Analysis on manifolds

Exercises, 23.10.2014 (return by Thu 27.11.2014)

- 1. Prove Theorem 2.2 in the lecture notes.
- 2. Prove Lemma 2.6 in the lecture notes.
- 3. Let $U \subset \mathbb{R}^n$ be star-shaped and let $\alpha \in \Omega^1(U)$ satisfy $d\alpha = 0$. Show directly that $\alpha = df$ for some $f \in \Omega^0(U)$.
- 4. Show that any inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n is given by

$$\langle v, w \rangle = Av \cdot w, \qquad v, w \in \mathbb{R}^n$$

for some positive definite symmetric matrix $A = (a_{jk})_{j,k=1}^n$, and conversely any such A determines an inner product by the above formula.

- 5. (Exercise 2.1) Show that $L_g(\gamma)$ is independent of the way the curve γ is parametrized, and that we may always parametrize γ by arc length so that $|\dot{\gamma}(t)|_g = 1$ for all t.
- 6. (Exercise 2.2) Show that d_g is a metric distance function on U, and that (U, d_g) is a metric space whose topology is the same as the Euclidean topology on U.
- 7. Verify that $\Gamma_{jk}^l = \Gamma_{kj}^l$ and $\partial_k g_{ij} = \Gamma_{ki}^l g_{lj} + \Gamma_{kj}^l g_{il}$.
- 8. Generalize the first variation formula (Lemma 2.12) to the case of a variation that does not fix the endpoints of the curve.
- 9. Show that the L^2 inner product on m-tensor fields in (U,g) is indeed an inner product.
- 10. If $\beta \in \Omega^k(U)$, show that $\delta \beta = \gamma_I dx^I$ where

$$\tilde{\gamma}_{i_1\dots i_{k-1}}(x) = -g^{lr}(\partial_r \tilde{\beta}_{li_1\dots i_{k-1}} - \Gamma^j_{lr} \tilde{\beta}_{ji_1\dots i_{k-1}}).$$

- 11. Show that $\Delta_g(uv) = (\Delta_g u)v + 2\langle du, dv \rangle_g + u(\Delta_g v)$ for $u, v \in C^2(U)$.
- 12. If $U \subset \mathbb{R}^n$ is a bounded open set with C^1 boundary, and if $u \in C^2(\overline{U})$ satisfies $\Delta_g u = 0$ in U and $u|_{\partial U} = 0$, show that u = 0.