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Preface

The inverse problems reading group this fall will begin by studying

the unique continuation principle for elliptic partial differential equa-

tions. This principle, which states that any solution of an elliptic

equation that vanishes in a small ball must be identically zero, is a

fundamental property that has various applications e.g. in solvability

questions, inverse problems, and control theory.

Possible topics to be covered:

1. Overview

2. Real-analytic coefficients (Holmgren’s theorem)

3. L2 Carleman inequalities

4. Doubling/three spheres inequalities

5. Frequency function method

6. Lp Carleman inequalities

7. The 2D case

8. Counterexamples to unique continuation

9. Pseudoconvexity for general operators

10. Nonlinear equations

1





CHAPTER 1

Introduction

The purpose of these notes is to discuss the unique continuation

principle (UCP) for elliptic second order partial differential equations.

Let Ω ⊂ Rn be a bounded connected open set. For the most part we

will consider linear operators

Pu = ajk∂jku+ bj∂ju+ cu,

where the coefficients satisfy

ajk ∈ W 1,∞(Ω), bj ∈ L∞(Ω), c ∈ L∞(Ω),

and (ajk) is a symmetric matrix satisfying the uniform ellipticity con-

dition for some constant λ > 0,

ajk(x)ξjξk ≥ λ|ξ|2 for all x ∈ Ω and ξ ∈ Rn.

A simple example to keep in mind is the elliptic Schrödinger operator

P = −∆ + q where q ∈ L∞(Ω).

The UCP comes in several different forms:

Theorem 1.1. (Weak UCP) If u ∈ H2(Ω) satisfies

Pu = 0 in Ω

and

u = 0 in some ball B contained in Ω,

then u = 0 in Ω.

Theorem 1.2. (Strong UCP) If u ∈ H2(Ω) satisfies

Pu = 0 in Ω

and if u vanishes to infinite order at x0 ∈ Ω in the sense that

lim
r→0

1

rN

∫
B(x0,r)

|u|2 dx = 0 for all N ≥ 0,

then u = 0 in Ω.

3



4 1. INTRODUCTION

Theorem 1.3. (UCP across a hypersurface) Let S be a C∞ hyper-

surface such that Ω = S+ ∪ S ∪ S− where S+ and S− denote the two

sides of S. If x0 ∈ S and if V is an open neighborhood of x0 in Ω, and

if u ∈ H2(V ) satisfies

Pu = 0 in V

and

u = 0 in V ∩ S−,
then u = 0 in some neighborhood of x0.

Theorem 1.4. (UCP for local Cauchy data) Let Ω ⊂ Rn have

smooth boundary, and let Γ be a nonempty open subset of ∂Ω. If u ∈
H2(Ω) satisfies

Pu = 0 in Ω

and

u|Γ = ∂νu|Γ = 0,

then u = 0 in Ω.

Remarks.

1. Note that since P is linear, weak UCP implies that any two solutions

u1 and u2 that coincide in a small ball must be equal in the whole

domain. This explains the name ”unique continuation principle”.

2. Once clearly has

strong UCP =⇒ weak UCP.

It is also not hard to see that

UCP across a hypersurface =⇒ weak UCP =⇒ UCP for Cauchy data.

3. The above theorems remain valid if u ∈ H1(Ω).

4. In the above theorems, the condition Pu = 0 in Ω can be replaced

by the differential inequality

|ajk∂jku| ≤ C(|∇u|+ |u|) a.e. in Ω.

5. The assumption that the coefficients (ajk) are Lipschitz continuous

is optimal for n ≥ 3, in the sense that for any α < 1 there exist Cα

coefficients (ajk) such that UCP does not hold for the corresponding

operator. (If n = 2 the UCP holds for ajk ∈ L∞.) However, the

assumptions for the first and zeroth order terms can be improved,

and in fact UCP holds if bj ∈ Ln(Ω) and c ∈ Ln/2(Ω) (at least when

n ≥ 3).
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6. The UCP for uniformly elliptic nonlinear equations often reduces to

the linear case.

The unique continuation principle is a fundamental property of el-

liptic equations. The UCP and the methods used for studying it, in

particular Carleman inequalities, have various applications including

the following:

• Solvability results for a linear PDE Au = f can often be ob-

tained by duality from uniqueness results for the adjoint equa-

tion A∗u = 0.

• Similarly, controllability results for a linear PDE Au = 0 are

often equivalent with certain uniqueness results for the adjoint

equation.

• Optimal stability results for the Cauchy problem for elliptic

equations are closely related to the UCP.

• The UCP and Carleman inequalities play an important role

in various inverse boundary value problems for elliptic and

evolution equations.

There are various approaches to obtaining unique continuation re-

sults for elliptic equations. The earliest such results were valid for real-

analytic coefficients (Holmgren’s uniqueness theorem). In the general

case the UCP can be established via certain inequalities, such as:

1. Doubling inequalities, stating that∫
B2r

u2 dx ≤ C

∫
Br

u2 dx for all u with Pu = 0.

2. Three spheres inequalities, stating that

‖u‖L2(B2r) ≤ C‖u‖1−θ
L2(Br)

‖u‖θL2(B3r)
for all u with Pu = 0,

for some θ with 0 < θ < 1.

