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Chapter 1

Relativistic coordinate
transformations

In this Chapter we will discuss which linear coordinate transformations are possible between refer-
ence frames moving uniformly with respect to each other. We will focus in particular on Galilean
and Lorentz transformations and will address the way reference frames are constructed using Ein-
stein synchronization of clocks. Some familiar physical consequences of Lorentz transformations
are discussed and the important concept of proper time is introduced.

1.1 Galilean symmetry
Let us start out by specifying a coordinate system for measuring particles in space and time. To
measure spatial position we choose three orthogonal coordinate axes. This assumes that any
observer can physically construct a linear space with a standard Euclidean inner product (we
will later relax this assumption). The position of objects with respect to the origin O can be
determined by marking off distances along the axes with a unit measuring rod of length 1, i.e.
on the x-axis the value x represents x times the length of our measuring rod. This procedure
assigns to every point in space the triple (x, y, z). The distance L between two points (x, y, z)
and (x′, y′z′) is then given by the familiar Euclidean distance

L2 = (x− x′)2 + (y − y′)2 + (z − z′)2

Figure 1.1: Euclidean coordinate system

1



2 CHAPTER 1. RELATIVISTIC COORDINATE TRANSFORMATIONS

Then we can assign to each such a point a time value t as well. The time at each point is
measured by a local clock at that point which is synchronized with a clock in the origin O. We
will later wonder in Section 1.3 how such a synchronization can be achieved, but it should already
be kept in mind that this is an important conceptual issue since whether the laws of physics
attain a simple form in our coordinates or not depends on our choice of clock synchronization.
However, let us assume that we succeeded In this way an object at a certain position in the
spatial coordinate frame is assigned a time coordinate as well. We denote such a space-time
point by (t, x, y, z). Given the coordinate system we can talk about the motion of objects, where
a motion is defined to be a one-dimensional curve in our coordinate system parametrized by t,
i.e. change of position with time. Let us for simplicity assume that this object is a point particle.
Then its motion is described by a trajectory

x(t) = (x(t), y(t), z(t)).

The velocity v(t) of the particle is defined to be the time-derivative of its position, i.e.

v(t) =
dx

dt
(t) = (

dx

dt
(t),

dy

dt
(t),

dz

dt
(t))

Figure 1.2: Velocity vector is tangent to the path of the particle

This vector is always tangent to the trajectory (see figure). Now that we can describe motion we
can study physical processes, such as the motion of colliding billiard balls, the motion of planets
in the Solar system etc.
There exists a special kind of reference frames, which are called inertial frames. Such frames
are defined by the property that they are homogenous in space and time as well as isotropic.
This means that any experiment carried out in them (such as letting two billiard balls collide)
gives the same physical result independent of the position and orientation of the experimental
apparatus as well of the time at which the experiment is carried out. It is an experimental fact
that in such frames isolated objects, i.e. objects which do not interact with other objects, move
at constant velocity, i.e v is time-independent and the motion represents a straight line (any
simpler motion is hardly imaginable). Inertial frames have the property that any frame moving
at constant velocity with respect to them is another inertial frame. The question which physical
systems actually do form inertial frames in practice is addressed in Chapter 2. It is, however, easy
to find non-inertial frames. For instance, an observer who is at rest with respect to a rotating
disc will find that the motion of a billiard ball after it is released from an initial state at rest is
dependent on the position on the disc from which it is released. This reference frame therefore
violates the requirement of spatial homogeneity.
Let us assume that our reference frame is an inertial frame. Since in our frame we can describe
motion we can, in particular, describe motion of other observers. Let us therefore consider
two observes O1 and O2. Observers O1 uses coordinates (t1, x1, y1, z1) and observer O2 uses
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coordinates (t2, x2, y2, z2). The coordinate systems are chosen such that the systems coincide
at time t1 = 0 as measured by O1, with their spatial coordinate axes parallel. Let us further
assume that the system 2 moves with constant velocity along the x1-axis of system 1 (see figure
1.3).

Figure 1.3: Relative motion of the coordinate frames

Constant velocity implies dv/dt = 0 and we have

v(t1) =
dx

dt1
= (

dx1

dt1
, 0, 0) = (v, 0, 0) = v

where v is a constant and v a constant vector. Therefore the position of observer O2 (who is
assumed to be in the origin of his coordinate system) as measured in system O1 is given by

x(t1) = (vt1, 0, 0)

or x1(t1) = vt1, and the space-time coordinate of this point is given by (t1, vt1, 0, 0). Observer
O2 has its own coordinate system in which time and position are measured. A space-time point
in this system is denoted (t2, x2, y2, z2) and in particular the origin is given by (t2, 0, 0, 0). It
now only remains to relate the time coordinates of both reference frames.
In Newtonian mechanics it is now assumed that there exists a universal clock that any observer
at any spatial point can read instantaneously. Therefore any local clock at any position in the
reference frame of any observer can be synchronized1 with the universal clock displaying time
t. If we do this then all relatively moving clocks display the same universal time which Newton
denoted as absolute time. Let us assume that this concept is correct, then we can set t1 = t2 = t
for our two observers. Then we see (see figure) that if observer O2 measures a particle at position
x2(t) then at the same time t observer O1 measures a particle at position x1(t) = x2(t) + v t
or equivalently

x2(t) = x1(t)− v t.

Figure 1.4: Relation between positions in different frames
1If one starts to think of ways of synchronizing a local clock with universal time in practice, one realizes that

the existence of absolute time is not obvious at all.
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More precisely, since we assume t1 = t2, the transformation from space-time coordinates
(t1, x1, y1, z1) to (t2, x2, y2, z2) is given by

t2 = t1

x2 = x1 − v t1 (1.1)
y2 = y1

z2 = z1

This transformation is known as the Galilean transformation. The Galilean transformations form
what is mathematically known as a group. To illustrate this we forget the y and z coordinates
for a moment as they are unchanged anyway. The (t, x) coordinates in Eq.(1.1) then transform
as follows (

t2
x2

)
=

(
t1

x1 − v t1

)
=

(
1 0
−v 1

)(
t1
x1

)
= A(v)

(
t1
x1

)
(1.2)

where we defined the matrix

A(v) =

(
1 0
−v 1

)
(1.3)

This matrix has a number of obvious properties. First of all

A(0) =

(
1 0
0 1

)
= 1 (1.4)

is the unit matrix. This simply means that if the relative velocity of both systems is zero then
then all coordinates are identical. Secondly

A−1(v) =

(
1 0
v 1

)
= A(−v) (1.5)

This means that transforming back from coordinates (t2, x2) to (t1, x1) is the same transfor-
mation with minus the relative velocity. In other words, if O2 moves with respect to O1 with
relative velocity v, then O1 moves with respect to O2 at relative velocity −v. A further property
is

A(v2)A(v1) =

(
1 0
−v2 1

)(
1 0
−v1 1

)
=

(
1 0

−v1 − v2 1

)
= A(v1 + v2) (1.6)

This equation tells us that if system O2 moves with relative velocity v1 respect to O1 and if
system O3 moves with relative velocity v2 with respect to O2 then system O3 moves with relative
velocity v3 = v1 + v2 with respect to O1. We therefore find the following formula for addition
of velocities

v3 = v1 + v2.

So, summarizing, we find that the Galilean transformations satisfy the properties

A(0) = 1 (1.7)
A−1(v) = A(−v) (1.8)
A(v3) = A(v2)A(v1) (1.9)

(where in Newtonian mechanics v3 = v1 + v2). Properties (1.7)-(1.9) are properties of what
mathematicians call a group. A group G is defined to be a set of elements with a multiplication
· such that
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1. If g1 ∈ G and g2 ∈ G then g1 · g2 ∈ G with the associativity property (g1 · g2) · g3 =
g1 · (g2 · g3)

2. There is a unit element 1 ∈ G with the property 1 · g = g · 1 for all g ∈ G

3. For any g ∈ G there is an inverse g−1 ∈ G with the property g · g−1 = g−1 · g = 1

It is clear that the set of Galilean transformations G = {A(v)|v ∈ R} satisfies all these axioms
and therefore represents a group. There is a close relation between group structure and symmetry,
since all operations that leave a symmetric object invariant (such as rotations and mirrorings)
form a group. We may therefore refer to the set of Galilean transformations as the Galilean
symmetry group.

1.2 Beyond Galilean symmetry

The coordinate transformation (1.1) was derived assuming that observers moving relative to
each other measure the same time. We now want to relax this condition. We again consider
simply motion in one spatial dimension and look for the most general transformation(

t2
x2

)
= A(v)

(
t1
x2

)
that satisfies the properties (1.7), (1.8) and (1.9) and where v is the velocity of system O2 with
respect to O1. Apart from these plausible properties we only make the assumption that space is
isotropic, which means that there is no preferred direction in space. The matrix A(v) is of the
general form

A(v) =

(
a(v) b(v)
c(v) d(v)

)
where a(v), b(v), c(v) and d(v) are functions of the velocity that we need to determine. From

A(0) =

(
a(0) b(0)
c(0) d(0)

)
=

(
1 0
0 1

)
we find that a(0) = d(0) = 1 and b(0) = c(0) = 0. From

1 = A(v)A−1(v) = A(v)A(−v) (1.10)

it follows by taking the determinant that

1 = det(A(v)A(−v)) = D(v)D(−v) (1.11)

where we defined D(v) = det(A(v)). Since we assumed that there is no preferred direction in
space we must have that D(v) = D(−v) (i.e. the scalar D(v) does not distinguish between
different directions of relative motion) and therefore

1 = D(v)D(−v) = D(v)2

which implies thatD(v) = ±1. However, sinceD(0) = 1 we must have thatD(v) = 1. Property
(1.8) tell us that

A(−v) =

(
a(−v) b(−v)
c(−v) d(−v)

)
=

1

D(v)

(
d(v) −b(v)
−c(v) a(v)

)
= A−1(v)
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where D(v) = a(v)d(v) − b(v)c(v) is the determinant of A(v). Since we already showed that
D(v) = 1 we find that

a(−v) = d(v) (1.12)
b(−v) = −b(v) (1.13)
c(−v) = −c(v) (1.14)

We now use the fact that the origin x2 = 0 of system O2 has with respect to O1 the position
x1 = vt1, i.e. (

t2
0

)
= A(v)

(
t1
v t1

)
.

This yields the equation
0 = c(v)t1 + d(v) v t1

for all t1. This implies that
c(v) = −vd(v) (1.15)

which in turn, together with Eq.(1.14), implies that

vd(−v) = c(−v) = −c(v) = vd(v)

and therefore d(v) = d(−v). From Eq.(1.12) we then see that a(v) = d(v) and, together with
Eq.(1.15), we obtain

A(v) =

(
a(v) b(v)
−va(v) a(v)

)
(1.16)

where a(v) = a(−v) and b(v) = −b(−v). Since D(v) = 1 we also know that

1 = D(v) = a2(v) + v a(v)b(v)

and we therefore find that

b(v) =
1− a2(v)

v a(v)
(1.17)

We have therefore reduced the problem to the determination of the unknown function a(v). To
find a(v) we use the final condition (1.9) which tells us that

A(v3) =

(
a(v3) b(v3)
−v3a(v3) a(v3)

)
= A(v2)A(v1)

=

(
a(v2) b(v2)
−v2a(v2) a(v2)

)(
a(v1) b(v1)
−v1a(v1) a(v1)

)
=

(
a(v1)a(v2)− v1a(v1)b(v2) a(v2)b(v1) + a(v1)b(v2)
−(v1 + v2)a(v1)a(v2) a(v1)a(v2)− v2a(v2)b(v1)

)
(1.18)

Since the diagonal elements of A(v3) are identical it follows that

−v1 a(v1)b(v2) = −v2 a(v2)b(v1)

or equivalently
b(v1)

v1 a(v1)
=

b(v2)

v2 a(v2)

which must be true for all possible choices of v1 and v2. This can only be true when

b(v)

v a(v)
= K = constant.
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In combination with Eq.(1.17) this immediately yields

1− a2(v)

v2 a2(v)
= K ⇒ a(v) =

±1√
1 +Kv2

. (1.19)

However, since a(0) = 1 we must have

a(v) =
1√

1 +Kv2

and consequently

b(v) = Kv a(v) =
K v√

1 +Kv2
.

The matrix of Eq.(1.16) therefore attains the form

A(v) =
1√

1 +Kv2

(
1 K v
−v 1

)
. (1.20)

This is the final result of our derivation. It is clear that for K = 0 we recover the Galilean
transformation (1.3). However, for K 6= 0 we obtain a new more general transformation in
which both space and time coordinates are mixed:

t2 =
1√

1 +Kv2
(t1 +Kv t1) (1.21)

x2 =
1√

1 +Kv2
(x1 − v t1). (1.22)

Nothing has been assumed about the sign of K but the transformation (1.20) is qualitatively
different for K > 0 and K < 0. Let us investigate this a bit further. Since the constant K has
the dimension [1/velocity2] we can write

K = ± 1

c2

with c > 0 having the dimension of velocity. Let us first consider the case K = 1/c2, i.e. we
take K to be positive. Then Eqs.(1.21) and (1.22) become

t2 =
1√

1 + v2

c2

(t1 +
v

c2
x1)

x2 =
1√

1 + v2

c2

(x1 − v t1).

By defining τ1 = ct1 and τ2 = ct2 we can write these equations as(
τ2
x2

)
=

1√
1 + v2

c2

(
1 v

c
−vc 1

)(
τ1
x1

)

=

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)(
τ1
x1

)
= B(φ)

(
τ1
x1

)
(1.23)

This equation defines the rotation matrix B(φ) dependent on the angle φ determined from
tan(φ) = v/c or equivalently

φ = arctan(
v

c
). (1.24)
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Redefining similarly τ3 = ct3 we have from Eq.(1.9) that

B(φ3) = B(φ2)B(φ1) =

(
cos(φ2) sin(φ2)
− sin(φ2) cos(φ2)

)(
cos(φ1) sin(φ1)
− sin(φ1) cos(φ1)

)
=

(
cos(φ1 + φ2) sin(φ1 + φ2)
− sin(φ1 + φ2) cos(φ1 + φ2)

)
= B(φ1 + φ2) (1.25)

where we defined the angles φi = arctan(vi/c) for i = 1, 2, 3. We thus find that

v3

c
= tan(φ1 + φ2) =

tan(φ1) + tan(φ2)

1− tan(φ1) tan(φ2)
=

v1
c + v2

c

1− v1v2
c2

or equivalently

v3 =
v1 + v2

1− v1v2
c2

(1.26)

This gives a rather unphysical formula for the addition of velocities. In particular, v3 diverges
for v1v2 → c2 and changes sign for v1v2 > c2. In any case it is in disagreement with experiment
and we consider the case K > 0 as physically unacceptable. Let us therefore turn to the case
that K = −1/c2 such that K < 0. Then Eqs.(1.21) and (1.22) become

t2 =
1√

1− v2

c2

(t1 −
v

c2
x1) (1.27)

x2 =
1√

1− v2

c2

(x1 − v t1). (1.28)

This transformation is known as the Lorentz transformation. We note that these equations
make only sense when |v| < c and hence assume this condition to be satisfied. By defining again
τ1 = ct1 and τ2 = ct2 we can write(

τ2
x2

)
=

1√
1− v2

c2

(
1 −vc
−vc 1

)(
τ1
x1

)

=

(
cosh(φ) − sinh(φ)
− sinh(φ) cosh(φ)

)(
τ1
x1

)
= B(φ)

(
τ1
x1

)
(1.29)

where we defined the angle φ by
tanh(φ) =

v

c
.

