
PSEUDODIFFERENTIAL SYMBOLS

JESSE RAILO

Abstract. This note is for the reading group of inverse problems
at the University of Jyväskylä in Autumn 2017. The reading group
will discuss microlocal analysis and its applications. This note
contains 50 minutes talk on pseudodi�erential symbols. It is based
onMicrolocal analysis and evolution equations (J. Wunsch) chapter
3, and An introduction to pseudo-di�erential operators (M. Wong)
chapter 4. I thank everyone who pointed out some mistakes during
my talk, which I have now (hopefully) corrected here.

1. Symbols of linear partial differential operators

We call the operator

P (x,D) =
∑
|α|≤m

aα(x)Dα, Dj =
1

i
∂xj ,

a linear di�erential operator of order m and denote P ∈ Di�m(X).
Here X, Y = Rn for some n ∈ Z+, α, β are multi-indices, etc. We as-
sume that the coe�cients are smooth aα(x) ∈ C∞(X). In Riemannian
manifolds one would need to de�ne similar concepts in local coordina-
tes and check that de�nitions are coordinate invariant (behave nicely
under changes of variables). We do not pursue much to that direction
in this note.
We de�ne the total symbol of P as

σtot(P )(x, ξ) := p(x, ξ) :=
∑
|α|≤m

aα(x)ξα.

It is a bijective mapping from di�erential operators to the polynomials
of ξ with smooth coe�cients. However, since di�erential operators do
not commute while polynomials do, it is not a ring homomorphism.
We de�ne the principal symbol of P as σm(P ) =

∑
|α|=m aα(x)ξα to be

the top-order part of p.
In this short introductory chapter we describe some properties of

the principal symbols which make them nice in comparison to the total
symbol which is often too technical to manipulate in practice.
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One easily notices that σm(P ) is a homogeneous polynomial of degree
m in ξ, and that σm(P )(x, λξ) = λmσm(P )(x, ξ) for any λ ∈ R. Hence
it is also su�cient to know σ̂m(P ) := σ̂m(P )||ξ|=1. We also point that
one can think symbols as functions σtot(P ), σm(P ) : T ∗X → R and
σ̂m(P ) : S∗X → R. In the Euclidean case T ∗X = Rn × Rn and
S∗X = Rn × Sn−1.

Proposition 1.1. Let P ∈ Di�N(X), Q ∈ Di�M(X). Then

σM+N(PQ) = σN(P )σM(Q).

Proof. Write

P =
∑
|α|≤N

aα(x)Dα, Q =
∑
|β|≤M

bβ(x)Dβ.

In calculations we denote by R a di�erential operator of non-maximal
order, and it may vary from line to line. We calculate that

PQ =

∑
|α|=N

aα(x)Dα

∑
|β|=M

bβ(x)Dβ

+R

=
∑
|α|=N

∑
|β|=M

aα(x)Dα(bβ(x)Dβ) +R

=
∑
|α|=N

∑
|β|=M

aα(x)

(∑
α′≤α

(
α

α′

)
Dα′bβ(x)Dα−α′

)
Dβ +R

=
∑
|α|=N

∑
|β|=M

aα(x)bβ(x)Dα+β +R,

where in the second last step we used the generalized Leibniz rule for
multi-index derivatives, and in the last step the fact that when ever
derivative Dα′ , α 6= 0, hits bβ(x), then the order of the corresponding
term is less than M +N . �

We remark that the above property does not hold for the total sym-
bol, it holds for σ̂m, and shows also that [P,Q] has the order at most
M +N − 1.
Let φ : X → Y be a di�eomorphism (with X = Y = Rn). We de�ne

the pullback of f : Y → R by φ∗f(x) = f(φ(x)). If P is a di�erential
operator on C∞(X), we de�ne its pushforward as

(φ∗P )(f)(y) = P (φ∗f)(φ−1(y)).

Notice that the pushforward φ∗P is a di�erential operator on C∞(Y ).
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Proposition 1.2. Let P ∈ Di�m(X) and φ : X → Y be a di�eomor-
phism. Then

σm(φ∗P )(y, η) = σm(P )(φ−1(y), dφ(η))

where dφ denotes the Jacobian of φ.

Proof. We need to calculate the principal symbol of φ∗P , and hence we
calculate φ∗P . Denote y = φ(x). We do some preparational calculati-
ons. Let f : Y → R. Now

φ∗(Dxj)(f)(y) = Dxj(f(φ(x)))|x=φ−1(y)

=
n∑
i=1

dφi(x)

dxj
(Dyif)(φ(x))|x=φ−1(y)

=
n∑
i=1

dyi

dxj
(Dyif)(y).