3. The frequency function method, which in the case P = −∆ states

that the frequency function

F (r) =
r
∫
Br
|∇u|2 dx∫

∂Br
u2 dS

is increasing with respect to r if u is a harmonic function.
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4. Carleman inequalities, which state that for any τ > 0 sufficiently

large one has

‖eτϕw‖L2(Ω) ≤
C

τα
‖eτϕPw‖L2(Ω) for all w ∈ C∞c (Ω),

where C > 0 and α > 0 are independent of τ , and ϕ is a suitable

real valued weight function (for instance ϕ(x) = xn).

It is clear that the doubling and three spheres inequalities imme-

diately yield a form of unique continuation, since they imply that any

solution that vanishes on Br must also vanish on B2r. Also the mono-

tonicity of the frequency function related to the Laplace equation (or

the corresponding property for general P ) imply the UCP. It is not im-

mediately obvious how Carleman inequalities would lead to the UCP,

but we will see that they do and in fact they seem to be the most

powerful general method for establishing unique continuation proper-

ties. In particular, the other inequalities above may be derived from

Carleman inequalities, and Carleman inequalities also lead to versions

of the UCP for many non-elliptic equations.

References. Holmgren’s theorem:

F. John, Partial differential equations (Section 3.5), 4th edition,

Springer-Verlag, 1982.

L. Hörmander, The analysis of linear partial differential operators, vol.

1 (Section 8.6)

F. Treves, Basic linear partial differential equations (Section II.21),

Academic Press, 1975.

L2 Carleman inequalities:

L. Hörmander, The analysis of linear partial differential operators,

vol. 3 (Section 17.2)

L. Hörmander, The analysis of linear partial differential operators, vol.

4 (Chapter 28)

C. Kenig, CNA summer school lecture notes, https://www.math.cmu.edu/cna/LectureNotesFiles/Keniglecture1.pdf

N. Lerner, Carleman inequalities (lecture notes), https://www.imj-

prg.fr/ nicolas.lerner/m2carl.pdf

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and
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parabolic operators (lecture notes), http://hal.archives-ouvertes.fr/docs/00/55/95/68/PDF/carleman-

notes.pdf

D. Tataru, Carleman estimates (unfinished lecture notes), http://math.berkeley.edu/ tataru/papers/ucpnotes.ps
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Doubling/three spheres inequalities, frequency function method:

G. Alessandrini, L. Rondi, E. Rosset, S. Vessella, The stability for

the Cauchy problem for elliptic equations, http://arxiv.org/pdf/0907.2882.pdf

N. Garofalo, F. Lin, Monotonicity properties of variational integrals,

Ap weights and unique continuation, Indiana U Math J, 1986

N. Garofalo, F. Lin, Unique continuation for elliptic operators: A
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N. Marola, S. Granlund, On a frequency function approach to the

unique continuation principle, http://arxiv.org/abs/1110.0945

Lp Carleman inequalities:

C. Sogge, Fourier integrals in classical analysis (Section 5.1), Cam-

bridge University Press, 1993.

Nonlinear equations:

S. Armstrong, L. Silvestre, Unique continuation for fully nonlinear

elliptic equations, http://arxiv.org/abs/1102.1673





CHAPTER 2

Equations with real-analytic coefficients
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CHAPTER 3

Carleman inequalities

3.1. UCP across a hyperplane

We will begin by considering a very simple case, which illustrates

the main ideas with minimal technicalities. This case is related to the

UCP across a hyperplane for solutions of an elliptic equation in an

infinite strip.

Theorem 3.1. Let Ω = {x ∈ Rn ; a < xn < b}, let q ∈ L∞(Ω), and

assume that u ∈ H2(Ω) solves

(−∆ + q)u = 0 in Ω.

If u|{b−ε<xn<b} = 0 for some ε > 0, then u ≡ 0 in Ω.

Since the domain Ω is unbounded, a few remarks are in order.

(1) The Sobolev spaces on Ω are defined for k ≥ 0 by

Hk(Ω) := {u ∈ L2(Ω) ; ∂αu ∈ L2(Ω) for |α| ≤ k}.

We define Hk
0 (Ω) to be the closure of C∞c (Ω) in Hk(Ω).

(2) If q ∈ L∞(Ω), we say that u ∈ H1(Ω) is a weak solution of

(−∆ + q)u = 0 in Ω if∫
Ω

(∇u · ∇v̄ + quv̄) dx = 0 for all v ∈ H1
0 (Ω).

(3) Now if u is a weak solution of (−∆ + q)u = 0 such that

u|{xn=a} = u|{xn=b} = 0, so u ∈ H1
0 (Ω), then using u as a

test function implies∫
Ω

(|∇u|2 + q|u|2) dx = 0.

Thus, at least if q ≥ 0, we obtain
∫

Ω
|∇u|2 dx = 0 which implies

u ≡ 0 by the boundary condition.

The previous remarks show that any solution vanishing on the whole

boundary ∂Ω = {xn = a, b} is identically zero at least if q ≥ 0, which

follows from uniqueness in the Dirichlet problem. On the other hand,

11
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Theorem 3.1 states that any solution vanishing near one part of the

boundary ({xn = b}) is identically zero, with no a priori conditions on

the other part of the boundary ({xn = a}).
Theorem 3.1 will follow from the following a priori L2 estimate

which involves exponential weights.

Theorem 3.2. (Carleman inequality for −∆) Assume that Ω =

{x ∈ Rn ; a < xn < b}. Then for any τ ∈ R \ {0} one has

‖w‖L2(Ω) ≤
C

|τ |
‖eτxn(−∆)e−τxnw‖L2(Ω), w ∈ H2

0 (Ω),

where C = b−a
2π

.