From Eq.(1.9) we have again that

B(φ3) = B(φ2)B(φ1) =

(
cosh(φ2) − sinh(φ2)
− sinh(φ2) cosh(φ2)

)(
cosh(φ1) − sinh(φ1)
− sinh(φ1) cosh(φ1)

)
=

(
cosh(φ1 + φ2) − sinh(φ1 + φ2)
− sinh(φ1 + φ2) cosh(φ1 + φ2)

)
= B(φ1 + φ2) (1.30)

where we defined the angles φi = arctanh(vi/c) for i = 1, 2, 3. We thus find that

v3

c
= tanh(φ1 + φ2) =

tanh(φ1) + tanh(φ2)

1 + tanh(φ1) tanh(φ2)
=

v1
c + v2

c

1 + v1v2
c2

We thus obtain the following addition theorem for velocities:

v3 =
v1 + v2

1 + v1v2
c2

. (1.31)
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An important difference with respect to the case of positiveK is that the Lorentz transformations
only make sense when |v| < c. Therefore the relative velocity of two physical systems can not
be larger than c. What, however, happens if we add velocities according to Eq.(1.31) ? If we
let v2 = ±c we find

v3 =
v1 ± c
1± v1

c

= ±c.

So by adding velocities v1, v2 with |v1|, |v2| < c we can never attain a value larger than c. There-
fore c appears as a maximum attainable velocity. It turns out that nature is indeed well-described
by a theory of this kind. In electromagnetism the velocity c is the velocity at which electromag-
netic waves propagate in empty space. Since visible light is nothing but an electromagnetic wave
(leaving out quantum theory for the moment) we may refer to c as the ’light speed’. However,
this speed is not particular to light but also other fundamental forces than electromagnetism
have force carriers that move at the same speed. The strong force is, for instance, mediated
by a gluon field moving at ’light speed’, and also gravity waves are moving at light speed. One
thing that is immediately clear from Eqs. (1.27) and (1.28) is that light speed is universal for all
observers. If for one observer a signal moves at speed c, i.e. x1 = ct1, then (1.27) and (1.28)
tell us that

t2 =
1√

1− v2

c2

(t1 −
v

c
t1)

x2 =
1√

1− v2

c2

(c− v)t1. (1.32)

and therefore also x2 = ct2. So all observers moving with respect to each other at constant
velocity find the speed of the signal to be equal to c. In particular, there is no reference
frame where the signal has zero velocity. A reference frame in which a given object has zero
velocity is called the rest frame of the object. In electromagnetism we may therefore say that
an electromagnetic wave has no rest frame.

1.3 Clock synchronization and the Lorentz transforma-
tion

The possibility of an universal speed c was an very interesting conclusion in our derivation in
the previous Section. However, this conclusion was based on an, at first sight, rather innocent
assumption in the derivation. The presumption was the existence of a well-defined space-time
coordinate system (t, x, y, z) for a given observer in which we can assign a unique well-defined
time to every spatial point. This assumption is, for instance, used when we say that the events
(t, x1, y1, z1) and (t, x2, y2, z2) are simultaneous events that happen at the same time t at differ-
ent spatial positions in our reference system. How do we know that this is true? To answer this
question we must have an experimental way to verify simultaneity of distant events, otherwise
the statement has no physical meaning. But what do we mean by simultaneity?
After some thought we come to the conclusion that this a matter of definition, but that some
definitions are more useful than others. Let us start with a simple example. We consider an
observer Ed 2 on Earth with a clock that registers local time tE. This observer receives radio
signals from various spacecrafts in the Solar System. A spacecraft orbiting Saturn at spatial
coordinates (xS , yS , zS) records a local event (for instance it took a picture of a comet hitting

2In general we will use different letters A,B,C,D,V,W etc. to denote different observers. However, sometimes
to be more concrete and personal we will give names to these letters such as Alice, Bob, Charlotte, Dilbert, Viivi,
Wagner etc.
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Saturns atmosphere) and sends out a radio signal with information that is received by Ed at
tE =15:00. Five minutes later at tE =15:05 he receives a second radio signal from another
spacecraft orbiting Mars at coordinates (xM , yM , zM ) containing information on another local
event. How should Ed give a time coordinate to these two events? He could simply decide
to label the events by (15:00, xS , yS , zS) and (15:05, xM , yM , zM ). In this way Ed can assign
unique coordinates (tE, x, y, z) to any event in the Solar System and in this way build a space-
time coordinate system. He can then define that two events at different spatial positions are
simultaneous if they have the same tE coordinate. Although this is a well-defined prescription
for building a space-time frame it is not very useful in practice. First of all, we realize that the
simultaneity of two events in this way depends on the spatial location of the arbitrarily chosen
origin (in our case the Earth) with respect to the events. Secondly, if the laws of physics are
expressed in these space-time coordinates they attain a very complicated form. Even simple
uniform motion becomes involved in these coordinates (try it yourself). We therefore do not
prefer to use Ed’s coordinate system. Which is then the preferred definition of simultaneity in
which the laws of physics attain its simplest form?
This was discussed very clearly in Einstein’s original work [1] and we will closely follow his presen-
tation. The procedure that we will describe is commonly known as the Einstein synchronization
of clocks. The spatial structure of our reference system can be set up without problem using
standard measuring rods as described in the beginning of Section 1.1 (the underlying assumption
is physical existence of Euclidean space). We restrict ourselves to reference frames in which light
moves along straight lines (such reference frames are called inertial frames and will be discussed
in much more detail in the next Chapter). Since the shape of the path is a purely spatial concept
this requirement can be checked without the need to consider clocks. Let us therefore consider
the more involved temporal structure next. We, for simplicity, consider one spatial dimension. It
is clear how to measure time exactly for a local observer A (Alice) at a point xA in the coordinate
system. We can simply read off a given clock that is placed at rest at position xA. An observer
B (Bob) can do the same with a local clock placed at position xB. We have therefore an "A
time" and a "B time". The question is then how A and B can agree on a common definition
of time. In other words, how can they properly synchronize3 their clocks? This is solved by
an operational definition which has therefore a direct experimental physical realization. Let us
send a light signal from a point xA to point xB and let the light signal be reflected back at xB
towards xA, i.e.

Figure 1.5: Einstein synchronization of clocks

If the signal is sent and returned in xA at times tA and t′A and received in point xB at local
time tB we define clocks at xA and xB to be synchronized when

t′A − tB = tB − tA

or equivalently when

tB =
1

2
(tA + t′A).

3Of course, "synchronous" is just a fancy way of saying "same time", synchronization is therefore just an
agreement on what is meant by simultaneity.
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So observer B can adjust his clock such that this relation is satisfied. More concretely, if Alice
sends and receives the signal at the times 11:58 and 12:02 on her local clock and Bob receives
the signal on his local clock at 12:01 then Bob concludes that his clock was running ahead by
one minute and adjusts it such that the reception of the signal on his newly synchronized clock
happened at 12:00 4. After this synchronization procedure has been carried out Alice and Bob
agree by definition that an event that happened at tA in xA and another event that happened
at tB in xB are to be called simultaneous whenever tA = tB.
Let us again summarize the procedure. If an observer O at the origin of the reference system
places a mirror at position P at a certain distance from the origin and sends out a light signal
at local time t0 that is reflected back from the mirror and received back at local time t1 then
the local time tP on the clock at P where the light is reflected at the mirror is defined to be

tP =
1

2
(t0 + t1). (1.33)

Two events at two different spatial points P and Q in the reference frame are called simulta-
neous when tP = tQ. Now that we have a frame of local synchronized clocks as well as an
Euclidean spatial frame we can talk about motion. In particular, if we repeat Alice and Bob’s
synchronization procedure for different position in our reference frame we find that rAB is the
distance between A and B we find every time that

c =
rAB

tB − tA

is the same universal constant which we call light speed5. We can therefore, instead of using
measuring sticks, also use light to define distances in our coordinate frame. If an observer O in
the origin (x = 0) of the reference system sends out a light signal at time tO which is received
by a local observer P at time tP then the distance of P from the origin is then given by

xP = c (tP − tO). (1.34)

(more precisely we can define a coordinate xP = ±c (tP − tO) at a distance |xP| removed from
the origin dependent on whether P lies on the positive or negative x-axis). In this way observer
O can construct experimentally the whole space-time coordinate system (tP, xP) for all points P
only using clocks and light sources. An object is then defined to move at uniform speed v with
respect to this reference system whenever v = (xP − xQ)/(tP − tQ) is the same constant for
all positions xP and xQ that the object passes. We find for our Einstein-synchronized reference
frame that isolated material bodies that do not interact with other bodies move according to
the simple law

x = x0 + vt

where t is the time displayed by a local Einstein-synchronized clock at position x for a constant
velocity vector v. Any other synchronization scheme (for an extensive discussion see [3] ) will
lead to less simple laws. As a final remark we note that our synchronization applies also to the
Newtonian limit by taking the limit c→∞ in which case distant clocks are trivially synchronized
by infinite speed signals.
With these premises we can now derive the Lorentz transformation the standard way [2] in which
the basic postulate is the universality of the speed of light independent of the state of motion
of the light source. More specifically the assumptions are

4Bob is two light minutes away from Alice. If Alice were on Earth then Bob could roughly be at the orbit of
planet Venus around the Sun.

5This property was tested in the famous Michelson and Morley experiment which aimed to find out if the
motion of the Earth has any influence on the light speed.
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1. Once Einstein synchronization has been performed in any inertial frame, the linear space-
time coordinate transformations between any two frames have to be symmetric and de-
pendent on the relative velocity of the two frames alone.

2. In any frame, once Einstein synchronization has been performed, the velocity of light is
equal to c along any path, independent of the state of motion of the emitting body.

The first requirement is equivalent to condition (1.8) of the previous Section. The second
requirement is an experimentally well verified fact. We consider again two systems O1 and O2

that use coordinates (t, x) and (t′, x′) constructed using Einstein synchronization as described
above. Let O2 move at uniform relative speed v with respect to O1. We further assume that
the origins of both coordinate systems coincide at x = t = 0 and x′ = t′ = 0. Then, according
to assumption 2 in these coordinate systems the identities

x− c t = 0 (1.35)
x′ − c t′ = 0 (1.36)

are valid. The space-time points that satisfy (1.35) must at the same time satisfy (1.36). Since
we look for a linear relation between the coordinate systems this is generally true whenever

x′ − c t′ = λ (x− c t) (1.37)

where λ is a constant, since the vanishing of either side of the equation implies the vanishing
of the other side. A completely analogous reasoning applies to light signals that move in the
negative direction along the x-axis. We therefore have also

x′ + c t′ = µ (x+ c t). (1.38)

If we add and subtract Eqs.(1.37) and (1.38) and define

a =
1

2
(λ+ µ) b =

1

2
(λ− µ)

we find

x′ = ax− bct (1.39)
ct′ = act− bx. (1.40)

It remains to find the constants a and b. For the origin of O2 we have x′ = 0 and therefore from
Eq.(1.39) it follows that

x =
bct

a
.

Since system O2 moves with velocity v with respect to O1 the position of the origin of O2 is
given by x = vt and therefore

v =
bc

a
.

Then b = av/c and Eqs.(1.39) and (1.40) become

x′ = a(x− vt) (1.41)

t′ = a(t− vx

c2
). (1.42)

Let us now consider all events that happen at time t = 0 in system O1. Then those events
happen at position

x′ = ax
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in system O2. In particular the points x′ = 1 and x′ = 0 are separated by a distance

∆1 =
1

a

as viewed by O1. Let us now make the similar snapshot but now viewed from system O2. We
take all events that happen at time t′ = 0 in system O2. Then Eq.(1.42) tells us that t = vx/c2

which inserted into Eq.(1.41) yields

x′ = ax(1− v2

c2
)

In particular the points x = 1 and x = 0 are separated by a distance

∆2 = a(1− v2

c2
)

as viewed by O2. Now we invoke assumption 1 that coordinate frames that move uniformly with
respect to each other are completely equivalent for the description of physical phenomena. We
must therefore have that ∆1 = ∆2 and hence

a2 =
1

1− v2

c2

⇒ a =
±1√
1− v2

c2

We see, however, from Eqs.(1.41) and (1.42) that for v = 0 we must have a = 1 and therefore
the negative solution is excluded. We then obtain

x′ =
x− vt√
1− v2

c2

t′ =
t− vx

c2√
1− v2

c2

which is exactly the Lorentz transformation that we derived before. The theory that Einstein
developed on the basis of these coordinate transformations has become famous as the Special
theory of Relativity. In the following Sections we explore some of its consequences.

1.4 Lorentz symmetry and its consequences
So far we considered only motion in one spatial dimension. However, nothing essential changes
by going to three spatial dimensions.

Figure 1.6: Relative motion of coordinate frames
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It is clear from the symmetry of the motion that we considered that an event that happens at
the x1-axis in system O1 happens on the x2-axis in system O2. It can not be mapped outside
the x2-axis due to the rotational symmetry around the common x-axes, as this would break the
symmetry, i.e.

