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Calderón problem

Electrical Resistivity Imaging in geophysics (1920’s) [image: TerraDat]

A.P. Calderón (1980):

I mathematical formulation

I solution of the linearized problem

I exponential solutions



Calderón problem

Conductivity equation{
div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω

where Ω ⊂ Rn bounded Lipschitz domain, γ ∈ L∞(Ω) positive
scalar function (electrical conductivity).

Boundary measurements given by Dirichlet-
to-Neumann (DN) map1

Λγ : f 7→ γ∇u · ν|∂Ω.

Inverse problem: given Λγ, determine γ.

1as a map Λγ : H1/2(∂Ω)→ H−1/2(∂Ω)



Schrödinger equation

Substitute u = γ−1/2v , conductivity equation div(γ∇u) = 0
reduces to Schrödinger equation (−∆ + q)v = 0 where

q =
∆(γ1/2)

γ1/2
.

If q ∈ L∞(Ω), consider Dirichlet problem{
(−∆ + q)u = 0 in Ω,

u = f on ∂Ω.

The DN map is Λq : f 7→ ∂νu|∂Ω.

Inverse problem: given Λq, determine q.



Calderón problem

Model case of inverse boundary problems for elliptic equations
(Schrödinger, Maxwell, elasticity).

Related to:

I optical and hybrid imaging methods

I inverse scattering

I geometric problems (boundary rigidity)

I invisibility cloaking



Calderón problem

Uniqueness results:

n ≥ 3 q ∈ L∞ Sylvester-Uhlmann 1987

q ∈ Ln/2 Chanillo/Jerison-Kenig/Lavine-Nachman 1990

n = 2 q ∈ C 1 Bukhgeim 2008

q ∈ L2+ε Bl̊asten-Imanuvilov-Yamamoto 2015

Connections to Carleman estimates and unique continuation
(u vanishes in a ball =⇒ u ≡ 0).



Local data problem

Prescribe voltages on Γ, measure currents on Γ:

Measure Λγf |Γ for any f with supp(f ) ⊂ Γ.



Local data problem

Uniqueness known

I if n = 2 for any Γ ⊂ ∂Ω [Imanuvilov-Uhlmann-Yamamoto 2010]

I if n ≥ 3 and inaccessible part has a conformal symmetry
(e.g. flat, cylindrical or part of a surface of revolution)
[Kenig-S 2013, Isakov 2007, Kenig-Sjöstrand-Uhlmann 2007]

Issue: flattening the boundary results in matrix conductivities.

Calderón problem for div(A∇u) = 0, A = (ajk), open if n ≥ 3!
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Fractional Laplacian

We will study an inverse problem for the fractional Laplacian

(−∆)s , 0 < s < 1,

defined via the Fourier transform by

(−∆)su = F−1{|ξ|2s û(ξ)}.

This operator is nonlocal: it does not preserve supports, and
computing (−∆)su(x) involves values of u far away from x .



Fractional Laplacian

Different models for diffusion:

∂tu −∆u = 0 normal diffusion/BM

∂tu + (−∆)su = 0 superdiffusion/Lévy flight

∂αt u −∆u = 0 subdiffusion/CTRW

The fractional Laplacian is related to

I anomalous diffusion involving long range interactions
(turbulent media, population dynamics)

I Lévy processes in probability theory

I financial modelling with jump processes

Many results for time-fractional inverse problems, very few for
space-fractional [Jin-Rundell, tutorial 2015].



Fractional Laplacian

Let Ω ⊂ Rn bounded, q ∈ L∞(Ω). Since (−∆)s is nonlocal,
the Dirichlet problem becomes{

((−∆)s + q)u = 0 in Ω,
u = f in Ωe

where Ωe = Rn \ Ω is the exterior domain.

Given f ∈ H s(Ωe), look for a solution u ∈ H s(Rn). DN map

Λq : H s(Ωe)→ H−s(Ωe), Λqf = (−∆)su|Ωe .
1

Inverse problem: given Λq, determine q.

1the work required to maintain Dirichlet data f in Ωe



Main result

Theorem (Ghosh-S-Uhlmann 2016)
Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and let
q1, q2 ∈ L∞(Ω). If W ⊂ Ωe is any open set, and if

Λq1f |W = Λq2f |W , f ∈ C∞c (W ),

then q1 = q2 in Ω.

Main features:

I local data result for arbitrary W ⊂ Ωe

I the same method works for all n ≥ 2

I new mechanism for solving (nonlocal) inverse problems
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Calderón problem

Recall the standard Calderón problem:{
div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω

Boundary measurements given by DN map

Λγ : f 7→ γ∇u · ν|∂Ω.

Inverse problem: given Λγ, determine γ.

Two methods:

1. Runge approximation property

2. Complex geometrical optics solutions



Runge approximation

Classical Runge property (for ∂u = 0):

analytic functions in simply connected U ⊂ C
can be approximated by complex polynomials.

General Runge property (for elliptic PDE):

any solution in U , where U ⊂ Ω ⊂ Rn, can
be approximated using solutions in Ω.

Reduces by duality to the unique continuation principle
[Lax, Malgrange 1956], cf. approximate controllability.



Runge approximation

Theorem (cf. localized potentials, Harrach 2008)
Let Γ ⊂ ∂Ω open, γ ∈ W 1,∞(Ω) positive. If U0,U1 ⊂ Ω are
open sets so that

U0 ∩ U1 = ∅, Ω \ (U0 ∪ U1) meets Γ,

then ∃ uj ∈ H1(Ω), div(γ∇uj) = 0, with

uj |U0 ≈ 0, uj |U1 ≈ j ,

supp(uj |∂Ω) ⊂ Γ.