A major point in the Carleman inequality is that the constant on the

right is C
|τ | where C = b−a

2π
is independent of τ . By taking τ very large

we can make the constant C
|τ | small, which makes it possible to absorb

various error terms. (We remark that by using a stronger weight, the

constant improves to C
|τ |3/2 as we will see later, but then the sign of τ

will be important.)

As an example of absorbing errors by taking τ large, we can easily

include an L∞ potential in the Carleman inequality.

Theorem 3.3. (Carleman inequality for −∆+q) Assume that Ω =

{x ∈ Rn ; a < xn < b}, and let q ∈ L∞(Ω). If |τ | > b−a
π
‖q‖L∞(Ω), one

has

‖w‖L2(Ω) ≤
2C

|τ |
‖eτxn(−∆ + q)e−τxnw‖L2(Ω), w ∈ H2

0 (Ω),

where C = b−a
2π

.

Proof. Theorem 3.2 gives

‖w‖L2(Ω) ≤
C

|τ |
‖eτxn(−∆)e−τxnw‖L2(Ω)

≤ C

|τ |
‖eτxn(−∆ + q)e−τxnw‖L2(Ω) +

C‖q‖L∞(Ω)

|τ |
‖w‖L2(Ω)

≤ C

|τ |
‖eτxn(−∆ + q)e−τxnw‖L2(Ω) +

1

2
‖w‖L2(Ω)

by using the condition for τ . �

Before proving Theorem 3.2, let us give the main argument that

allows to obtain the unique continuation result (Theorem 3.1) from

the Carleman inequality.
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Proof of Theorem 3.1 given Theorem 3.2. We assume that

Ω = {x ∈ Rn ; a < xn < b} and u ∈ H2(Ω) satisfies

(−∆ + q)u = 0 in Ω,

u = 0 in {b− ε < xn < b}.

Let c0 be any number satisfying a < c0 < b. We want to show that

u = 0 in {c0 < xn < b}.
We rewrite the estimate from Theorem 3.3 as

‖eτxnw‖L2(Ω) ≤
C

τ
‖eτxn(−∆ + q)w‖L2(Ω)

which holds for all w ∈ H2
0 (Ω) if τ > 0 is sufficiently large. Now choose

w = χu

where χ(x′, xn) = ζ(xn) where ζ ∈ C∞(R) satisfies ζ = 1 for t ≥ c0

and ζ = 0 near t ≤ a. Using that χ = 0 near {xn = a} and u = 0 near

{xn = b}, we have w ∈ H2
0 (Ω)1 and therefore

‖eτxnu‖L2({c0<xn<b}) ≤ ‖eτxnχu‖L2(Ω)

≤ C

τ
‖eτxn(−∆ + q)(χu)‖L2(Ω)

≤ C

τ
(‖eτxnχ(−∆ + q)u‖L2(Ω) + ‖eτxn [∆, χ]u‖L2(Ω))

where [∆, χ]v = 2∇χ · ∇v + (∆χ)v. In particular [∆, χ]u is supported

in supp(∇χ) ⊂ {a ≤ xn ≤ c0}. Using that (−∆+q)u = 0, the previous

inequality implies

‖eτxnu‖L2({c0<xn<b}) ≤
C

τ
‖eτxn [∆, χ]u‖L2({a<xn<c0}).

But eτxn is ≥ eτc0 when xn ≥ c0 and ≤ eτc0 when xn ≤ c0. This implies

that

eτc0‖u‖L2({c0<xn<b}) ≤ ‖eτxnu‖L2({c0<xn<b})

≤ C

τ
‖eτxn [∆, χ]u‖L2({a<xn<c0})

≤ C

τ
eτc0‖[∆, χ]u‖L2({a<xn<c0}).

But [∆, χ]u is a fixed function, so dividing by eτc0 and taking τ → ∞
shows that ‖u‖L2({c0<xn<b}) = 0. Thus u|{c0<xn<b} as required. �

1Justify this.
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Remark. Draw a picture explaining the regions where xn has the

right sign.

We will now prove Theorem 3.2. The main point in the proof is

a positive commutator argument (based on integration by parts) that

gives a lower bound for the conjugated Laplacian eτxn(−∆)e−τxn using

its decomposition to self-adjoint and skew-adjoint parts. The proof

also uses the Poincaré inequality in a strip (Theorem 3.4 below).

Proof of Theorem 3.2. Write P := eτxn(−∆)e−τxn . By den-

sity, it is enough to prove the estimate

‖w‖ ≤ C

τ
‖Pw‖, w ∈ C∞c (Ω),

where ‖ · ‖ = ‖ · ‖L2(Ω). Writing D = −i∇, note that

eτϕD(e−τϕw) = (D + iτ∇ϕ)w.

It follows that

P = eτxnDe−τxn ◦ eτxnDe−τxn = (D + iτen)2 = D2 + 2iτDn − τ 2.

We want a lower bound for ‖Pw‖, and to achieve this we write P

in terms of its self-adjoint and skew-adjoint parts, i.e. P = A + iB

where A and B are the formally self-adjoint operators

A =
P + P ∗

2
, B =

P − P ∗

2i
.

Here P ∗ is the formal adjoint of P given by

P ∗ = D2 − 2iτDn − τ 2.

It follows that

A = D2 − τ 2, B = 2τDn.