(t1, x1, 0, 0)→ (t2, x2, 0, 0) (1.43)

However, the choice of the origin in the planes x1 = 0 and x2 = 0 is completely arbitrary as
there is no preferred origin. We might have chosen an alternative coordinate system for O1

where

x′1 = x1

y′1 = y1 + y0

z′1 = z1 + z0

and similarly for system O2 and conclude Eq. (1.43) as well in our primed coordinate systems.
However, in our original coordinate system this amounts to

(t1, x1, y0, z0)→ (t2, x2, y0, z0) (1.44)

i.e. y1 = y2 and z1 = z2. The generalization of the Lorentz transformation to three spatial
dimensions is therefore given by 

t2
x2

y2

z2

 = A(v)


t1
x1

y1

z1


where

A(v) =


γ −γ v

c2 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1

 (1.45)

and we defined
γ =

1√
1− v2

c2

(1.46)

From Eq.(1.45) we can deduce the transformation law for velocities. Let a particle trajectory in
systems O1 and O2 by given by

x1(t1) = (x1(t1), y1(t1), z1(t1))

x2(t1) = (x2(t2), y2(t2), z2(t2))

The velocities of the particles is then given by

u1(t1) =
dx1

dt1
(t1) and u2(t2) =

dx2

dt2
(t2)

Since

x2 = γ(t1 −
v

c2
x1)

y2 = y1

z2 = z1
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it follows that

u2,x =
dx2

dt2
= γ

(
dt1
dt2
− v

c2
dx1

dt2

)
= γ

(
1− v

c2
u1,x

) dt1
dt2

u2,y =
dy2

dt2
=
dy1

dt1

dt1
dt2

= u1,y
dt1
dt2

u2,z =
dz2

dt2
=
dz1

dt1

dt1
dt2

= u1,z
dt1
dt2

Since, by the inverse Lorentz transformation

t1 = γ(t2 +
v

c2
x2)

it follows that
dt1
dt2

= γ(1 +
v

c2
u2,x)

Collecting our results we therefore obtain after some rewriting

u1,x =
u2,x + v

1 + v
c2u2,x

(1.47)

u1,y = u2,y
(1− v2

c2 )
1
2

1 + v
c2u2,x

(1.48)

u1,z = u2,z
(1− v2

c2 )
1
2

1 + v
c2u2,x

(1.49)

For the special case that u2,y = u2,z = 0 we recover Eq.(1.31) that we derived before. Taking
the limit c→∞ gives the familiar Newtonian limit. Let us now deduce a number of well-known
consequences of the Lorentz transformation. For simplicity we again consider motion in one
spatial dimension. From Eqs.(1.27) and (1.28) we see that

−c2t22 + x2
2 = −γ2(ct1 −

v

c
x1)2 + γ2(x1 − vt1)2

= −γ2[(c2 − v2)t21 − (1− v2

c2
)x2

1] = −c2t21 + x2
1 (1.50)

The equation
−c2t2 + x2 = constant

represents a hyperbola in the (ct, x)-plane.

Figure 1.7: Hyperbola in the (ct, x)-plane. Note that it is convention to take the time axis to
be the vertical axis.
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We therefore see that a Lorentz transformation maps a point on a hyperbola to a point on the
same hyperbola. In the Fig.1.7 we have drawn the hyperbola for c2t2−x2 = ±1. It is convenient
to denote τ = ct such that the Lorentz transformation attains the form

τ2 = γ(τ1 −
v

c
x1) (1.51)

x2 = γ(x1 −
v

c
τ1) (1.52)

The set of points that occur at equal time τ2 = K = constant in system O2 correspond according
to (1.51) to the set of lines

τ1 =
v

c
x1 +

K

γ
(1.53)

in the (τ1, x1)-plane. Similarly the set of space-time points at equal position x2 = K = constant
in system O2 is according to (1.52) given by the lines

τ1 =
c

v
x1 −

c

v

K

γ
(1.54)

i.e.

Figure 1.8: Relation between coordinates

The points (τ2 = 0, x2) represent the x2-axis of system O2 and the points (τ2, x2 = 0) represent
the τ2 axis of this system. The coordinates of a space-time point (τ1,P, x1,P) in the (τ1, x1)-
plane can thus be transformed to coordinates (τ2,P, x2,P) in system O2 by parallel projection
along the lines τ2 = constant and x2 = constant. However, the length scale on the O2-axes
is not the same as that of the O1-axes. The unit point (τ2, x2) = (0, 1) lies on the hyperbola
τ2
1 − x2

1 = −1 (see Eq.(1.50)) whereas the unit point (τ2, x2) = (1, 0) lies on the hyperbola
τ2
1 − x2

1 = 1. We thus have
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Figure 1.9: Intersecting hyperbolas

where the intersection of the hyperbola τ2
1 − x2

1 = −1 with the x2-axis τ1 = vx1/c corresponds
to the unit on the x2-axis. One can check that the tangent to the hyperbola in this point has
slope c/v and is parallel to the τ2-axis. Similarly the intersection of hyperbola τ2

1 − x2
1 = 1 with

the τ2-axis τ1 = cx1/v yields the unit point on the τ2-axis. The tangent to the hyperbola in this
point has slope v/c and is parallel to the x2-axis.

A number of interesting facts can be read off this diagram:

1. The axes x2 = 1 and x2 = 0 intersect the x1-axis at equal time τ1 = 0 in system O1 at a
distance less than one, i.e. the length of a measuring rod at rest in O2 seems smaller in
system O1. Let us check this explicitly. If the end points of a rod at rest in O2 are x2,A

and x2,B then at equal time t1 = t in O1

x2,A = γ(x1,A − vt)
x2,B = γ(x1,B − vt)

Subtraction of these two equations then gives

x2,A − x2,B = γ(x1,A − x1,B)⇒ |x1,A − x1,B | =
√

1− v2

c2
|x2,A − x2,B | < |x2,A − x2,B |

This phenomenon is known as Lorentz contraction.

2. We see from figure 1.9 that a clock at rest in system O2 which records a value one, records
a value larger than one as seen from system O1, i.e. with respect to O1 the moving clock
in system O2 runs slower. Let us again check this explicitly. The points (τ2, x2) = (0, 0)
and (τ2, x2) = (1, 0) correspond to (τ1, x1) = (0, 0) and(

τ1
x1

)
= γ

(
1 v

c
v
c 1

)(
1
0

)
=

(
γ
v
cγ

)
Clearly the time elapse between the two space-time points in O1 is γ whereas it is 1 in O2

and γ > 1. From the figure we see that reciprocally a similar time dilatation is observed
from system O2 that sees the clocks in system O1 run slower.
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A different kind of dilatation is observed when system O1 receives a periodic signal of light
flashes emitted from system O2. In terms of a space-time diagram the situation is as follows.

Figure 1.10: Description of the Doppler-effect

System O2 emits a light signal in x2 = 0 at time τ2,A. The space-time coordinates of this point
in system O1 are (

τ1,A
x1,A

)
= γ

(
1 v

c
v
c 1

)(
τ2,A

0

)
=

(
γ τ2,A
v
cγ τ2,A

)
The light signal as observed in O1 takes time ∆t1,A = x1,A/c to travel from the point x1,A to
the origin of system O1, i.e.

∆τ1,A = c∆t1,A = x1,A =
v

c
γ τ2,A.

The light signal will therefore be received on the τ1-axis at time point

τ1,A′ = τ1,A + ∆τ1,A = γ τ2,A + γ
v

c
τ2,A = γ(1 +

v

c
)τ2,A =

√
1 + v

c

1− v
c

τ1,A

Subsequently a light signal is emitted a time τ2,B in system O2. Exactly the same calculation
as before applies to point B in the space-time diagram. So we have

τ1,B′ − τ1,A′ =

√
1 + v

c

1− v
c

(τ2,B − τ2,A)

or

t1,B′ − t1,A′ =

√
1 + v

c

1− v
c

(t2,B − t2,A) (1.55)

So, depending on whether v is positive or negative, the time difference between the arrival of
the signals is longer or shorter in O1 than the time-difference between the emissions in O2. The
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frequency of arrival of the signals is then ν1 = 1/(t1,B′−t1,A′) whereas the frequency of emission
is ν2 = 1/(t2,B − t2,A) which according to (1.55) yields

ν1 =

√
1− v

c

1 + v
c

ν2 (1.56)

This is the formula for the Doppler-shift. For v > 0 we have ν1 < ν2 and system O1 observes a
redshift whereas for v < 0 we have ν1 > ν2 and we observe a blueshift.
We finally discuss the issue of clock synchronization and simultaneity using the following example

Figure 1.11: Relativity of simultaneity

Two clocks A and B are positioned at points x1,A = −x1,B (see figure). At time τ1 = 0
both clocks simultaneously (in system O1) emit a light signal towards the origin of system O1

(containing for instance a photographic image of the face of the clock). Both signals are received
in the origin at time τ1,O when observer O1 looks at the images of both clocks and is happy to
see that they record both the same time and are properly synchronized. Now from the viewpoint
of O2 the light signals arrived at the same time τ2,O in the origin of O1 but they were, however,
not emitted at the same time. The signal from clock B left at a time τ2,B before the time τ2,A
at which the signal from clock A left. For O2 the light emissions from clocks A and B were
not simultaneous. Since the readings of both clocks by O1 was the same, observer O2 therefore
concludes that clocks A and B were not properly synchronized.

1.5 World lines and proper time

In the previous Section we of drew the trajectories of light signals in a space-time diagram. In
general we can draw the trajectory of a particle that moves with a non-uniform velocity. This is
called a world line.
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Figure 1.12: World line and its approximation with linear segments.

Since the particle can never move faster than c there is a limit on the slope of the tangent to
the world line. We must have that

dτ1
dx1

=
c

v(t1)
> 1

So the slope of the tangent to a world line must always be larger than 1. The next issue we want
to address is what the reading of the local time is on a clock traveling with the particle. Since
the motion is not linear we will first approximate the curve with linear segments and take the
limit of infinitesimal segments at the end (see Fig. 1.12). In fact, the segmentation is not just a
mathematical procedure but rather close to the true physical situation since it is experimentally
very hard to measure a continuous curve. In practice the observer measures the position of the
particle at a few points and registers the local time at these positions, such that we have a table
of points (tj , xj). A linear interpolation between these points then produces the segmented
world line of Fig. 1.12.

We saw in Eq.(1.50) that a Lorentz transformation maps points on a hyperbola to the same
hyperbola. A similar relation is true for the difference of the coordinates of two space-time events
A and B:

−c2(t1,A − t1,B)2 + (x1,A − x1,B)2 = −c2(t2,A − t2,B)2 + (x2,A − x2,B)2 (1.57)

where (t1,A, x1,A) is the space-time event A in system O1 and (t2,A, x2,A) is the same space-
time event in system O2, and similarly for event B. This equation follows immediately from the
linearity of the Lorentz transformation, i.e. if for x = (τ, x)

x2,A = A(v)x1,A

x2,B = A(v)x1,B

then also x2,A−x2,B = A(v)(x1,A−x1,B) and Eq. (1.57) can be derived exactly as in Eq.(1.50).
If we denote

∆t1 = t1,A − t1,B
∆x1 = x1,A − x1,B

and similarly in system O2 we can write Eq.(1.57) as

−c2 ∆t21 + ∆x2
1 = −c2 ∆t22 + ∆x2

2

Let these differences describe events on the segmented world line of the particle. We take the
case that system O2 travels with the particle such that ∆x2 = 0 in this reference frame. We
can then write

−c2 ∆t21 + ∆x2
1 = −c2 ∆t22
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or equivalently

∆t2 =

√
1− 1

c2

(
∆x1

∆t1

)2

∆t1.

If we make the space-time differences very small then

∆x1

∆t1
≈ dx1

dt1
(t1) = v(t1)

is approximately the instantaneous velocity of the particle at time t1 as observed in system O1.
In system O2, in which the particle is approximately at rest, a time difference

∆t2 ≈
√

1− v(t1)2

c2
∆t1.

has elapsed between the space-time events. This equation becomes exact when we write

dt2
dt1

=

√
1− v(t1)2

c2
(1.58)

Integrating this equation then gives

t2(t)− t2(t0) =

∫ t

t0

dt1

√
1− v(t1)2

c2

The left hand side of this equation describes the time elapsed on a clock that travels with the
particle between space-time points (t, x(t)) and (t0, x0) as observed by O1. This time is usually
referred to as the proper time of the particle and is usually denoted by τ (not to be confused
with τ = ct used earlier). So we have

τ(t) = τ(t0) +

∫ t

t0

dt1

√
1− v(t1)2

c2
(1.59)

As is physically clear the proper time is a relativistic invariant independent of the frame used to
evaluate Eq.(1.59), i.e.

τ(t)− τ(t0) =

∫ t

t0

dt1

√
1− 1

c2

(
dx1

dt1

)2

=

∫ t′

t′0

dt2

√
1− 1

c2

(
dx2

dt2

)2

= τ(t′)− τ(t′0) (1.60)

as explained in the diagram
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Figure 1.13: Proper time on a world line

where we drew the world line (ct1(τ), x1(τ)) parametrized by the proper time as viewed in two
different systems O1 and O2.
It is clear that the analysis can be directly generalized to the case of three spatial dimensions.
In that case the Lorentz invariant distance between space-time points is given by

−c2(t1,A − t1,B)2 + (x1,A − x1,B)2 + (y1,A − y1,B)2 + (z1,A − z1,B)2 = constant (1.61)

This constant is usually denoted by (∆s)2 in analogy with the usual Euclidean squared distance,
despite the fact that it can be negative6. We therefore can write

(∆s)2 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 (1.62)

Very commonly an infinitesimal version of this expression is used, i.e.

ds2 = −c2dt2 + dx2 + dy2 + dz2 (1.63)

which is especially useful for transformations to general coordinates, such as a spherical co-
ordinate system. For light signals we always have that ds2 = 0 while motions of material
points are characterized by ds2 < 0. We can now repeat the derivation of the one-dimensional
example. If (t(τ), x(τ), y(τ), z(τ)) is the world line of a particle as observed in an inertial
frame and if dτ is the increase in proper time between the space-time points (t, x, y, z) and
(t+ dt, x+ dx, y + dy, z + dz) then we have

−c2dτ2 = −c2dt2 + dx2 + dy2 + dz2 (1.64)

and hence

τ(t)− τ(t0) =

∫ t

t0

dt1

√√√√1− 1

c2

[(
dx

dt1

)2

+

(
dy

dt1

)2

+

(
dz

dt1

)2
]

=

∫ t

t0

dt1

√
1− v(t1)2

c2
(1.65)

6In that case ∆s would be imaginary. However, in practice we only need the square of the element so we
never need to deal with imaginary numbers.
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Since the integrand in this equation is always smaller or equal to one we have for any space-time
path that

τ(t)− τ(t0) ≤ t− t0 (1.66)

Therefore the time passed on the local clock traveling with the particle is always smaller than the
clock in the inertial frame. Therefore, when the traveling observer returns to the origin of the
inertial frame and compares clocks he will find that his clock has recorded a smaller time interval.
The discrepancy is real and has been verified experimentally. The reason for the difference is
that the moving observer has not been moving at uniform speed. After all he had to slow down
and return. The accelerations that were caused by this change in speed have caused the slow
down of the moving clock as compared the clock in the inertial frame. More discussions on clock
rates in non-inertial frames can be found in the next Chapter.
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Chapter 2

Reference frames and
coordinate invariance

Inertial frames are defined as frames in which the physical laws are invariant under rigid space
and time translations as well as the orientation of the coordinate axes. We discuss Newton’s law
of gravitation as an example of a physical law and show how it transforms to different reference
frames. We discuss the practical and conceptual difficulties with the special status of inertial
frames. As an example we consider a rotating system described both using Newtonian mechanics
and special relativity. Finally, we discuss the arbitrariness in defining space-time frames and the
physical meaning of particle trajectories.