Hence φ∗Dxj =
∑n

i=1
dyi

dxj
Dyi .

We use the formula above and

φ∗(D
α
x )(f)(y) = Dα1

x1 · · ·D
αn
xn (f(φ(x))|x=φ−1(y)

to �nd that

φ∗(D
α
x ) = Dα1

x1 · · ·D
αn−1
xn

n∑
i=1

dyi

dxn
Dyif(φ(x))|x=φ−1(y).

We are interested only on the highest order. Hence, whenever the
derivatives Dα1

x1 · · ·D
αn−1
xn hit to the coe�cients coming from the di�e-

omorphism φ the corresponding term is not of the highest order, and
when it hits to the term Dyif(φ(x))|x=φ−1(y), then one gets term of the
form

n∑
i=1

dyi

dxj

n∑
k=1

dyk

dxl
DykDyi

for some l = 1, . . . , n. We remark that the symbol of such terms can
be written simply as a product

n∑
i=1

dyi

dxj
ηi ·

n∑
k=1

dyk

dxl
ηk .

We deduce, inductively, that

σm(φ∗P )(y, η) =
∑
|α|=m

aα(φ−1(y))
n∏
j=1

(
n∑
i=1

dyi

dxj
ηi

)αj

= σm(P )(φ−1(y), dφ(η))
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as claimed.
�

We remark that the above property does not hold for the total sym-
bol, and it holds for σ̂m.

2. Kohn-Nirenberg symbols and classical symbols

The reader should be familiar with the Fourier transform and tem-
pered distributions. One could consult for example the chapters 1�3 of
the book by M. Wong, to get a rapid course on the topic. We de�ne two
symbol classes: Sm = SmKN Kohn-Nirenberg symbols and Smcl classical
symbols. We give examples of symbols within those classes, discuss on
their relation in the compact case and explain why the pseudodi�eren-
tial operators (integral operators) of the symbols are well-de�ned.
Denote 〈ξ〉 := (1+|ξ|2)1/2 and letm ∈ R. We say that a ∈ C∞(T ∗X)

is a Kohn-Nirenberg symbol of order m if for all α, β holds

sup
(x,ξ)∈T ∗X

〈ξ〉|β|−m
∣∣∣∂αx∂βξ a∣∣∣ = Cα,β <∞.

We then denote that a ∈ Sm = SmKN .
We remark that a ∈ Sm if and only if ∀α, β ∈ Nn : ∃Cα,β < ∞ :∣∣∣∂αx∂βξ a∣∣∣ ≤ Cα,β 〈ξ〉m−|β| for all (x, ξ) ∈ T ∗X (this is a trivial observa-

tion!). One could also replace 〈ξ〉 by 1 + |ξ| since they behave asymp-
totically similarly at in�nity (and at zero); it however may change the
optimal coe�cients.
Next we give two examples of symbols satisfying this condition.

Example 2.1. Let p(x, ξ) =
∑
|α|≤m aα(x)ξα where aα ∈ C∞(X). If

the derivatives of all order of aα are bounded for any |α| ≤ m, then
p ∈ Sm.

Proof. Let γ, δ be multi-indices. Then for any (x, ξ) ∈ T ∗X it holds
that ∣∣(Dγ

xD
δ
ξp)(x, ξ)

∣∣ ≤ ∑
|α|≤m

Cα,γ
∣∣∂δξξα∣∣

where Cα,γ = supx∈Rn |(Dγ
xaα)(x)|. Notice that Cα,γ is �nite by as-

sumption. A direct calculation shows that

∂δξξ
α = δ!

(
α

δ

)
ξα−δχδ≤α

for all ξ ∈ Rn.
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Hence ∣∣(Dγ
xD

δ
ξp)(x, ξ)

∣∣ ≤ ∑
|α|≤m

Cα,γδ!

(
α

δ

)
|ξ||α|−|δ|

≤ Cγ,δ 〈ξ〉m−|δ|

where Cγ,δ =
∑
|α|≤mCα,γδ!

(
α
γ

)
. We also used the fact that |ξ| ≤ (1 +

|ξ|2)1/2 = 〈ξ〉. �

Example 2.2. Let ω(x, ξ) = (1 + |ξ|2)m/2,−∞ < m < ∞. Then
ω ∈ Sm.