Now if w ∈ C∞c (Ω), we write ( · , · ) = ( · , · )L2(Ω) and compute

‖Pw‖2 = ((A+ iB)w, (A+ iB)w)

= ‖Aw‖2 + ‖Bw‖2 + i(Bw,Aw)− i(Aw,Bw)

= ‖Aw‖2 + ‖Bw‖2 + i([A,B]w,w)(3.1)

where [A,B] := AB − BA is the commutator of A and B. In the last

line we integrated by parts, using that w ∈ C∞c (Ω).

The computation (3.1) shows that we may expect a lower bound

for ‖Pw‖2 provided that the commutator i[A,B] is positive, in the
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sense that i([A,B]w,w) ≥ 0. In our case both A and B are constant

coefficient operators, and therefore [A,B] ≡ 0. Thus

‖Pw‖2 = ‖Aw‖2 + ‖Bw‖2.

Here B = 2τ∂n so it is enough to have a lower bound for ‖∂nw‖2. This

follows from the Poincaré inequality in a strip, which is Theorem 3.4

below. Forgetting the ‖Aw‖2 term, we have

‖Pw‖2 ≥ 4τ 2‖∂nw‖2 ≥ 4τ 2π2

(b− a)2
‖w‖2

which is the required result. �

Theorem 3.4. (Poincaré inequality in a strip) Assume that Ω =

{x ∈ Rn ; a < xn < b}. Then∫
Ω

|u|2 dx ≤ (b− a)2

π2

∫
Ω

|∂nu|2 dx, u ∈ H1
0 (Ω).

The constant is optimal.

Proof. We start by proving that

(3.2)

∫ b

a

|f(t)|2 dt ≤ (b− a)2

π2

∫ b

a

|f ′(t)|2 dt, f ∈ H1
0 ((a, b)).

By scaling we may assume that a = 0 and b = π. Let f ∈ H1
0 ((0, π))

and define

h(t) :=

{
f(t), 0 < t < π,

−f(−t), −π < t < 0.

Then h is an odd function in H1
0 ((−π, π)) and thus has a Fourier series

h(t) =
∞∑

k=−∞

ĥ(k)eikt =
∞∑
k=1

ĥ(k)(eikt − e−ikt).

The Parseval identity and the fact that (h′)̂ (k) = ikĥ(k) imply that∫ π

0

|f |2 =
1

2

∫ π

−π
|h|2 = π

∑
k 6=0

|ĥ(k)|2

≤ π
∑
k 6=0

|ikĥ(k)|2 =
1

2

∫ π

−π
|h′|2 =

∫ π

0

|f ′|2.

This implies (3.2), and it also follows that equality holds in (3.2) iff

f(t) = c sin(π t−a
b−a) for some constant c.
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Now if u ∈ C∞c (Ω), the inequality (3.2) gives∫
Ω

|u|2 =

∫
Rn−1

∫ b

a

|u|2 ≤ (b− a)2

π2

∫
Rn−1

∫ b

a

|∂nu|2

and the result follows by density. The optimality of the constant follows

by taking u(x′, xn) = ϕ(x′) sin(π t−a
b−a) for some ϕ ∈ C∞c (Rn−1). �

3.2. UCP across a hypersurface

In the previous section, we discussed a simple unique continuation

result across a hyperplane {xn = c} in the case where the solution u

vanishes in some infinite strip on one side of {xn = c}. In this section

we will prove a local result, stating that if a solution vanishes on one

side of a (not necessarily flat) hypersurface near some point x0, then

the solution vanishes near x0. For simplicity, we restrict our attention

to elliptic operators of the form −∆ + q.

Theorem 3.5. (UCP across a hypersurface) Let Ω ⊂ Rn be a

bounded open set and let q ∈ L∞(Ω). Assume that x0 ∈ Ω, let V

be a neighborhood of x0, and let S be a C∞ hypersurface through x0

such that V = V+ ∪ S ∪ V− where V+ and V− denote the two sides of

S. If u ∈ H2(V ) satisfies

(−∆ + q)u = 0 in V,

u = 0 in V+,

then u = 0 in some neighborhood of x0.

In Theorem 3.1 we proved the UCP across {xn = c} via Carleman

inequalities with weight ϕ(x) = xn. Note that {xn = c} = ϕ−1(c) is

a level set of the weight ϕ. Now the level sets of any hypersurface S

are of the form ϕ−1(c) for a suitable ϕ. Thus it is natural to study

more general (and ”stronger”) weights ϕ than the linear one. This will

also be very useful for localizing the estimates and for considering more

general operators.

Given a hypersurface S = ϕ−1(c), there are many functions having

S as a level set (any function of the form f(ϕ) has this property).

The next result shows that if one starts with any function ϕ with

nonvanishing gradient, the ”convexified” weight function ψ = eλϕ for

λ sufficiently large will enjoy a good Carleman inequality.
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Theorem 3.6. (Carleman inequality with weight eλϕ) Let Ω ⊂ Rn

be a bounded open set, and assume that ϕ ∈ C4(Ω) and q ∈ L∞(Ω)

satisfy ϕ ≥ 0 in Ω, ∇ϕ 6= 0 in Ω, and

‖|∇ϕ|−1‖L∞(Ω) + sup
1≤j≤4

‖∇jϕ‖L∞(Ω) + ‖q‖L∞(Ω) ≤M

for some constant M ≥ 1. Let

ψ = eλϕ.

