duality from the
uniqueness result.

This uses Fredholm properties of the solution operator for

(A +qu=F in Q,
u=20 in Q,

mapping F € H*"25(Q) to u in the special space H(*)(Q),
adapted to the fractional Dirichlet problem, for o > 1/2
[s-transmission property, Hormander 1965, Grubb 2015]. One has

HE  (Q) € H)(Q) c H2.(Q)

comp

but solutions in H*(*)(Q) may have singularities near 9.



Summary

1. The Runge property for second order PDE allows to
approximate solutions in U C €2 using solutions in £2.

2. Runge approximation is useful in the Calderén problem
under monotonicity conditions. For general smooth
coefficients, need complex geometrical optics.

3. The fractional operator (—A)*, 0 < s < 1, is nonlocal.
The DN map takes exterior Dirichlet values u|q, to
exterior Neumann values (—A)*ulq, .

4. Fractional equations may have strong uniqueness and
approximation properties, replacing complex geometrical
optics and leading to strong results in inverse problems.