2.1 Inertial frames

In the previous Chapter we discussed the possible linear coordinate transformations compatible
with a certain group structure and used them to describe the motion of objects without con-
sideration of the forces that cause this motion. What is left, of course, is a description of how
forces change the motion of bodies. This obviously involves a description of the reason for the
change of motion as formulated in a physical law. Newton discovered the basic laws of classical
mechanics as well as the law that describes the motion of bodies under the influence of their
gravitational attraction. He also realized that these mechanical laws attain a simple form but
only in certain privileged reference frames. These reference frames are called inertial frames and
they are characterized by the property that they treat space and time homogeneously as well as
space isotropically. This means, more specifically, that in such frames the mechanical laws (or
more generally all physical laws) are invariant under translations in space and time as well as
under rotation of the coordinate axes. Let us discuss this in more detail with an example.
We go back to Newtonian mechanics and consider in a given coordinate system O a number
of N masses mi, i = 1 . . . N at positions given by the vectors xi(t). Then Newton states that
there exists a class of reference frames such that in these frames motion of the masses mi under
the influence of each others gravitational forces is given by the differential equation

Fi(t) = mi
d2xi
dt2

(t) = −G
N∑
j 6=i

mimj
xi(t)− xj(t)

|xi(t)− xj(t)|3
(2.1)

where G is the gravitational constant and Fi is the force on mass mi. Eq.(2.1) represents
a set of second order differential equations that needs to be solved with the initial conditions
xi(t0) = xi,0 and dxi(t0)/dt = vi,0. For three particles we, for instance, have

25
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Figure 2.1: Three interacting masses

Consider now the following three operations:

x′i(t) = xi(t+ t0) (2.2)
x′i(t) = xi(t) + x0 (2.3)
x′i(t) = Rxi(t) (2.4)

where R in the last equation is a time-independent rotation matrix and t0 and x0 are an arbitrary
time and position. It is an easy exercise to check that Eq.(2.1) is invariant under these three
transformations such that after each of these transformations it attains the form

mi
d2x′i
dt2

(t) = −G
N∑
j 6=i

mimj

x′i(t)− x′j(t)

|x′i(t)− x′j(t)|3
. (2.5)

We therefore see that the class of reference frames for which Eq.(2.1) is valid treats this physical
law in a way that is homogeneous in space and time, as well as isotropic in space. As mentioned
above, such reference frames are called inertial frames. The next question is then how to
identify an inertial frame in practice. Let us first start by showing that a reference frame moving
at uniform velocity with respect to a given inertial frame is another inertial frame.
Consider a second observer O′ moving with respect to O at constant velocity v. If the coordinate
axes of O and O′ are parallel and coincide at t = 0 then the coordinates in O and O′ are related
by the Galilean transformation

x′ = x− v t

t′ = t

It is immediately clear from this transformation that difference vectors are invariant under this
transformation, i.e.

x′1 − x′2 = (x1 − v t)− (x1 − v t) = x1 − x2

and furthermore
d2x′

dt2
=

d2

dt2
(x− v t) =

d2x

dt2
.

These equations imply that with respect to system O′ Newton’s equations (2.1) again attain
the form of Eq.(2.5). It is therefore clear that the new frame is again an inertial frame. Since
Newton’s equations have, after the Galilean transformation, exactly the same form as Eq.(2.1)
we say say that the equations are Galilean invariant. This means physically that if observer
O′ puts the masses mi at the same initial positions and gives them the same initial velocities
as observer O, i.e. x′i(t0) = xi,0 and dx′i(t0)/dt = vi,0 the solutions will clearly be identical.
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In other words if O and O′ perform the same experiment the outcomes will be the same and
therefore observers O and O′ are physically equivalent. In the derivation of this result the form
of the interactions on the right hand side of Eq.(2.1) does not play any role. What is important,
however, is that the interactions only depends on the difference vectors xi − xj and respect
isotropy. More generally we can instead of Eq.(2.1) write

mi
d2xi
dt2

(t) = − ∂V
∂xi

(x1, . . . ,xN ) (2.6)

where

V (x1, . . . ,xN ) =

N∑
i>j

vij(xi − xj)

is a potential only dependent on the difference vectors xi − xj (it also does not need to be a
sum of two-body potentials vij as above, but this is the most common physical situation). The
choice

vij(r) = −Gmimj

|r|
then gives back Eq.(2.1). We can say that Eq.(2.6) is Galilean invariant. There is, however, no
invariance of Eq.(2.1) or (2.6) under more general transformations. Suppose now that system
O′ differs from O by a combination of a time-dependent translation and rotation, i.e. instead
of the Galilean transformation we have

x(t) = R(t)x′(t) + r(t)

where R(t) is a time-dependent rotation matrix and r(t) a time-dependent translation vector.
Then

dx

dt
=

dR(t)

dt
x′(t) +R(t)

dx′

dt
+
dr

dt
d2x

dt2
= R(t)

d2x′

dt2
+ 2

dR(t)

dt

dx′

dt
+
d2R(t)

dt2
x′(t) +

d2r

dt2

With these equations it is clear how the left hand side of Eq.(2.6) transforms. Let us assume
that the potential V only depends on the lengths |xi − xj | of the difference vectors (as is the
case for gravity) then it is not difficult to see that

− ∂V
∂xi

(x1, . . . ,xN ) = −R(t)
∂V

∂x′i
(x′1, . . . ,x

′
N )

We therefore find that

mi

{d2x′i
dt2

+ 2R−1(t)
dR(t)

dt

dx′i
dt

+R−1(t)
d2R(t)

dt2
x′i(t) +R−1(t)

d2r

dt2

}
= − ∂V

∂x′i
(x′1, . . . ,x

′
N ) (2.7)

This equation has a much more complicated form than Eq.(2.6). It is clear that the new
coordinate frame is not invariant anymore under the transformations (2.2)-(2.4) and therefore
does not represent an inertial frame. The homogeneity in time is is violated as a consequence
of the presence of the explicitly time-dependent rotation matrices R(t) and the explicit time-
dependence of the translation vector r(t). The homogeneity in space is violated by the third
term on the left hand side of Eq.(2.7) which is linear in x′j(t). Finally, isotropy is violated by
the last term on the left hand side. The simple form Eq.(2.1) or Eq.(2.6) seems only to apply
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in the privileged inertial frames which, by definition, respect isotropy and homogeneity of space
and time. In particular, in such frames we have that when V = 0, that

mi
d2xi
dt2

= 0

or
xi(t) = xi,0 + vit.

Therefore in such coordinate systems objects on which no forces act move along straight lines.
Note that this is a more a feature of the presence of the second time derivative in Newton’s law
rather than the isotropy and homogeneity of space and time. For example, if we would have
changed the second derivative on the right hand side of Eq.(2.1) to a third derivative then the
equations of motion would still have been invariant under space and time translations as well as
under rotations. Moreover, in that case the equations of motion would still be invariant under
Galilean transformations (in fact, they would even be invariant under transformations to linearly
accelerated frames). However, free motions are in that case not given by straight lines. We
mention it here, since one often defines inertial frames as frames in which free motion is given
by straight lines. However, the more fundamental property of inertial frames is the isotropy and
homogeneity of space and time in such frames.
Let us finally address a particularly useful transformation between inertial frames. This is the
transformation to the center-of-mass frame. Let us consider a set of N massesmj which interact
which each other (but not with any outside forces). Their motion is described with respect to
some inertial frame by the equations

mj
d2xj
dt2

=

N∑
k 6=j

Fjk(xj − xk) (2.8)

where Fjk is the force on mass mj by another mass mk. Here we do not care about the precise
nature of these forces. The masses may interact by gravitational forces, or be connected by
springs or interact in some other way. We only assume that the forces are such that Fjk = −Fkj
and that the force Fjk only depends on the vector xj−xk and respects the isotropy of space (i.e.
transforms appropriately under the transformation Eq.(2.4)). Then we introduce the center-of-
mass vector X by

X =
1

M

N∑
j

mjxj (2.9)

where M = m1 + . . .+mN is the sum of all masses. Then it follows that

M
d2X

dt2
=

N∑
j

mj
d2xj
dt2

=

N∑
j,k

Fjk = 0 (2.10)

since the last sum runs over all pairs of masses and Fjk = −Fkj . The center-of-mass X(t)
therefore moves with constant velocity with respect to our inertial frame. The system that
moves with the center of mass is therefore also an inertial frame. If we therefore define the new
coordinates

x′j = xj −X (2.11)

then we are performing a Galilean transformation and Eq.(2.8) attains the same form

mj

d2x′j
dt2

=

N∑
k 6=j

Fjk(x′j − x′k) (2.12)
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in the new coordinates. In the new system we have the useful relation

N∑
j

mjx
′
j =

N∑
j

mj(xj −X) =

N∑
j

mjxj −MX = 0 (2.13)

This ends our introductory discussion of inertial frames. The concept of inertial frame introduces
both a practical and a theoretical problem. Let us start with the practical problem in the next
section. After that we discuss the more conceptual problem.

2.2 How to choose an inertial frame?
How do we choose an inertial frame in practice? The Earth is not an inertial frame since it
rotates around its axis and is in accelerated motion with respect to the Sun. We find, however,
experimentally that to a very good approximation any reference frame that moves at constant
velocity with respect to the stars that can seen from Earth (and does not rotate with respect
to them) forms an inertial frame. This is, in particular, true for the center-of-mass of the Solar
System1. Indeed, in this reference frame the motions of the planets and other bodies in the Solar
System are described to a very high accuracy by Eq.(2.1) The accurate description of celestial
mechanics was one of the impressive successes of the Newton’s theory of gravitation.
However, even accelerated reference frames may locally be regarded as inertial frames. Such
inertial frames are formed by the frame of a test particle (which means that it has negligible
mass) moving freely in a gravitational field. Let us, as an example, consider a small group of
N asteroids orbiting the Sun (see Fig. 2.2) as described in the inertial frame attached to the
center of mass of the Solar System.

Figure 2.2: A group of small masses orbiting the center of mass of the Solar System.

If we let the mass and the position of the Sun in this reference system be M and X and those
of the asteroids (with much smaller masses) be mj and xj then the equation of motion of the
asteroids is given by

mj
d2xj
dt2

= −GMmj
xj −X

|xj −X|3
−G

N∑
k 6=j

mjmk
xj − xk
|xj − xk|3

(2.14)

Let us now define the center of mass of the asteroids to be

R =
1

µ

N∑
j=1

mjxj (2.15)

1Newton writes in his Principia that "The common center of gravity of the Earth, the Sun, and all planets is
immovable." He referred to this center of mass as "the center of the system of the world" and assumed it to be
at rest with respect to absolute space. This center of mass is located just inside or outside the surface of the Sun
and its motion relative to the Sun is mainly determined by the positions of the large planets Jupiter and Saturn.
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where µ = m1 + . . . + mN is the total mass of the asteroids. This mass center satisfies the
equation of motion

µ
d2R

dt2
=

N∑
j=1

mj
d2xj
dt2

= −GM
N∑
j

mj
xj −X

|xj −X|3
(2.16)

We now define the coordinates x′j = xj −R which describe the position of the asteroids with
respect to their center of mass. Then in these coordinates we have

µ
d2R

dt2
= −GM

N∑
j

mj

x′j + R−X

|x′j + R−X|3
(2.17)

mj

(
d2x′j
dt2

+
d2R

dt2

)
= −GMmj

x′j + R−X

|x′j + R−X|3
−G

N∑
k 6=j

mjmk

x′j − x′k
|x′j − x′k|3

(2.18)

Now we assume that
|x′j | � |R−X| (2.19)

i.e. we assume that the asteroids in the small group are much closer to their common center of
mass than to the Sun. In that case we can neglect x′j compared to R −X in the first terms
on the right hand sides of Eqs. (2.17) and (2.18). We further have that |X| � |R| due to the
very large mass of the Sun such that we can write R ≈ R−X and simplify the equations a bit
further2. We these approximations we then obtain

d2R

dt2
= −GM R

|R|3
(2.20)

mj

d2x′j
dt2

= −G
N∑
k 6=j

mjmk

x′j − x′k
|x′j − x′k|3

(2.21)

We see that in the frame attached to the center of mass R(t) the asteroids follow the same
gravitational law as in an inertial frame. This remains true as long as the asteroids do not
wander to far from their common center of mass as we assumed that |x′j | � |R|. So the inertial
properties are only valid locally. We further see that the center of mass R(t) moves freely as a
single particle in the gravity field of the Sun. Its motion is either elliptic, parabolic or hyperbolic,
depending on the initial conditions imposed.
Another important example of a local inertial frame is the Earth-Moon system. This is just
a special case of the previous derivation with only two small masses m1 and m2 representing
the Moon and the Earth. In that case R(t) is given by the center of mass of the Moon-Earth
system which describes an elliptic motion around the much more massive Sun. We may say
that the Moon-Earth system is in a free fall around the Sun and systems that move freely in a
gravitational field behave locally like an inertial frame. In fact, Einstein took this as a guiding
principle to develop a relativistic theory of gravitation.

2.3 Conceptual difficulties
Let us now consider a conceptual difficulty with the concept of inertial frame. This is most easily
illustrated with a simple example. We consider a system consisting of an observer and spring
connected to two identical masses. We then consider two physical situations A and B :

2The asteroid belt is about 450 million kilometers removed from the Sun while the center of mass of the Solar
System is on average one solar radius or about 0.7 million kilometers removed from the center of the Sun.
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Figure 2.3: The physical situations of a rotating spring and resting observer A) and a rotating
observer and a resting spring B)

A] In this case the spring is rotating with constant angular velocity with respect to the inertial
frame at which the observer is at rest. The spring has a fixed length that does not change
with time.

B] In this case the spring is at rest in an inertial frame and the observer is rotating with constant
angular velocity with respect to this frame. Again the spring has a fixed length that does
not change in time.