There exist C0, λ0, τ0 > 0 only depending on M such that whenever

λ > λ0 and τ > τ0, one has

λ2‖w‖+ λτ−1‖∇w‖ ≤ C0τ
−3/2‖eτψ(−∆ + q)e−τψw‖

for any w ∈ H2
0 (Ω). (The norms are L2(Ω) norms.)

Remark. The condition ϕ ≥ 0 is not a real restriction. If ϕ0 is any

function in C4(Ω) with ∇ϕ0 6= 0 in Ω, then the function ϕ = ϕ0 + C

for some sufficiently large constant C can be used as a weight function.

In most cases ϕ serves the same purpose as ϕ0.

We will now show how the UCP across a hypersurface follows from

the Carleman inequality in Theorem 3.6.

Proof of Theorem 3.5 given Theorem 3.6. We first consider

the special case where x0 = 0 and S = {xn = 0}. Assume that V = B4δ

for some small δ > 0, and suppose that u ∈ H2(V ) solves

(−∆ + q)u = 0 in V,

u = 0 in V ∩ {xn > 0}.

We want to show that u vanishes in Bε ∩ {xn < 0} for some ε > 0.

Since the problem is local, it is not sufficient to use a Carleman

inequality with weight ϕ0(x) = xn as in Section 3.1. Rather, we will

consider the slightly bent weight

ϕ̃0(x′, xn) := xn − |x′|2 + δ2.

The level set ϕ̃−1
0 (0) is the parabola {xn = |x′|2 − δ2}. Define the sets

W+ := {ϕ̃0(x) > 0} ∩ {xn < 0},
W− := {−δ2 < ϕ̃0(x) < 0} ∩ {xn < 0}.
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If δ < 1/
√

2, both sets are contained in B2δ and W+ contains the set

Bε ∩ {xn < 0} if ε = δ2.2 Our purpose is to prove the estimate

(3.3) ‖u‖L2(W+) ≤ Cτ−3/2‖[∆, χ]u‖L2(W−)

for a suitable constant C and function χ that are independent of τ > τ0.

Letting τ → ∞ shows that u|W+ = 0 and therefore u|Bε∩{xn<0} = 0 as

required.

With ϕ̃0 as above, we define ϕ̃ := ϕ0 + C for some C such that

ϕ̃ ≥ 0, and define ψ̃ := eλϕ̃. Note that Theorem 3.6 implies

(3.4) λ2‖eτψ̃w‖L2(Ω) ≤ C0τ
−3/2‖eτψ̃(−∆ + q)w‖L2(Ω)

when λ > λ0, τ > τ0, and w ∈ H2
0 (Ω). We will choose

w = χu

where χ(x) := ζ( ϕ̃0(x)
δ2

)η( |x|
4δ

), and ζ ∈ C∞(R), η ∈ C∞c (R) satisfy

ζ(t) = 0 for t ≤ −1 and ζ(t) = 1 for t ≥ 0,

η(t) = 1 for |t| ≤ 1/2 and η(t) = 0 for |t| ≥ 1.

Since u = 0 for xn > 0, it follows that supp(w) ⊂ W+ ∪W− and also

supp([∆, χ]u) ⊂ W−. We also note that eτψ̃|W− ≤ eτc0 ≤ eτψ̃|W+ if if

c0 := ψ̃(0, . . . , 0,−δ2). Now applying (3.4) with this w implies

eτc0‖u‖L2(W+) ≤ ‖eτψ̃u‖L2(W+)

≤ ‖eτψ̃χu‖L2(Ω)

≤ C0λ
−2τ−3/2‖eτψ̃(−∆ + q)(χu)‖L2(Ω)

≤ C0λ
−2τ−3/2(‖eτψ̃χ(−∆ + q)u‖L2(Ω) + ‖eτψ̃[∆, χ]u‖L2(Ω))

≤ C0λ
−2τ−3/2‖eτψ̃[∆, χ]u‖L2(W−)

≤ C0λ
−2τ−3/2eτc0‖[∆, χ]u‖L2(W−).

Here we used the fact that u is a solution and the support conditions.

This proves (3.3), and the theorem follows in the special case where

S = {xn = 0}.
Finally we consider the case where S is a general C∞ hypersurface.

We may normalize matters so that x0 = 0 and S ∩ V = ϕ−1
0 (0) ∩ V

where ϕ0 ∈ C∞(Rn) satisfies ∇ϕ0 6= 0 on S ∩ V . After a rotation and

scaling we may assume that ∇ϕ0(0) = en (so T0S = {xn = 0}). We

2Draw a picture!
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may further assume (after shrinking V ) that V = B4δ for some δ ≤ δ0

which can be taken very small but fixed. Taylor approximation gives

that

ϕ0(x′, xn) = xn + b(x)|x|2

where |b(x)| ≤ C0 in B4δ0 . Thus S looks approximately like {xn = 0}
in V if δ is chosen small enough, and the two sides of S are given by

V± = V ∩ {±ϕ0 > 0}.

After these normalizations, we set

ϕ̃0(x′, xn) := ϕ0(x)− |x′|2 + δ2.