Proof. Apply Runge approximation to piecewise constant
solutions wj ∈ H1(U0 ∪ U1) with wj |U0 = 0, wj |U1 = j .



Runge approximation

Produce solutions with u|U0 ≈ 0 and
u|U1 � 1 (region of interest), but with
very little control outside U0∪U1. Useful
in the Calderón problem for

I boundary determination [Kohn-Vogelius 1984]

I piecewise analytic conductivities [Kohn-Vogelius 1985]

I local data if γ is known near ∂Ω [Ammari-Uhlmann 2004]

I detecting shapes of obstacles (γ known near ∂Ω), e.g.
I singular solutions [Isakov 1988]

I probe method [Ikehata 1998]

I oscillating-decaying solutions [Nakamura-Uhlmann-Wang 2005]

I monotonicity tests [Harrach 2008]



Complex geometrical optics

Runge type results use that γ is known near ∂Ω, or employ
monotonicity conditions. They do not allow to determine
conductivities in C∞(Ω), which may oscillate near ∂Ω.

Complex geometrical optics solutions [Sylvester-Uhlmann 1987]

u = eρ·x(1 + r), ρ ∈ Cn, ρ · ρ = 0

where ‖r‖L2(Ω) → 0 as |ρ| → ∞.

These solutions are small in {Re(ρ) · x < 0}, large in
{Re(ρ) · x > 0}, and oscillate in the direction of Im(ρ). Unlike
in Runge approximation, solutions are controlled in all of Ω,
and yield the Fourier transform of the unknown coefficient.



Fractional problem

Return to fractional problem: Ω ⊂ Rn bounded, q ∈ L∞(Ω),{
((−∆)s + q)u = 0 in Ω,

u = f in Ωe .

DN map

Λq : f 7→ (−∆)su|Ωe .

Theorem (Ghosh-S-Uhlmann 2016)
Let 0 < s < 1, and let q1, q2 ∈ L∞(Ω). If W ⊂ Ωe is any open
set, and if

Λq1f |W = Λq2f |W , f ∈ C∞c (W ),

then q1 = q2 in Ω.



Main tools 1: uniqueness

The fractional equation has strong uniqueness properties:

Theorem
If u ∈ H−r (Rn) for some r ∈ R, and if both u and (−∆)su
vanish in some open set, then u ≡ 0.

Essentially due to [M. Riesz 1938], also have strong unique
continuation results [Fall-Felli 2014, Rüland 2015].

Such a result could never hold for the Laplacian:
if u ∈ C∞c (Rn), then both u and ∆u vanish in a large set.



Main tools 1: uniqueness

Theorem
If u ∈ H−r (Rn) for some r ∈ R, and if u|W = (−∆)su|W = 0
for some open set W ⊂ Rn, then u ≡ 0.

Proof (sketch). If u is nice enough, then

(−∆)su ∼ lim
y→0

y 1−2s∂yw( · , y)

where w(x , y) is the Caffarelli-Silvestre extension of u:{
divx ,y (y 1−2s∇x ,yw) = 0 in Rn × {y > 0},

w |y=0 = u.

Thus (−∆)su is obtained from a local equation, which is
degenerate elliptic with A2 weight y 1−2s . Carleman estimates
[Rüland 2015] and u|W = (−∆)su|W = 0 imply uniqueness.



Main tools 2: approximation
The fractional equation has strong approximation properties
(approximate control in all of Ω, this could never hold for ∆):

Theorem (Ghosh-S-Uhlmann 2016)
Any f ∈ L2(Ω) can be approximated in L2(Ω) by solutions u|Ω,
where

((−∆)s + q)u = 0 in Ω, supp(u) ⊂ Ω ∪W . (∗)

If everything is C∞, any f ∈ C k(Ω) can be approximated in
C k(Ω) by functions d(x)−su|Ω with u as in (∗).

Earlier [Dipierro-Savin-Valdinoci 2016]: any
f ∈ C k(B1) can be approximated in C k(B1)
by solutions of (−∆)su = 0 in B1, but with
very little control over supp(u).



Main tools 2: approximation

The approximation property follows by duality from the
uniqueness result.

This uses Fredholm properties of the solution operator for{
((−∆)s + q)u = F in Ω,

u = 0 in Ωe ,

mapping F ∈ Hα−2s(Ω) to u in the special space H s(α)(Ω),
adapted to the fractional Dirichlet problem, for α > 1/2
[s-transmission property, Hörmander 1965, Grubb 2015]. One has

Hα
comp(Ω) ⊂ H s(α)(Ω) ⊂ Hα

loc(Ω)

but solutions in H s(α)(Ω) may have singularities near ∂Ω.



Summary

1. The Runge property for second order PDE allows to
approximate solutions in U ⊂ Ω using solutions in Ω.

2. Runge approximation is useful in the Calderón problem
under monotonicity conditions. For general smooth
coefficients, need complex geometrical optics.

3. The fractional operator (−∆)s , 0 < s < 1, is nonlocal.
The DN map takes exterior Dirichlet values u|Ωe to
exterior Neumann values (−∆)su|Ωe .

4. Fractional equations may have strong uniqueness and
approximation properties, replacing complex geometrical
optics and leading to strong results in inverse problems.