If one imagines a universe only containing the observer and the spring one would imagine that
both cases are completely equivalent. Nevertheless, Newton’s equations (2.6) predict that in the
case A the spring is stretched out of its equilibrium length and will be longer than the spring
in case B. It is instructive to see how Newton’s equations achieve this result. Let us start with
situation A. We use Eq.(2.6) in which the potential V is given by the harmonic potential

V (x1,x2) =
k

2
(|x1 − x2| −R0)2

where k is the spring constant and R0 the equilibrium length of the spring. The equations (2.6)
thus become

m
d2x1

dt2
= −k(|x1 − x2| −R0)

x1 − x2

|x1 − x2|

m
d2x2

dt2
= −k(|x1 − x2| −R0)

x2 − x1

|x2 − x1|

Subtracting both equations then gives

µ
d2x

dt2
= −k(|x| −R0)

x

|x|
(2.22)

where x = x1 − x2 and µ = m/2 is the reduced mass. A solution describing uniform rotation
with fixed length |x| = R is given by

x(t) = (R cos(Ωt), R sin(Ωt), 0)

where Ω is the angular velocity. Inserting this expression into Eq.(2.22) gives

−µΩ2 = −kR−R0

R
⇒ R =

R0

1− µΩ2

k

> R0 (2.23)
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when µΩ2/k < 1 3. We see that R > R0 and therefore the rotating spring has increased its
length as compared to its equilibrium length.
Let us now discuss case B where the spring is at rest in the inertial frame ( and for instance
x = (R0, 0, 0) solves Eq. (2.22) in that case). In this case we apply Eq.(2.7) . The rotating
frame with coordinates x′ is related to the inertial frame with coordinates x by the rotation
matrix

x =

 cos(Ωt) sin(Ωt) 0
− sin(Ωt) cos(Ωt) 0

0 0 1

 x′ = R(t)x′ (2.24)

From this expression we can calculate that Eq.(2.7) attains the form

µ

(
d2x′i
dt2
− 2Ω ez ×

dx′i
dt
− Ω2x′i

)
= − ∂V

∂x′i
(x′1, . . . ,x

′
N )

where ez = (0, 0, 1). In particular for the vector x′ = x′1 − x′2 we have

µ

(
d2x′

dt2
− 2Ω ez ×

dx′

dt
− Ω2x′

)
= −k(|x′| −R0)

x′

|x′|
(2.25)

It is immediately clear from Eq.(2.24) that a solution to Eq.(2.25) is given by

x′(t) = R−1(t)

 R0

0
0

 = R0

 cos(Ωt)
sin(Ωt)

0


for which |x′| = R0 and consequently the right hand side of Eq.(2.25) is zero. From the viewpoint
of the rotating observer the stretching of the spring is prevented by the so-called "fictitious"
forces in the second and third term on the left hand side of Eq.(2.25).
A further interesting case is when the observer is rotating together with the spring at the same
constant angular velocity as seen from the inertial observer. In that case the spring is at rest in
the rotating frame and consequently the time derivatives of x′ vanish. Then Eq.(2.25) reduces
to

−µΩ2x′ = −k(|x′| −R0)
x′

|x′|

This equation has the solution (2.23) and the rotating observer finds that the spring is stretched
by the fictitious force F = −µΩ2x′.
We see that rotation has an absolute character. In a rotating frame fictitious forces are present
that lead to physically observable effects (such as the stretching of a the spring) whereas in
frames at rest with respect to an inertial frame they are absent. This is conceptually difficult to
understand. What distinguishes situations A and B in Fig 2.3? Newton was very much aware
of this problem. He explained the difference between situation A and B by introducing the
concept of absolute space. An object rotating or accelerating with respect to absolute space
experiences fictitious forces whereas an object moving with constant velocity with respect to
absolute space does not. So in case A the spring rotates with respect to the absolute space, and
as a consequence gets stretched. In case B the observer rotates with respect to the absolute
space and consequently feels fictitious forces whereas the spring is at rest with respect to the
absolute space and does not experience any forces. The obvious question that arises from this
viewpoint is, of course, how the spring in case A "knows" that it is rotating with respect to
the absolute space. One would expect that obtaining this information requires an interaction

3When this condition is violated a solution with constant length of the spring is not possible. Of course, if
the spring rotates too fast it will break and the harmonic approximation will also break down



2.4. ROTATING FRAMES AND GENERAL SPACE-TIME COORDINATES 33

between the spring and the absolute space. How this would happen is not at all explained within
Newtonian mechanics. However, Newton needed absolute space to explain the problem above,
and placed the fixed stars that we see from the Earth at rest in this absolute space and therefore
rotation with respect to the fixed stars is a rotation with respect to absolute space. He further
put the center of mass of the Solar System at rest with respect to absolute space by assumption.

Figure 2.4: A spring rotating with respect to the distant stars

Newton did not propose a causal connection between the distant stars and the inertial forces.
The suggestion was first made by Mach who noted that the distant stars seem to be the cause
of the inertial forces in the rotating frame. The whole issue was finally clarified by Einstein who
derived that rotation is always relative with respect to the local gravitation field. In Fig 2.4
the local gravitation field is defined by the distant mass distributions (and possibly by nearby
planets such as the Earth). In Einstein’s gravitation theory (the general theory of relativity)
freely "falling" objects in a gravitational field define local inertial frames and rotations with
respect to these frames are rotations with respect to the local gravitational field. A rotating
object can interact with the gravitational field and even drag it along (this is known as the
Lense-Thirring effect and is observed by satellites orbiting the Earth). It would go too far to
discuss this interesting physics at this point. The main point of the discussion here was meant
to give a clear discussion of the concept of inertial frame.

2.4 Rotating frames and general space-time coordinates

In the example of the previous section we discussed rotating frames within the context of New-
tonian mechanics. The natural question that immediately arises is how we can describe rotating
frames starting from a Lorentz invariant theory of inertial frames. We will investigate this
question in this Section. Let us imagine a Lorentzian inertial frame O1 that uses coordinates
(t, x, y, z) . Let us in the origin O of the coordinate frame be a rotating disc with radius R that
rotates with constant angular velocity ω around the z-axis with respect system O1.
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Figure 2.5: An observer on a disc rotating with constant angular velocity ω with respect to an
inertial system.

Let us further imagine on the disc a specially marked material point P, such as a marker made
with a pen on the disc. The point makes a rotation motion around the origin O. Let at t = 0
the position of the point P be given by the spatial coordinate (x, y, z) = (r cos θ0, r sin θ0, 0).
Then its motion with respect to O1 is described by the curve

x(t) = (r cos(θ0 + ωt), r sin(θ0 + ωt), 0) (2.26)

and has with respect to O1 the velocity

v(t) =
dx

dt
= (−ωr sin(θ0 + ωt), ωr cos(θ0 + ωt), 0)

We therefore have v = |v(t)| = ωr. Since no material point can move faster than the speed of
light with respect to O1 we must have that the radius R of the disc is restricted by ωR < c. Let
us now consider a clock that is at rest at point P of the rotating disc. From the viewpoint of O1

this clock moves at velocity v = ωr. This clock is instantaneously at rest in an inertial frame
that moves at speed v = ωr with respect to O1 and therefore we deduce that this clock will run
slow by a factor

√
1− v2/c2 =

√
1− ω2r2/c2 as compared to a clock at rest in system O1. So

if dt is a small increment in proper time for a clock in the inertial frame then the corresponding
increment in proper time dτ for a clock on the disc is given by

dτ =
√

1− ω2r2/c2dt. (2.27)

In general O1 will therefore see that clocks at rest with respect to the disc run slower the further
they are removed from the center of the disc. Let us now consider the spatial coordinates. Due
to the symmetry of the problem it is natural to introduce spatial cylindrical coordinates (r, θ, z)
related to the old spatial coordinates (x, y, z) by

x = r cos θ

y = r sin θ (2.28)
z = z

We then consider two nearby points (r, θ0) and (r, θ0 + dθ) on the disc at equal distance r
from the origin but with an angular coordinate differing by a small amount dθ. The distance
between these points can be deduced in system O1 by taking a snapshot of the disc at a given
time t. Then Eq.(2.26) tells that the distance between the points is given by dl = rdθ. Now
consider a moving inertial system in which the two points are at rest. This can only be done
approximately since the direction of the velocity of the two points is slightly different but this
difference becomes negligible for small enough dθ. In this frame the distance between the two
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points is dl′. Since the inertial system has velocity v = ωr with respect to O1 we find that from
the viewpoint of O1 the distance dl′ is Lorentz contracted to rdθ = dl = dl′

√
1− ω2r2/c2 and

therefore
dl′ =

rdθ√
1− ω2r2/c2

If we, on the other hand, had considered two points that have the same angular coordinate θ
but are separated by a radial coordinate dr then we would not observe any Lorentz contraction
since the separation vector is orthogonal to the velocity of both points and in this case dl = dl′

and therefore both observers agree on the length of the radius of the disc. We see that in a
frame moving with the disc the circumference of a circle with radial coordinate r is given by

l′ =

∫ 2π

0

rdθ√
1− ω2r2/c2

=
2πr√

1− ω2r2/c2
> 2πr

and therefore conclude that for the moving observer the coordinates r and θ do not play the
role of Euclidean coordinates. So far we used the inertial system O1 as a reference to reach our
conclusions. The question then arises how the physical world looks like for another observer O2

at rest with respect to the disc. The first problem that observer O2 faces is how to define a
coordinate system. The first thing to comes to mind is to define space and time coordinates
with a direct physical meaning as we did in Eqs.(1.33) and (1.34) using Einstein synchronization.
However, with respect to the rotating disc light rays move along curved paths and we immedi-
ately run into the problem how to synchronize distant coordinate clocks. After some reflection,
however, we realize that the actual choice of coordinates is irrelevant, as any choice will do. The
situation is similar to defining a coordinate system on a general curved surface, like the surface
of the Earth, on which no simple Euclidean coordinate system is possible. This, however, does
not prevent us from introducing a coordinate system on the Earth’s surface. Any coordinate
system that labels a point on the Earth’s surface uniquely is equally valid. The only problem is
how to relate these coordinates to coordinate independent quantities, such as the distance as
measured by local observers on Earth between two cities with certain coordinates, but this is
a solvable problem for any coordinate system that we like to choose. We can do the same for
observer O2, we can choose any space-time coordinate system we like. The only requirement is
that it labels any space-time event uniquely. We will worry later about its relation to times and
lengths measured by local clocks and measuring rods in the vicinity of the observer on the disc.
Let us discuss this issue from a more general point of view. To shorten the notation we write
denote the coordinates of the inertial frame O1 by (y0, y1, y2, y3) (the use of super-indices will
be explained in later Chapters). These are not necessarily Cartesian coordinates. They could, for
instance in our example be the coordinates (t, x, y, z) or (t, r, θ, z). For the non-inertial frame O2

we will use new coordinates (x0, x1, x2, x3). The particular choice of these coordinates is irrele-
vant as long as it labels each space-time event uniquely. They also have, in general, no physical
meaning which implies that physically observable quantities should eventually be independent of
them. The only thing we need is that there is a one-to-one relation between the coordinates yj

and xj , i.e. there are invertible functions yj(x0, x1, x2, x3) relating them. Let us now start by
considering the standard Minkowski coordinates for system O1, i.e. (y0, y1, y2, y3) = (t, x, y, z)
Consider now the infinitesimal distance

ds2 = −c2dt2 + dx2 + dy2 + dz2 =

3∑
µ,ν=0

gµνdy
µdyν (2.29)

between two space-time points, where gµν is a diagonal matrix with diagonal elements (−c2, 1, 1, 1).
We have seen in the previous Chapter that this expression is invariant under Lorentz transforma-
tions in the sense that a Lorentz transformation transforms this expression into another diagonal
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quadratic form with identical constant diagonal elements. Nothing, however, prevents us to
transform to arbitrary other coordinates (x0, x1, x2, x3) using

dyµ =

3∑
ρ=0

∂yµ

∂xρ
dxρ

This transforms Eq.(2.29) into

ds2 =

3∑
ρ,σ=0

g′ρσdx
ρdxσ (2.30)

where

g′ρσ =

3∑
µ,ν=0

gµν
∂yµ

∂xρ
∂yν

∂xσ

is a symmetric matrix (or more properly tensor, but this will be discussed in much more detail in
the next Chapter). The expression (2.30) is now, in general, not diagonal anymore and nor are
the coefficients g′ρσ constant. However, the transformation obviously did not change the value
of ds2, it has a value that is the same in any coordinate system. A simple example is given by
a simple transformation to cylindrical coordinates (t, r, θ, z) using Eq.(2.28) which gives

dx = cos θdr − r sin θdθ

dy = sin θdr + r cos θdθ

and
ds2 = −c2dt2 + dx2 + dy2 + dz2 = −c2dt2 + dr2 + r2dθ2 + dz2 (2.31)

So far, nothing special has happened. Things become more interesting when transform to
a moving frame. Let us consider the system O1 with coordinates (t, r, θ, z) and define new
coordinates (x0, x1, x2, x3) = (t′, r′, θ′, z′)

t′ = t

r′ = r

θ′ = θ − ωt (2.32)
z′ = z

This is a transformation to the frame O2 rotating together with the disc since the points in the
new frame that have are spatially constant values, i.e. (r′, θ′, z′) = (c1, c2, c1) for constants
c1, c2, c3, are rotating uniformly with angular frequency ω with respect to O1, i.e. r = c1, θ =
c2 + ωt, z = c3. It remains to relate the new coordinates to distances measured on the disc and
times displayed by local clocks on the disc. In general, the new coordinates do not need to have
a physical meaning. However, in this particular case, the choice of the time coordinate t′ = t,
which we will call the coordinate time, has a possible physical realization. An observer on the
disc can simply decide to use the time displayed visually by a clock at rest in O1, for example at
the center of the disc, to label time values independent of what his/her local clock may display4.
An event happening at a distance r′ from the center will in this way be assigned the time value
read visually from the clock at the center minus a correction ∆t′ that observer O2 at r′ makes
for the time it takes for a light signal to travel from the center of the disc to the observer. This
correction is simply calculated. Let observer O1 send out a light signal from the origin at time

4We could say that the coordinate time defines a non-standard clock, whereas the local proper time is displayed
by a standard or physical clock.
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t = 0. For observer O1 this light signal simply moves radially outward long a straight line given
by the coordinates

r = c t

θ = θ0

(for simplicity we take z = z′ = 0). From the coordinate transformation (2.32) it follows that
observer O2 sees that the light moves along the path

r′ = c t′

θ′ = θ0 − ωt′

Therefore from the viewpoint of the observer on the disc the light is spiraling outward. Neverthe-
less, both observer O1 and O2 agree that the light reaches the radius r′ at time t = t′ = r′/c 5.
Therefore, the correction ∆t′ that the observer O2 needs to subtract from the visually observed
clock time is r′/c. In this way O2 can use the coordinate time t′ to label events. What will be
the relation between this time and the time displayed by a local clock at radius r′? To determine
this we consider again the invariant ds2. Since dt = dt′, dr = dr′, dθ = dθ′+ωdt′ and dz = dz′

we obtain

ds2 = −c2dt2 + dr2 + r2dθ2 + dz2

= −c2(1− ω2r′2

c2
)dt′2 + dr′2 + r′2dθ′2 + 2ωr′2dt′dθ′ + dz′2 (2.33)

Let us now consider two events that according to observer O2 happen at the space time-points
(t′, r′, θ′, z′) and (t′ + dt′, r′, θ′, z′), i.e. at same spatial point such that dr′ = dθ′ = dz′ = 0
but with a coordinate time dt′ apart. Then clearly

ds2 = −c2(1− ω2r′2

c2
)dt′2

Let us further consider an inertial observer O3 (moving with velocity v = ωr with respect
to O1) in which the spatial point (r′, θ′, z′) is instantaneously at rest. In this inertial frame
ds2 = −c2dτ2 where τ is the proper time recorded by a clock at rest at point (r′, θ′, z′) in O3.
Since observers O2 and O3 are at rest with respect to each other at the same spatial position
they agree on the proper time increment dτ of their local clocks. We therefore find that the
proper time dτ in system O2 and the coordinate time increment dt′ are related by

dτ2 = (1− ω2r′2

c2
)dt′2

and by integration (since r′ is constant) we find

τ(t′, r′)− τ(t′0, r
′) =

√
1−

(
ωr′

c

)2

(t′ − t′0) (2.34)

We therefore find that the proper time τ recorded by a physical clock in system O2 at radius
r = r′ is a factor of

√
1− ω2r2/c2 smaller than the coordinate time t′ at the same spatial point.