With this choice of ϕ̃0, we may repeat the argument given above for the

case S = {xn = 0} (replacing the sets {±xn > 0} by {±ϕ0(x) > 0}).
Since the geometric picture is close to the case where xn = 0, the same

argument will show3 that u|Bε∩{ϕ0<0} = 0 for some ε > 0. This proves

the theorem. �

It remains to prove Theorem 3.6. We begin by introducing some

notation. Let ( · , · ) be the inner product in L2(Ω) and ‖ · ‖ the cor-

responding norm, and let P0 = D2 be the Laplacian where D = −i∇.

If ψ ∈ C4(Ω) is a real valued function and if τ > 0, we define the

conjugated Laplacian

P0,ψ = eτψP0e
−τψ.

We also write ψ′′ for the Hessian matrix

ψ′′(x) =
[
∂xjxkψ(x)

]n
j,k=1

.

The next result is analogous to the computation in Theorem 3.2

but involves a more general weight function.

Theorem 3.7. (Commutator) Let Ω ⊂ Rn be a bounded open set

and let ψ ∈ C4(Ω). Then

P0,ψ = A+ iB

where A and B are the formally self-adjoint operators

A = D2 − τ 2|∇ψ|2,
B = τ [∇ψ ◦D +D ◦ ∇ψ] .

3Check this!
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If w ∈ H2
0 (Ω) one has

‖P0,ψw‖2 = ‖Aw‖2 + ‖Bw‖2 + (i[A,B]w,w)

where the commutator i[A,B] satisfies

(i[A,B]w,w) = 4τ(ψ′′∇w,∇w)+4τ 3((ψ′′∇ψ·∇ψ)w,w)−τ((∆2ψ)w,w).

The point is that a Carleman inequality ‖P0,ψw‖ ≥ cτα‖w‖ for some

α > 0 may follow if the weight ψ is chosen so that the commutator term

(i[A,B]w,w) is at least nonnegative. In the case when ψ was a linear

function, both A and B were constant coefficient operators and the

commutator i[A,B] was identically zero. However, the above result

indicates that if ψ is for instance convex (meaning that the Hessian ψ′′

is positive definite) one may obtain a better lower bound.

Proof. The first step is to decompose P0,ψ into self-adjoint and

skew-adjoint parts as

P0,ψ = A+ iB

where A and B are the formally self-adjoint operators

A =
P0,ψ + P ∗0,ψ

2
,

B =
P0,ψ − P ∗0,ψ

2i
.

We have

P0,ψ =
n∑
j=1

(eτψDje
−τψ)2 =

n∑
j=1

(Dj + iτ∂jψ)2

= D2 − τ 2|∇ψ|2 + iτ [∇ψ ◦D +D ◦ ∇ψ] ,

and

P ∗0,ψ = (eτψP0e
−τψ)∗ = e−τψP0e

τψ = D2−τ 2|∇ψ|2−iτ [∇ψ ◦D +D ◦ ∇ψ] .

The required expressions for A and B follow.

If w ∈ H2
0 (Ω) we compute

‖P0,ψw‖2 = ((A+ iB)w, (A+ iB)w) = ‖Aw‖2 +‖Bw‖2 +(i[A,B]w,w).
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It remains to compute the commutator:

i[A,B]w = τ
[
(D2 − τ 2|∇ψ|2)(2∇ψ · ∇w + (∆ψ)w)

− (2∇ψ · ∇+ ∆ψ)(D2w − τ 2|∇ψ|2w)
]

= τ
[
2∇D2ψ · ∇w + 4D∂kψ ·D∂kw + (D2∆ψ)w

+ 2D∆ψ ·Dw + 2τ 2∇ψ · ∇(|∇ψ|2)w
]

= τ
[
− 4∇∆ψ · ∇w − 4∂jkψ∂jkw − (∆2ψ)w

+ 4τ 2(ψ′′∇ψ · ∇ψ)w
]
.

Integrating by parts once, using that w|∂Ω = 0, yields

(i[A,B]w,w) = 4τ(ψ′′∇w,∇w) + 4τ 3((ψ′′∇ψ · ∇ψ)w,w)

− τ((∆2ψ)w,w). �

Proof of Theorem 3.6. In the following, the positive constants

c and C will only depend on M and they may change from line to line.

(We understand that c is small and C may be large.) Since ψ = eλϕ,

we have

∇ψ = λeλϕ∇ϕ, ψ′′ = λ2eλϕ∇ϕ⊗∇ϕ+ λeλϕϕ′′

where∇ϕ⊗∇ϕ denotes the matrix [∂jϕ∂kϕ]nj,k=1. Assuming that λ ≥ 1,

we also have

|∆2ψ| ≤ Cλ4eλϕ.

Let w ∈ C∞c (Ω). By Theorem 3.7, we have

‖P0,ψw‖2 = ‖Aw‖2 + ‖Bw‖2 + (i[A,B]w,w)

where

(i[A,B]w,w) = 4τ(ψ′′∇w,∇w) + 4τ 3((ψ′′∇ψ · ∇ψ)w,w)− τ((∆2ψ)w,w)

= 4τ 3λ4(e3λϕ|∇ϕ|4w,w) + 4τ 3λ3(e3λϕ(ϕ′′∇ϕ · ∇ϕ)w,w)− τ((∆2ψ)w,w)

+ 4τλ2(eλϕ∇ϕ · ∇w,∇ϕ · ∇w) + 4τλ(eλϕϕ′′∇w,∇w).