Proof. It is enough to prove that
∣∣Dβσ(x)

∣∣ ≤ Cm,β 〈ξ〉m−|β| for some
Cm,β < ∞. This is true if β = 0 with coe�cient 1 (in fact identity
holds!). We continue by induction, and assume that for any m ∈
(−∞,∞) and multi-indices β of lengths at most equal to L the claim
is true. Let γ be a multi-index of length L + 1. Then Dγ = DβDj for
some j = 1, . . . , n and some multi-index β of length L.
Let us de�ne a function τ(ξ) = mξj(1+ |ξ|2)m/2−1. Now it holds that

|(Dγω)(ξ)| =
∣∣(DβDjω)(ξ)

∣∣ =
∣∣(Dβτ)(ξ)

∣∣ .
By the generalized Leibniz rule

(Dβτ)(ξ) = m
∑
β′≤β

(
β

β′

)
(Dβ′ξj)D

β−β′(1 + |ξ|2)m/2−1.

By the induction assumption (1+ |ξ|2)m/2−1 is a symbol of order m−2,
and by the previous example considering symbols of di�erential opera-
tors ξj is a symbol of order 1. Hence we have∣∣(Dβτ)(ξ)

∣∣ ≤ C ′m,β
∑
β′≤β

(
β

β′

)
〈ξ〉1−|β

′| 〈ξ〉m−2−|β|+|β
′|

for some �nite C ′m,β. Hence∣∣(Dβτ)(ξ)
∣∣ ≤ Cm,β 〈ξ〉m−|γ|

where Cm,β = C ′m,β
∑

β′≤β
(
β
β′

)
. We remark that β was de�ned by γ,

and this completes the proof. �

We say that a ∈ C∞(T ∗X) is a classical symbol of order m if there
exists ã ∈ C∞(S∗X × R+) such that for all ξ ∈ T ∗X with |ξ| > 1 it
holds that

a(x, ξ) = |ξ|m ã(x, ξ̂, |ξ|−1)
where ξ̂ = ξ/ |ξ|. We then denote that a ∈ Smcl (T ∗X).
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Proposition 2.3. Let Smcl,c denote the symbols of that have compact
support in the base variable x (uniformly with respect to ξ). Then
Smcl,c ⊂ Sm.

Proof. Exercise 3.4. in the notes of Wunsch. We leave it to the reader.
�

Next we de�ne the pseudodi�erential operator for a given symbol.
Let a ∈ Sm for some m ∈ R. Then the pseudodi�erential operator
associated to a is de�ned by

(Op(a)f)(x) := (2π)−n/2
∫
Rn

ei〈x,ξ〉a(x, ξ)f̂(ξ)dξ

for any f ∈ S(Rn). Here S(Rn) denote the Schwartz space (test functi-

ons) and f̂ is the Fourier transform of f de�ned by

f̂(ξ) :=

∫
Rn

f(x)e−i〈x,ξ〉dx.

The Fourier inversion formula for test functions shows that the pseu-
dodi�erential operator associated to the symbol of a linear partial dif-
ferential operator is the linear partial di�erential operator itself. One
can also show that the operator associated to (1 + |ξ|2)m/2 is in fact
(I −∆)m/2 where ∆ =

∑n
j=1 ∂

2
xj is the Laplacian. These are based on

properties of the Fourier transform (see also the last proposition of this
note).
The following two propositions justify the de�nition of the symbol

class Sm and pseudodi�erential operators based on it.

Proposition 2.4. If a, b ∈ Sm and Op(a) = Op(b), then a = b.

Proof. See e.g. Proposition 4.5. and its proof in the book of Wong.
This is based on the Fourier inversion formula and the property that if
f is a continuous tempered function such that 〈f, φ〉 = 0 for every test
function, i.e. the distribution D(f) ≡ 0, then f ≡ 0. (A measurable

function f is said to be tempered if
∫
Rn

|f(x)|
(1+|x|)N dx < ∞ for some N ∈

Z+.) �

Proposition 2.5. If a ∈ Sm, then Op(a) is a mapping from S(Rn) to
itself.

Proof. See e.g. Proposition 4.7. and its proof in the book of Wong. �

Department of Mathematics and Statistics, University of Jyväskylä,
P.O. Box 35 (MaD) FI-40014 University of Jyväskylä, Finland

E-mail address: jesse.t.railo@jyu.fi


	1. Symbols of linear partial differential operators
	2. Kohn-Nirenberg symbols and classical symbols