We already came to this conclusion above. Note that, unlike the case of relatively moving inertial
observers, the observers O1 and O2 agree with each other that the clock at rest in O2 is running
slower than the one at rest in O1. This is because the two systems are no longer equivalent,

5Of course, O1 must choose θ0 correctly to reach observer O2. You can check that the correct choice is
θ0 = θ̄ + ωr′/c, where θ̄ is the angular coordinate θ of O2 at t = 0.
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while O1 is an inertial observer the system O2 is not. Note that in Eq.(2.34) we still need to
make a choice for the value of τ(r′, t0). A simple choice is τ(r′, 0) = 0 which means that we
set all local clocks to time zero when the coordinate time t′ = 0. This is a simple example
of synchronization using coordinate time. In practice this is easily achieved, an observer at r′

simple sets his clock to zero when he sees that the clock in the center reads the time t = −r′/c.
At any later moment every clock on the disc will then read the time

τ(t′, r′) = t′

√
1−

(
ωr′

c

)2

(2.35)

The ratio between the proper times τ1 and τ2 of two clocks at r′ = r1 and r′ = r2 is then given
by

τ1
τ2

=

√√√√1−
(
ωr1
c

)2
1−

(
ωr2
c

)2 (2.36)

We see that the coordinate time t′ has disappeared from the expression. The ratio above is
an experimentally accessible quantity independent of the coordinate system used and does not
depend on the coordinate system used. The variables r1 and r2 have a direct physical meaning
as the distance to the origin measurable by standard measuring sticks. We will discuss below in
more detail how O2 can measure distances on the rotating disc, but before we do that we will
give simple physical application of Eq.(2.34). Let an observer in the origin send out periodic
signals with a time difference ∆t and hence a frequency ν0 = 1/∆t. Then according to Eq.(2.34)
the observer at distance r′ = r will receive these signals with a period ∆τ(r) on his local clock
and hence with a frequency νr given by

νr =
ν0√

1−
(
ωr
c

)2
The rotating observer finds the signal to be blue-shifted. Reciprocally, if the rotating observer
would send out periodic signals the central observer would see them to be red-shifted. This
phenomenon is also known as gravitational redshift and has been well-verified experimentally.
The reason for this name in our context is that the rotating observer can interpret the force he
feels on the rotating disc as the presence of a gravitational field 6. The redshift is then caused
by light trying to climb out of a gravitational well.
So far the discussion was focussed on local time measurements. The next question is what a
local observer will find for distance measurements. Rather than working this out directly for the
rotating disc we first work out this question in general terms such that the general structure of
the equations become clear. After that we will again return to the rotating disc. Let us consider
a (in general non-inertial) frame with coordinates x = (x0, x1, x2, x3) which have no physical
meaning apart from the fact that they label space-time points uniquely7. In the coordinates the
invariant line element ds2 attains the form

ds2 =

3∑
µ,ν=0

gµνdx
µdxν

6This is Einstein’s equivalence principle that forms the foundation of the theory of general relativity. The
rotating disc played an important role Einstein’s early work to understand gravity in terms of the deformation of
space-time.

7Just like Matterhorn and Mont Blanc are labels without any physical meaning for two points on the surface
of the Earth. However, the distance between these points does have a physical meaning, as well as the rate of
local clocks at these points.
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Let us first consider the case that dxν = 0 for ν = 1, 2, 3 while dx0 6= 0 i.e. we consider two
space-time event at the same spatial position such that ds2 = g00(x)(dx0)2. By considering an
inertial observer instantaneously at rest at point (x1, x2, x3) we find, as in our example above,
that ds2 = −c2dτ2 where τ is the proper time of a clock at (x1, x2, x3). We therefore find that

dτ =
1

c

√
−g00(x) dx0 (2.37)

which is the generalization of the equation that we derived above for our example of the rotating
disc. So we know how to relate coordinate time x0 to local proper time. The next task is to
discuss distances. We noted above that the measurement of distances with light signals in a
general inertial frame is complicated by the fact that light moves along curved paths in a general
frame. This problem vanishes for infinitesimally close points since in that case the curvature
of the path can be neglected. Let us therefore consider a spatial point A with coordinates
(x1, x2, x2) and a neighboring point B with coordinates (x1 + dx1, x2 + dx2, x3 + dx3). Now
we send a light signal from B to A which is subsequently reflected in A and received back in B.
The situation is depicted graphically in Fig.(2.6).

Figure 2.6: An observer in B sends out a light signal to a nearby observer A which is reflected
back to A. The coordinate time which for observer B according Einstein synchronization is
simultaneous with the reflection at coordinate time x0 in A is indicated in the figure.

Given the spatial coordinates of A and B, what is now the coordinate time distance dx0 for a
light signal arriving at or leaving these points? This question can be answered by considering
the invariant line element ds2. Since we have ds2 = 0 for a light signal the value dx0 can be
determined from the equation

0 =

3∑
µ,ν=0

gµνdx
µdxν = α+ 2β dx0 + g00(dx0)2 (2.38)

where we defined

α =

3∑
µ,ν=1

gµνdx
µdxν

β =

3∑
ν=1

g0νdx
ν

The quadratic equation (2.38) is easily solved to give

dx0 = − 1

g00

(
β ±

√
β2 − α g00

)
(2.39)
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There are two solutions, dx0(1) and dx0(2) to this equation, which is easy to understand physically
(see Fig.(2.6)). One solution corresponds to the coordinate time x0 + dx0(1) that B sends the
light signal and another one x0 + dx0(2) corresponds to the coordinate time at which B receives
the signal. We therefore see that dx0(1) < 0 while dx0(2) > 0. Since g00 < 0 and α > 0 (since
it represents a spatial distance) we see that the square root term in Eq.(2.39) is larger than |β|
and we therefore have that dx0(1) and dx0(2) respectively correspond to the minus and plus sign
in Eq.(2.39) 8. The coordinate time passed between emission and reception of the light signal
in B is then given by

dx0(2) − dx0(1) = − 2

g00

√
β2 − α g00 (2.40)

The proper time interval dτ passed on a local clock in B between these two events is therefore
according to Eq.(2.37) given by

dτ =
1

c

√
−g00(x) (dx0(2) − dx0(1)) =

2

c

1√
−g00

√
β2 − α g00 (2.41)

We have calculated now calculated the return time of the light signal as measured in B. How
can we use this do measure the distance to A? We simply use the same definition that we used
in the case of inertial frames and define that the distance dl to point A is given by dl = c dτ/2,
i.e. for points further away it takes longer for the signal to return. We might call the distance
determined in this way the radar distance between objects. By this operational definition of
distance we find from Eq.(2.41) that

dl2 = α− β2

g00
=

3∑
µ,ν=1

(gµν −
g0µg0ν

g00
)dxµdxν =

3∑
µ,ν=1

g̃µνdx
µdxν (2.42)

where we defined the spatial three-dimensional metric

g̃µν = gµν −
g0µg0ν

g00
(µ, ν = 1, 2, 3) (2.43)

With this new tensor we can measure the distance along any curve in the general frame. Let
us illustrate this by going back to the example of the moving frame. The observer O2 uses
coordinates (x0, x1, x2, x3) = (t′, r′, θ′, z′) with the metric tensor gµν given in Eq.(2.33). The
tensor g̃µν of Eq.(2.43) is then readily calculated to be given by

dl2 = dr′2 +
r′2

1− ω2r′2

c2

dθ′2 + dz′2 (2.44)

This is the spatial metric that an observer on the rotating disc finds when he or she starts to
carry out local experiments with light signals. It is clear that this metric is non-Euclidean (except
of course when ω = 0). The observer on the rotating disc, for instance, finds that a radial line
(i.e. dθ′ = dz′ = 0) from the center of the disc to point r′ = R has the length

l =

∫ R

0

dr′ = R

while the circle with radius r′ = R has the circumference

l =

∫ 2π

0

Rdθ√
1− ω2R2

c2

=
2πR√

1− ω2R2

c2

8Note that the sign of β is arbitrary. For instance, if we let our disc rotate in the opposite direction by
replacing ω by −ω the sign of β changes.



2.4. ROTATING FRAMES AND GENERAL SPACE-TIME COORDINATES 41

Therefore the ratio between the circumference and the radius is not 2π as in Euclidean geometry
but larger (which is what mathematicians call hyperbolic geometry). We can also calculate
that, with the exception of radial lines, the shortest distance between two point on the disc (a
so-called geodesic curve) is no longer a straight line as in Euclidean geometry. It is clear that
these distances and curves are independent of the coordinate system used in the reference system
O2. At this point it is useful to make a distinction between reference frames and coordinate
transformations. The observer O2 may instead of the coordinates (x0, x1, x2, x3) = (t′, r′, θ′, z′)
have used other internal coordinates yµ related to the old ones by

y0 = y0(x0, x1, x2, x3)

yj = yj(x1, x2, x3) (j = 1, 2, 3) (2.45)

where the new spatial coordinates yj for j = 1, 2, 3 are only functions of the old spatial coordi-
nates and not of x0 while the new time coordinate y0 is allowed to depend on all old coordinates
9. In this way the new spatial coordinates of a point at rest on the disc will stay time-independent
as it should for a co-moving observers. We can thus say that a reference frame is an equivalence
class of transformations of the form of Eq.(2.45). The spatial metric g̃µν is invariant (or more
precisely transforms as a tensor) under such restricted transformations (You can check this as
an exercise for yourself). More general coordinate transformations, such as (2.32) transform
between reference frames as well.
Now that we have defined local clock times and local distance measurements the next question
is how an observer on the disc uses these times and distance to calculate velocities. For the
measurement of velocity we run into the problem that we need two nearby positions and two
times to define it, but now in our reference system clocks at two different positions run at a
different rate so we need to be careful in how to calculate the time difference. This problem
can not be solved without agreeing on a definition of simultaneity of two nearby events in our
reference frame, which requires a synchronization of clocks. We did not have to bother about
this issue before since we did not need to compare clocks at different positions as the metric
tensor g̃µν was deduced using the clock times of one and same clock in point B only. The
synchronization of clocks can be achieved in different ways. We can, for instance, use the Ein-
stein synchronization that we discussed extensively in Section 1.3. Following Eq.(1.33) of that
Section we define nearby clocks at points A and B to be synchronized when the coordinate time
of reflection x0 in A corresponds to the time

x0
B = x0 +

1

2
(dx0(1) + dx0(2)) = x0 − β

g00
(2.46)

for observer B. The coordinate clock times that are simultaneous by this definition are marked
in Fig.(2.6). In other words, two event events differing in coordinate time dx0 = x0

B − x0 and
spatial coordinates dxν(ν = 1, 2, 3) are defined to be simultaneous when

dx0 = − 1

g00

3∑
ν=1

g0νdx
ν (2.47)

where we used the explicit form of β. From Eq.(2.46) it now follows that (see also Fig.(2.6))
according to an observer in B the coordinate time dx̃0 it takes for the reflected light signal to
travel from A to B is given by

dx̃0 = x0 + dx0(2) − (x0 +
1

2
(dx0(1) + dx0(2))) = dx0(2) +

β

g00
(2.48)

9One usually also demands that ∂y0/∂x0 > 0 in order not to reverse the orientation of time.
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which according to Eq.(2.37) amounts to a proper time interval dτ̃ of

dτ̃ =
1

c

√
−g00(dx0(2) +

β

g00
) (2.49)

The velocity of the reflected signal is then simply given by dl/dτ̃ . Let us see what this gives.
The expression dτ̃ can used to write Eq.(2.38) as

0 = −c2dτ̃2 + α− β2

g00
= −c2dτ̃2 + dl2 (2.50)

where we used Eq.(2.42). Therefore the velocity of the light signal according to an observer B
is

dl

dτ̃
= c

which at first sight may not be very surprising. However, it is important to realize that this result
is a consequence of the definition Eq.(2.46) of simultaneity within our reference frame. If we
use another synchronization we find that the velocity of light is not equal c and depends on the
direction of the light signal. One has therefore to be careful in defining velocity in non-inertial
frames.
Looking at our derivation we realize that the particular linear combination of the space and time
increments on the right hand side of Eq.(2.49) formally allows us to get rid of the mixed space
and time differentials in the metric. More precisely, we can write

ds2 =

3∑
µ,ν=0

gµνdx
µdxν

= −c2
(√
−g00

c
(dx0 +

1

g00

3∑
ν=1

g0νdx
ν)

)2

+

3∑
µ,ν=1

g̃µνdx
µdxν

= −c2dt̃2 + dl2 (2.51)

where we define the differential

dt̃ =

√
−g00

c
(dx0 +

1

g00

3∑
ν=1

g0νdx
ν) (2.52)