Consequently

(i[A,B]w,w) ≥ 4τ 3λ3(e3λϕ[λ|∇ϕ|4 + ϕ′′∇ϕ · ∇ϕ]w,w)− Cτλ4(e3λϕw,w)

− Cτλ(eλϕ∇w,∇w).
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We used that 1 ≤ eλϕ and that (eλϕ∇ϕ·∇w,∇ϕ·∇w) ≥ 0. Now choose

λ so large that λ|∇ϕ|4 + ϕ′′∇ϕ · ∇ϕ ≥ λ|∇ϕ|4/2 in Ω (and λ ≥ 1), or

λ ≥ max

{
1, 2 sup

x∈Ω

ϕ′′∇ϕ · ∇ϕ
|∇ϕ|4

}
.

This is possible since∇ϕ is nonvanishing in Ω. If τ is chosen sufficiently

large (independent of λ), it follows that

(i[A,B]w,w) ≥ cτ 3λ4(e3λϕw,w)− Cτλ(eλϕ∇w,∇w).

We have proved the inequality

(3.5) ‖P0,ψw‖2 ≥ ‖Aw‖2 + ‖Bw‖2 + cτ 3λ4‖e
3λϕ
2 w‖2−Cτλ‖e

λϕ
2 ∇w‖2.

The last negative term can be absorbed in the positive term ‖Aw‖2 as

follows. The argument is elementary but slightly tricky. Write

(eλϕ∇w,∇w) = (eλϕD2w,w)− (∇(eλϕ) · ∇w,w)

= (eλϕAw,w) + τ 2(eλϕ|∇ψ|2w,w)− λ(eλϕ∇ϕ · ∇w,w)

= (Aw, eλϕw) + τ 2λ2(e3λϕ|∇ϕ|2w,w)− λ(eλϕ∇ϕ · ∇w,w).

By Young’s inequality we have (Aw, eλϕw) ≤ 1
δ
‖Aw‖2+ δ

4
‖eλϕw‖2 where

δ > 0 is a number to be determined later. We obtain

‖e
λϕ
2 ∇w‖2 ≤ 1

2δ
‖Aw‖2 +

δ

2
‖e

3λϕ
2 w‖2 + Cτ 2λ2‖e

3λϕ
2 w‖2 + Cλ‖e

3λϕ
2 w‖‖e

λϕ
2 ∇w‖

since eλϕ ≥ 1. Multiplying by δ and rearranging, we have

1

2
‖Aw‖2 ≥ δ‖e

λϕ
2 ∇w‖2 − δ2

2
‖e

3λϕ
2 w‖2 − Cδτ 2λ2‖e

3λϕ
2 w‖2

− Cδλ‖e
3λϕ
2 w‖‖e

λϕ
2 ∇w‖.(3.6)

Writing ‖Aw‖2 = 1
2
‖Aw‖2 + 1

2
‖Aw‖2 in (3.5) and using (3.6) gives

that

‖P0,ψw‖2 ≥ 1

2
‖Aw‖2 + ‖Bw‖2 +R(3.7)

where

R := δ‖e
λϕ
2 ∇w‖2 − δ2

2
‖e

3λϕ
2 w‖2 − Cδτ 2λ2‖e

3λϕ
2 w‖2

− Cδλ‖e
3λϕ
2 w‖‖e

λϕ
2 ∇w‖+ cτ 3λ4‖e

3λϕ
2 w‖2 − Cτλ‖e

λϕ
2 ∇w‖2.
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The idea is to choose δ so that R is positive. By inspection, we arrive

at the choice

δ = ετλ2

where ε is a fixed constant independent of τ and λ. If ε is chosen

sufficiently small, it holds that

R ≥ cτ 3λ4‖e
3λϕ
2 w‖2 +(ελ−C)τλ‖e

λϕ
2 ∇w‖2−Cετλ3‖e

3λϕ
2 w‖‖e

λϕ
2 ∇w‖.

Choosing λ large enough (only depending on ε and C) gives

R ≥ cτ 3λ4‖e
3λϕ
2 w‖2 + cτλ2‖e

λϕ
2 ∇w‖2 − Cετλ3‖e

3λϕ
2 w‖‖e

λϕ
2 ∇w‖.

Now

2τλ3‖e
3λϕ
2 w‖‖e

λϕ
2 ∇w‖ ≤ τ 2λ4‖e

3λϕ
2 w‖2 + λ2‖e

λϕ
2 ∇w‖2.

If τ is sufficiently large depending on C, c and ε, we have

(3.8) R ≥ cτ 3λ4‖e
3λϕ
2 w‖2 + cτλ2‖e

λϕ
2 ∇w‖2.

Going back to (3.7), the estimate (3.8) implies

(3.9) ‖P0,ψw‖2 ≥ 1

2
‖Aw‖2+‖Bw‖2+cτ 3λ4‖e

3λϕ
2 w‖2+cτλ2‖e

λϕ
2 ∇w‖2.

The trivial estimates 1
2
‖Aw‖2 + ‖Bw‖2 ≥ 0 and eλϕ ≥ 1 imply that

‖P0,ψw‖2 ≥ cτ 3λ4‖w‖2 + cτλ2‖∇w‖2

and consequently

λ2‖w‖+ λτ−1‖∇w‖ ≤ Cτ−3/2‖eτψ(−∆)e−τψw‖.

Adding the potential q gives

λ2‖w‖+ λτ−1‖∇w‖2 ≤ Cτ−3/2‖eτψ(−∆ + q)e−τψw‖+ Cτ−3/2‖w‖.