The interesting fact about the form of the metric in Eq.(2.51) is that it splits the line element
ds2 in two parts with a physical interpretation. The second part dl2 represents the spatial metric
as measured locally with the radar reflection method, whereas the condition dt̃ = 0 guaran-
tees that two nearby space-time points xν and xν + dxν(ν = 0, 1, 2, 3) are simultaneous (see
Eq.(2.47)) according to Einstein synchronization. Furthermore when the spatial displacements
are zero (dxν = 0 for ν = 1, 2, 3) then dt̃ coincides with the local proper time dτ recorded
on a standard clock. We can therefore assign a useful physical meaning to dt̃. However, the
differential dt̃ also has has an important deficiency, it is usually not a total differential. This
means that Eq.(2.52) can, in general, not be integrated to a time variable t̃. If it would, then it
would have the desirable property that t̃(x0, x1, x2, x2) = K, with K a constant, would repre-
sent an Einstein-synchronized surface of space-time points. In other words, by introducing t̃ as a
new time variable two space-time points with the same value of t̃ would represent simultaneous
events by Einstein synchronization. Let us, however, look at an interesting case where dt̃ can be
integrated and gives a nice new insight in our familiar Lorentz transformation. Afterwards we
return to the rotating disc where it can not be integrated.
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We noted in our discussion of the rotating disc that the rotating observer could use any coordi-
nates that he or she pleases. If this is the case for non-inertial observers this should, of course,
also be the case for inertial observers. What is then so special about the Lorentz transformation?
Can we then also use the Galilean transformation in the special theory of relativity? The short
answer to these questions is that we are perfectly allowed to use the Galilean transformation, but
that the coordinates used in the Lorentz transformation have a preferred physical interpretation.
Let us work this out in more detail. We consider again an observer A (Alice) in an inertial with
space-time coordinates (t, x, y, z) with the standard interpretation as discussed in Section 1.3.
In particular the invariant line element of Alice has the form

ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.53)

Another observer B (Bob) moves with a velocity v with respect to Alice and used coordinates
(t′, x′, y′, z′) related to the coordinates of Alice by the Galilean transformation

t′ = t

x′ = x− vt (2.54)
y′ = y

z′ = z

This is a coordinate transformation to a moving frame since the points with constant spatial
coordinates in Bob’s system are moving with velocity v with respect to Alice. In Bob’s coordinates
the invariant line element attains the form

ds2 = −c2(1− v2

c2
)dt′2 + 2vdx′dt′ + dx′2 + dy′2 + dz′2 (2.55)

We now read off the metric tensor in the new coordinates and use Eq.(2.52) and (2.43) to
calculate

dt̃ =

√
1− v2

c2

(
dt− vdx′

c2(1− v2

c2 )

)

dl2 =
dx′2

1− v2

c2

+ dy′2 + dz′2 (2.56)

We see that in this case we can integrate dt̃ to obtain

t̃ = t

√
1− v2

c2
− vx′

c2
√

1− v2

c2

(2.57)

where we choose the integration constant such that t̃ = 0 when x′ = t′ = 0. Two space-time
events with the same t̃ variable are now Einstein-synchronized and moreover t̃ records the proper
time by a clock at rest in Bob’s reference frame. We further see from Eq.(2.56) that Bob’s
spatial metric can be made into a standard Euclidean form by defining a new variable

x̃ =
x′√

1− v2

c2

(2.58)

as well as ỹ = y and z̃ = z, such that

dl2 = dx̃2 + dỹ2 + dz̃2
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Bob can then use standard measuring sticks to map out his spatial continuum (x̃, ỹ, z̃). How are
Bob’s new physically motivated coordinates now related to Alice’s coordinates? Not surprisingly
we find after a short calculation that

x̃ =
x− vt√
1− v2

c2

t̃ =
t− vx

c2√
1− v2

c2

as well as ỹ = y and z̃ = z. We have recovered the Lorentz transformation by defining new
coordinates with a physical meaning. In general we can say that special relativity allows for
general coordinate transformations but in the case of transformations between inertial frames
the Lorentz transformations are preferred for reasons of physical interpretation. It is, therefore,
in these coordinates that the physical laws (such as Maxwell’s equations) attain their most
transparent form. These facts are usually not know or told to students until they study general
relativity. For this reason we have presented the example of the rotating disc in this Section.
It gives the physics and the insights of general relativity without the need to bother about the
laws of gravity at this point10.
So how does this now work out for our rotating disc? In that case see from Eq.(2.52) and the
explicit form of the coefficients gµν that

dt̃ =

√
1− ω2r′2

c2

(
dt− ωr′2dθ′

c2(1− ω2r′2

c2 )

)
(2.59)

Due to the dependence on r′ this can not be integrated. This implies that the definition of
simultaneity depends on the direction in which we decide to synchronize the clocks. If we, for
instance, decide to synchronize clocks along the circle r′ =constant, such that dr′ = 0 then we
can formally integrate Eq.(2.59) to

t̃ = t

√
1− ω2r′2

c2
− ωr′2

c2
√

1− ω2r′2

c2

θ′ (2.60)

The space-time points that satisfy t̃ = K with K represent simultaneous events according to
Einstein synchronization. However, we now note something peculiar about this expression. If we
let the angular variable run from 0 to 2π and make a full circle the variable t̃ does not return to
its original value. This illustrates the fact that synchronization depends on the path chosen to
synchronize and is mathematically caused by the fact that dt̃ is not a total differential. We can
therefore not globally synchronize the clocks with the radar method. The situation is illustrated
geometrically in the figure below where we plot the surface t̃ = 0 for the case that we start
synchronizing in the positive θ′ direction starting from θ′ = 0.

10From the viewpoint of general relativity the only thing that is special about special relativity is that in this
theory we can always find a coordinate transformation that transforms the metric to a global Minkowskian form
(such as from the rotating observer on the disc back to the inertial one). This property disappears in the presence
true gravity fields.
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Figure 2.7: The surface t̃ = 0 for synchronization in the positive θ′ direction starting from
θ′ = 0.

What about the radial direction? We see immediately from Eq.(2.59) that for dθ′ = 0 we have

dt̃ =

√
1− ω2r′2

c2
dt′ (2.61)

This equation can not be integrated, and we can not even define the variable t̃ locally. However,
dt̃ = 0 is equivalent to dt′ = 0 and therefore the easiest thing we can do is use the coordinate
time t′ to define simultaneity for different radial positions. Our difficulties in defining simultaneity
show that the concept does not have a well-defined experimentally accessible physical meaning,
and that it is more question of definition. The problem is illustrated with the following example
illustrated in Fig. 2.8.

Figure 2.8: The rotating disc with Alice and Bob sending light flashes to Charlotte and Dilbert.

Two observers, Alice and Bob, at two different positions at the edge of a rotating disc send out
a light flash in all directions. A third observer C (Charlotte) at the center of the disc receives the
signals simultaneously at her clock, and since the distances AC and BC are equal she concludes
the light flashes were sent at the same time. This means that Charlotte uses the central light flash
method to define simultaneity which we discussed below Eq.(2.32). Observer D (Dilbert) who is
located between Alice and Bob on the disc can come to two different conclusions depending on
his definition of simultaneity. If he uses the coordinate time t′ to define simultaneity he would
agree that the flashes from Alice and Bob were simultaneous. For, instance, if Charlotte sends
out a light flash in all directions to all observers on the edge of the disc then by the central-
time synchronization the light arrives at the edge simultaneously for all observers. If this light
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subsequently gets reflected at the edge of the disc back to Charlotte all would agree that the
light reflected by all observers arrives back in the center simultaneously. Dilbert then agrees on
the simultaneity of the light reflections by Alice and Bob. If, Dilbert, however decides to use
Einstein synchronization along the edge of the disc he would conclude on the basis of Eq.(2.7),
since θ′A > θ′B, that t̃A < t̃B and therefore that Alice send her light flash before Bob. This can
be understood physically from the fact that Dilbert moves towards the light send out by Alice
and away from the light send out by Bob (see also Fig.1.11 for a comparable physical situation).
We therefore see that for a single observer in a non-inertial frame, Dilbert in our case, there is no
preferred definition of simultaneity. This is a large break from the classical Newtonian thinking
about time. Since we live on planet Earth, which is not an inertial frame, we can not say that
something is happening on planet Mars "now". We first have to define what we mean by this.
This concludes our discussion of the rotating disc. More illuminating discussions on the space-
time physics of the rotating disc can be found in references [4, 5].

2.5 Physical meaning of particle trajectories

In the discussion of inertial frames we noted the invariance of Newton’s equations under Galilean
transformations. Similarly in the special theory of relativity we demand invariance of the physical
laws under Lorentz transformations. In the general theory of relativity even invariance of physical
laws under arbitrary coordinate transformations is imposed. Rather than performing endless
coordinate transformations it is much more effective and illuminating to investigate what the
invariant object in question actually is and to find a formulation of physical laws where coordinates
do not even appear. This is exactly what we will start investigating next.
To get an intuitive insight into the concept of coordinate invariance we start with the example
of a particle trajectory. We consider two observers moving with respect to each other. Each of
them describes the trajectory of the same object in their own coordinate system. Observer A
(Alice) is riding in a train at constant velocity with respect to the railroad and drops a stone out
of the window. From the viewpoint of Alice the stone falls along a straight line until it hits the
railroad. From the viewpoint of observer B (Bob) who is at rest with respect to the railroad the
stone moves along a curved trajectory.

Figure 2.9: Dropping a stone from a moving train

Within Newtonian mechanics this trajectory would be a parabola (and within special relativity
almost one with usual train speeds). This then immediately raises the question what is the
"real" trajectory of the stone; is it a straight line or a parabola? The answer, of course, is that
the straight line and the parabola are simply registrations of positions of the stone in arbitrarily
chosen coordinate systems and do not have any absolute meaning.
However, there is something absolute we can say about the trajectory. Both observers completely
agree on the position of the stone in relation to other material points. For instance, initially the
stone was in the hand of Alice. At some point later the position of the stone was the same as the
bottom of the train door (see Fig. 2.9) and even later the position of the stone is at the same
position as where the train wheel touches the railroad track (see Fig. 2.9). We will call these
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coincidences of material points events. Both Alice and Bob agree on the events. Moreover they
agree on the value of the proper time τ of the stone at these coincidences of material points.
With these observations we can give an absolute definition of the notion particle trajectory.
We start by defining the space-time manifold M as the collection of events (coincidences of
material points). A particle trajectory is then defined as a curve γ connecting events in a
continuous way. This curve can be parametrized by the proper time τ . A coordinate system on
the space-time manifold is then defined to be a mapping ϕ from the set of events to the set of
points (t, x, y, x) ∈ R4. This is displayed in the following figure:

Figure 2.10: Different coordinate descriptions of the same curve γ connecting space-time events
in a continuous way.

We have displayed the concept for the case of the stone falling from the train (displaying only
the x, z-axes and leaving out the y-axis). Alice, who is traveling with the train, describes the
trajectory γ of the stone in coordinate system ϕ1 by

ϕ1(γ(τ)) = (t1(τ), 0, 0, z1(τ))

whereas Bob, who is at rest with respect to the railroad track, describes the trajectory γ of the
stone in coordinate system ϕ2 as

ϕ2(γ(τ)) = (t2(τ), x2(τ), 0, z2(τ))

The coordinate systems ϕ1 and ϕ2 are related by

ϕ2(γ(τ)) = (ϕ2 ◦ ϕ−1
1 )(ϕ1(γ(τ)))

The mapping ϕ2 ◦ ϕ−1
1 is therefore identical to the Lorentz transformation, i.e.

ϕ2(γ) =


t2(τ)
x2(τ)

0
z2(τ)

 =


α −α v/c2 0 0
−α v α 0 0

0 0 1 0
0 0 0 1




t1(τ)
0
0

z1(τ)

 =


α t1(τ)
−α v t1(τ)

0
z1(τ)


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where we denoted α = (1− v2/c2)−1/2. In this case the mapping ϕ2 ◦ ϕ−1
1 is a linear transfor-

mation. This is, however, a consequence of the fact that Alice and Bob have chosen a standard
Euclidean coordinate system. If they, for instance, had chosen spherical coordinates instead
then the transformation would have been non-linear and continuous mapping (which in physical
applications is nearly always differentiable as well).
The concept of a space-time manifold becomes essential in the general theory of relativity. Clocks
run at different rates at different locations and also spatial metric becomes non-Euclidian (we
have seen clearly these to two features in the case of the rotating disc in the previous Section).
This means that the physical lengths and times have no longer a direct relation with coordinates.
The space-time coordinate looses its physical meaning and just becomes a label for an event.
The only things that have physical meaning are the space-time coincidences of material points.
With our example of the falling stone we have thus arrived in a natural way at the concept
of a differentiable manifold. Let us therefore start again with the mathematical definition of a
manifold and see what coordinate independent objects we can define on a manifold. This will
lead us to the geometric concepts of vectors, tensor and geodesic curves. These objects will be
then the building blocks of the physical laws.

2.6 Manifolds and coordinate maps
A manifold M is a set of elements on which differentiable functions are defined. A coordinate
map or chart ϕi is a one-to-one map from a subset Ui of M to Rn. The set of coordinate maps
is the required to have the properties

1. The subsets Ui completely cover M , which means that every point in M belongs to at
least one Ui

2. The mappings ϕi ◦ ϕ−1
j are differentiable functions on the common domain Ui ∩ Uj on

which they are defined

Pictorially we thus have

Figure 2.11: Different coordinate descriptions of the same physical event

This figure is essentially identical to fig 2.10. The main difference is that we did not require
the coordinate maps ϕi to be defined on all of M . This has a practical reason. Often it is not
possible to define a global coordinate map on all of M . A good example is the Earth’s surface
projected on a plane. For example, to study the North Pole and the South Pole areas we use
two different maps. If the maps ϕi map one-to-one to a subset of Rn the set M is called an
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n-dimensional manifold. The space-time manifold of figure 2.10 is a 4-dimensional manifold.
Common examples of manifolds are two-dimensional surfaces. For instance, the surface of a
sphere is defined by the set of points

M =
{

(x, y, z)|x2 + y2 + z2 = 1
}

Note that M is just defined by these triples of real numbers, there is nothing "outside" M
although we often imagine the sphere to be embedded in a three-dimensional space. In fact, a
main task of differential geometry is to describe the intrinsic properties of manifolds which are
independent on whether they can be embedded in Rn for some value of n. This is similar to
the way we read road maps. We need not think of anything outside the surface of the Earth to
measure distances between various geographical locations using our maps. For the sphere (or
the surface of the Earth) we can, for instance, have the coordinate maps

Figure 2.12: Different coordinate descriptions of points on the sphere (or, more physically, for
objects on the surface of the Earth)

with

ϕ1(cosφ sin θ, sinφ sin θ, cos θ) = (φ, θ) (2.62)

ϕ2(u, v,
√

1− u2 − v2) = (u, v) u2 + v2 ≤ 1

The first map is a familiar one that assigns to every point on the sphere a longitude φ and
a latitude θ. It maps to a unique pair (φ, θ) except for the North and South pole of the
sphere where the longitude φ is not uniquely defined. The map ϕ2 maps every point in the
northern hemisphere to a unique (u, v)-coordinate. The two coordinate systems are related by
the mappings

(u, v) = (ϕ2 ◦ ϕ−1
1 )(φ, θ) = (cosφ sin θ, sinφ sin θ)

(φ, θ) = (ϕ1 ◦ ϕ−1
2 )(u, v) = (arctan

v

u
, arccos

√
1− u2 − v2)