Choosing τ so large that Cτ−3/2 ≤ 1/2 and using that λ ≥ 1 gives the

required estimate for w ∈ C∞c (Ω). The result for w ∈ H2
0 (Ω) follows

by approximation. �
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3.3. Weak UCP and UCP for Cauchy data

Let Ω ⊂ Rn be a bounded connected open set, and let q ∈ L∞(Ω).

We can now easily prove two other unique continuation statements:

Theorem 3.8. (Weak UCP) If u ∈ H2(Ω) satisfies

(−∆ + q)u = 0 in Ω,

u = 0 in a ball B ⊂ Ω,

then u = 0 in Ω.

Theorem 3.9. (UCP for local Cauchy data) Let Ω ⊂ Rn have

smooth boundary, and assume that Γ is a nonempty open subset of ∂Ω.

If u ∈ H2(Ω) satisfies

(−∆ + q)u = 0 in Ω,

u|Γ = ∂νu|Γ = 0,

then u = 0 in Ω.

Weak unique continuation follows easily from Theorem 3.5 by using

a connectedness argument. We first prove a special case.

Theorem 3.10. (Weak unique continuation for concentric balls)

Let B = B(x0, R) be an open ball in Rn, and let q ∈ L∞(B). If

u ∈ H2(B) satisfies

(−∆ + q)u = 0 in B

and

u = 0 in some ball B(x0, r0) with r0 < R,

then u = 0 in B.

Proof. Let

I = {r ∈ (0, R) ; u = 0 in B(x0, r)}.

By assumption, I is nonempty. It is closed in (0, R) since whenever u

vanishes on B(x0, rj) and rj → r, then u vanishes on B(x0, r). We will

show that I is open, which implies I = (0, R) by connectedness and

therefore proves the result.

Suppose r ∈ I, so u = 0 in B(x0, r). Let S be the hypersurface

∂B(x0, r). We know that u = 0 on one side of this hypersurface. Now
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Theorem 3.5 implies that for any z ∈ S, there is some open ball B(z, rz)

contained in B so that u vanishes in B(z, rz). Define the open set

U = B(x0, r) ∪

(⋃
z∈S

B(z, rz)

)
.

The distance between the compact set S and the closed set B(x0, R)\U
is positive. In particular, there is some ε > 0 such that u = 0 in

B(x0, r + ε). This shows that I is open. �

Proof of Theorem 3.8. Suppose u ∈ H2(Ω) satisfies (−∆ +

q)u = 0 in Ω and u = 0 in some open ball contained in Ω. Set

A = {x ∈ Ω ; u = 0 in some neighborhood of x in Ω}.

By assumption, A is a nonempty open subset of Ω. We will show that

it is also closed. This implies by connectedness that A = Ω, so indeed

u vanishes in Ω as required.

Suppose on the contrary that A is not closed as a subset of Ω. Then

there is some point x0 on the boundary of A relative to Ω, for which

x0 /∈ A. Choose r0 > 0 so that B(x0, r0) ⊂ Ω and choose some point

y ∈ B(x0, r0/4) with y ∈ A. Since y ∈ A, we know that u vanishes

on some ball B(y, s0) with s0 < r0/2. By Theorem 3.10, we see that u

vanishes in the ball B(y, r0/2) ⊂ Ω. But x0 ∈ B(y, r0/2), so u vanishes

near x0. This contradicts the fact that x0 /∈ A. �

In turn, unique continuation from Cauchy data on a subset follows

from weak unique continuation upon extending the domain slightly

near the set where the Cauchy data vanishes.

Proof of Theorem 3.9. Assume that u ∈ H2(Ω), (−∆ + q)u =

0 in Ω, and u|Γ = ∂νu|Γ = 0. Choose some x0 ∈ Γ, and choose

coordinates x = (x′, xn) so that x0 = 0 and for some r > 0,

Ω ∩B(0, r) = {x ∈ B(0, r) ; xn > g(x′)}

where g : Rn−1 → R is a C∞ function. We extend the domain near x0

by choosing ψ ∈ C∞c (Rn−1) with ψ = 0 for |x′| ≥ r/2 and ψ = 1 for

|x′| ≤ r/4, and by letting

Ω̃ = Ω ∪ {x ∈ B(0, r) ; xn > g(x′)− εψ(x′)}.
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Here ε > 0 is chosen so small that {(x′, xn) ; |x′| ≤ r/2, xn = g(x′) −
εψ(x′)} is contained in B(0, r). Then Ω̃ is a bounded connected open

set with smooth boundary.

Define the function

ũ(x) =

{
u(x) if x ∈ Ω,

0 if x ∈ Ω̃ \ Ω.
.

Then ũ|Ω ∈ H2(Ω) and ũ|Ω̃\Ω ∈ H2(Ω̃ \ Ω). Since u|Γ = ∂νu|Γ = 0, we

also have that the traces of ũ and ∂ν ũ on the interface ∂Ω \ ∂Ω̃ vanish

when taken both from inside and outside Ω.

It follows that ũ ∈ H2(Ω̃). Defining q̃(x) = q(x) for x ∈ Ω and

q̃(x) = 0 for Ω̃\Ω, one also gets that (−∆+ q̃)ũ = 0 almost everywhere

in Ω̃. But ũ = 0 in some open ball contained in Ω̃ \ Ω, so we know

from Theorem 3.8 that ũ = 0 in the connected domain Ω̃. Thus also

u = 0. �
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