These transformations convert coordinates of points on one map to coordinates on another map.
Finally we discuss the mappings between manifolds.
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Figure 2.13: A mapping between two manifolds

If f : N → Rn is mapping from a manifold N to Rn and φ : M → N is a mapping from
manifold M to N then we define

φ∗f = f ◦ φ (2.63)

The map φ∗f maps a point in M to Rn and is called the pullback of the map f by φ. A
common example in which we need this mapping is when we want to embed a given manifold
into another one. Let us give a simple example.
Imagine a region of space where the temperature in each point p is given by a function T (p). One
could think, for instance, that the temperature field describes a cloud C of some gas (which will
be our manifold) in a distant solar system. The temperature field is then a mapping T : C → R
from the cloud to the real numbers. We can simply use a Cartesian coordinate system (x, y, z)
to give coordinates to positions in the cloud. The manifold C is therefore taken to be equal to
R3 and the coordination is simply the identity map11. Through this cloud moves a planet at
relative velocity v = (vx, vy, vz) with respect to the cloud, such that the position as a function
of the time t of the planet’s center is given by x = vt. The surface P of the planet will be our
other manifold. We want to calculate the temperature at any point on the planet’s surface. We
do this by a pullback from C to P of the temperature field T (x, y, z) defined on C . The surface
of the sphere (which has radius one in appropriate units) is described by spherical coordinates
as in Eq.(2.62). The time-dependent map φt : P → C which maps a point of the surface P to
a location in the cloud C is given by

φt(cosφ sin θ, sinφ sin θ, cos θ) = (cosφ sin θ + vxt, sinφ sin θ + vyt, cos θ + vzt)

Then the pullback

(φ∗tT )(cosφ sin θ, sinφ sin θ, cos θ) = T (cosφ sin θ + vxt, sinφ sin θ + vyt, cos θ + vzt)

is a map φ∗tT : P → R which assigns a temperature to a point on the planet’s surface. In
more colorful language we can say that we pulled the temperature field in the cloud back to
the surface of the planet. In our example we regarded the manifold P as a subset of C using
the embedding φt. This is a rather common situation. It is often used to relate the internal
properties of a manifold to those of the surrounding space.
Now that we have defined the concept of a manifold we need to discuss some simple geometric
objects on them which will form the building blocks in expressing physical laws in a coordinate
free manner. These building blocks will be vectors and tensors and will be discussed in detail in
the next Chapter. After that we will return to discuss physics again.

11One could imagine more exotic manifolds with more complicated coordinate maps but this would make our
physical example a bit far fetched.



Chapter 3

Vectors and tensors

In this mathematical intermezzo we will define some central geometrical concepts, mainly vectors
and tensors, which will form the building blocks for the coordinate independent description of
the physical laws in the following Chapters.

3.1 Vectors

We will give a definition of a vector on a general manifold. We start our discussion with a simple
example

Figure 3.1: Trajectory of a plane on Earth’s surface

Imagine a plane flying over the surface of the Earth, say from Amsterdam to Helsinki. The
path of the plane is described by a curve γ(s), where we let s be the distance to Amsterdam
as measured along the curve. Attached to the plane there is thermometer that measures the
local outside temperature. Since the temperature is position dependent the temperature field
T presents a mapping from points on the Earth’s surface to the real numbers T : M → R,
where M is the Earth’s surface. The temperature difference between two points on the curve γ
(say between Amsterdam and Helsinki) is clearly independent of the coordinate system used to
parametrizes the Earth’s surface. In particular, we can measure the temperature difference ∆T
between two nearby points separated by a distance ∆s along the flight path of the plane. Its
ratio

∆T

∆s
=
T (γ(s+ ∆s))− T (γ(s))

∆s

51
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measures a local temperature gradient. If we take the limit ∆s→ 0 we obtain

∂T

∂s
(s) = lim

∆s→0

T (γ(s+ ∆s))− T (γ(s))

∆s
. (3.1)

This quantity is clearly coordinate independent. Physically it measures the rate of change of the
temperature along the flight path at a distance s measured along the path from Amsterdam.
The pilot crew in the plane can measure it without any knowledge of any coordinate system
that parametrizes the flight path. Let us now imagine two external observers that want to
describe this physical measurement in two different coordinate systems. Since the surface of the
Earth is two-dimensional (we assume that the plane flies at constant height) we only need two
coordinates, like the pair (θ, φ) that represent the latitude and longitude. Let us call the two
coordinate systems (x1, x2) and (y1, y2) (we use superindices for reasons explained later). In
the coordinate system where γ(s) = (x1(s), x2(s)) the temperature gradient (7.46) becomes

∂T

∂s
(s) =

∂T

∂x1

∂x1

∂s
+
∂T

∂x2

∂x2

∂s
(3.2)

whereas in the other coordinate system we have

∂T

∂s
(s) =

∂T

∂y1

∂y1

∂s
+
∂T

∂y2

∂y2

∂s
(3.3)

Since the value of ∂T/∂s is independent of the coordinate system we can write

∂T

∂x1

∂x1

∂s
+
∂T

∂x2

∂x2

∂s
=
∂T

∂y1

∂y1

∂s
+
∂T

∂y2

∂y2

∂s
.

It is clear that this expression is valid no matter what is the form of the temperature field T .
We may therefore as well write

v(s) =
∂x1

∂s

∂

∂x1
+
∂x2

∂s

∂

∂x2
=
∂y1

∂s

∂

∂y1
+
∂y2

∂s

∂

∂y2
(3.4)

where v(s) is a differential operator that can act on any temperature field T . It is, of course,
independent of the temperature field and only dependent on the curve γ(s). We will call this
operator the tangent vector at s along the curve γ(s). In the (x1, x2) coordinate system we can
write this vector as

v(s) =
∂x1

∂s

∂

∂x1
+
∂x2

∂s

∂

∂x2
=
∂x1

∂s
e1 +

∂x2

∂s
e2 =

(
∂x1

∂s
,
∂x2

∂s

)
= (v1, v2)

where we denoted ei = ∂/∂xi which act as two linearly independent basis vectors. The last
two terms between brackets give the standard notation for the vector v(s) as the collection of
components with respect to the basis ei. In particular we have e1 = (1, 0) and e2 = (0, 1). In
the (y1, y2) coordinate system we can write similarly

v(s) =
∂y1

∂s

∂

∂y1
+
∂y2

∂s

∂

∂y2
=

(
∂y1

∂s
,
∂y2

∂s

)
= (w1, w2).

where the last two brackets give the components with respect to the basis vectors ∂/∂yi. It is
clear from the chain rule of differentiation that the vector components (v1, v2) and (w1, w2) are
simply related by

vi =
∂xi

∂s
=

2∑
j=1

∂xi

∂yj
∂yj

∂s
=

2∑
j=1

∂xi

∂yj
wj .
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Our example motivates the following general definition of a vector on a manifold M . A vector
v in a point P with coordinate x = (x1, . . . , xn) on a n-dimensional manifold M is a linear
operator of the form

v =

n∑
i=1

vi(x)
∂

∂xi
(3.5)

that acts on functions T : M → R. If this vector is represented in a different coordinate system
y = (y1, . . . , yn), i.e.

v =

n∑
i=1

wi(y)
∂

∂yi

then from the chain rule of differentiation

∂

∂xi
=

n∑
j=1

∂yj

∂xi
∂

∂yj

it follows that

wi(y) =

n∑
j=1

vj(x)
∂yi

∂xj
(3.6)

vi(x) =

n∑
j=1

wj(y)
∂xi

∂yj
(3.7)

These two equations were classically used to define vectors, simply as equivalence classes of
coefficients transforming according Eqs.(3.6) and (3.7).
It is, however, possible to give an elegant and inherently coordinate independent definition of a
vector on a manifold. If f : M → R and g : M → R are functions on a manifold M , then from
Eq.(3.5) it follows that

v(αf + βg)(x) = α v(f)(x) + β v(g)(x) (3.8)
v(fg)(x) = f(x) v(g)(x) + g(x) v(f)(x) (3.9)

where α and β are real numbers and we introduced the notation

v(f)(x) =

n∑
i=1

vi(x)
∂f

∂xi
(x). (3.10)

We can now turn the situation around and use Eqs.(3.8) and (3.9) to define vectors on a manifold.
Here it is. A vector v on a manifold M is a linear operator on functions f : M → R having
the properties (3.8) and (3.9). If these functions are arbitrarily often differentiable then we can
prove that v(f) is necessarily of the form of Eq. (3.10). Since the proof is relatively simple we
give it here. Let us start by expanding f(x) in a Taylor series around x = a,

f(x) = f(a) +

n∑
j=1

(xj − aj) ∂f
∂xj

(a) +

n∑
j=1

(xj − aj)gj(x)

where the functions gj have the property that gj(a) = 0. We the apply the linear operator v to
both sides of this equation.

v(f)(x) = v(f(a)) +

n∑
j=1

∂f

∂xj
(a)v(xj − aj) +

n∑
j=1

v((xj − aj)gj) (3.11)
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Now from rule (3.9) applied to the constant function equal to 1 it follows that

v(1) = v(1 · 1) = 1 v(1) + 1 v(1) = 2 v(1)

and hence v(1) = 0. Therefore for any constant function α we have v(α) = αv(1) = 0.
Therefore the first term on the right hand side in Eq.(3.11) vanishes, whereas in the second
term we have

v(xj − aj) = v(xj)− v(aj) = v(xj).

If we define vj(x) = v(xj) then Eq.(3.11) can be rewritten as

v(f)(x) =

n∑
j=1

vj(x)
∂f

∂xj
(a) +

n∑
j=1

v((xj − aj)gj) (3.12)

For the last term in this equation we according to (3.11)

v((xj − aj)gj) = (xj − aj) v(gj) + gj(x) v(xj − aj).

If we evaluate this in x = a we see that the right hand side vansihes. By evaluating Eq.(3.12)
in x = a we thus obtain

v(f)(a) =

n∑
j=1

vj(a)
∂f

∂xj
(a) (3.13)

which is exactly what we wanted to prove. It is clear from Eq.(3.13) that the set of vectors in a
point p (with coordinate a) forms a n-dimensional vector space. We can therefore write

v(a) =

n∑
j=1

vj(a)ej

where ej = ∂/∂xj forms a basis of this vector space. We will often denote

ej =
∂

∂xj
= ∂j

and write Eq.(3.13) as

v(a) =

n∑
j=1

vj(a)ej =

n∑
j=1

vj(a)∂j

The vector space of tangent vectors in a point p of a manifoldM is called the tangent space in p
and is usually denoted by TpM . Let us give an example. We simply consider the transformation
from Cartesian coordinates (x1, x2) to polar coordinates (r, φ) in the two-dimensional plane
given by

x1 = r cosφ

x2 = r sinφ

The basis vectors (er, eφ) in the polar coordinate system are given in terms of the basis vectors
(e1, e2) of the Cartesian system by

er =
∂

∂r
=
∂x1

∂r

∂

∂x1
+
∂x2

∂r

∂

∂x2
= cosφ

∂

∂x1
+ sinφ

∂

∂x2
= cosφ e1 + sinφ e2

eφ =
∂

∂φ
=
∂x1

∂φ

∂

∂x1
+
∂x2

∂φ

∂

∂x2
= −r sinφ

∂

∂x1
+ r cosφ

∂

∂x2
= −r sinφ e1 + r cosφ e2
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These vectors are drawn in Fig.3.2. Note that the basis vector eφ has Euclidean length r. In
general the basis vectors in the new coordinate system need not be normalized nor be orthogonal.

Figure 3.2: A vector v expressed in Cartesian and polar coordinates. In our example the vector
is calculated in point (x1, x2) = (4, 3) where v = 5e1 + 5e2 = 7er + (1/5)eφ.

An arbitrary vector v in the polar coordinate system can therefore be written as

v = vrer + vφeφ = (vr cosφ− vφr sinφ)e1 + (vr sinφ+ vφr cosφ)e2 = v1e1 + v2e2

In matrix notation we have(
v1

v2

)
=

(
cosφ −r sinφ
sinφ r cosφ

)(
vr

vφ

)
(3.14)

or reciprocally (
vr

vφ

)
=

1

r

(
r cosφ r sinφ
− sinφ cosφ

)(
v1

v2

)
(3.15)

these relations are the equivalent of Eqs.(3.6) and (3.7) for our simple example. A graphical
picture of a given vector in these two coordinate systems is displayed in Fig.3.2.
The thing to remember from all this analysis is that a vector is not just an arrow with components
but a geometrical invariant object. This can, however, be rather confusing at first glance if one
is used to draw velocity and force vectors as one does often in physics problems. Let us take
the example of a velocity vector, usually written in components as v = (vx, vy, vz) for a particle
in some reference frame. We know that if we move along with the particle then in this frame
the velocity vector is zero v′ = (0, 0, 0). At first sight this seems in contradiction to Eqs.(3.6)
and (3.7) which say that if a vector is zero in one frame, then it is also zero in any other
coordinate frame. What we, however, have forgotten is that the transformation between the
moving frames also depends on the time coordinate. We have four coordinates (t, x, y, z) and
therefore the invariant vector needs four rather than three components. What turns out to be
the real invariant geometric concept in the description of the motion of particles is the tangent
vector to the world line.
To give an example, let us go back to the example of Fig.3.1. In that example we implicitly
assumed in Eq. (3.2) that the temperature field was only dependent on the spatial coordinates
(x1, x2). However, in general there is also a time-dependence in the temperature field as the
temperature will, for instance, change from day to night. To describe this case we should have
used the coordinates (t, x1, x2) and the flight path is given in these coordinates by

γ(s) = (t(s), x1(s), x2(s)) (3.16)
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where t(s) is the time value when the plane has travelled a distance s along the path. The path
γ(s) is therefore simply a world line in space-time. Another parameter, instead of the distance
s, to parametrize the path could be the proper time τ passed on a clock in the plane. This
is merely a re-parametrization γ̃(τ) = γ(s(τ)) since there is unique relation s(τ) between the
travelled distance s and the proper time τ . Let us, however, stick to the parametrization by s.
Then for a time-dependent temperature field the equivalent of Eq.(3.2) becomes

∂T

∂s
(s) =

∂T

∂t

∂t

∂s
+
∂T

∂x1

∂x1

∂s
+
∂T

∂x2

∂x2

∂s
(3.17)

and the tangent vector to the path γ(s) becomes

v(s) =
∂t

∂s

∂

∂t
+
∂x1

∂s

∂

∂x1
+
∂x2

∂s

∂

∂x2
=

(
∂t

∂s
,
∂x1

∂s
,
∂x2

∂s

)
= (v0, v1, v2) (3.18)

which is now a tangent vector to world line rather than the tangent vector to a spatial curve.
Had we taken the case that the path was parametrized by proper time τ instead of s then, of
course, we would have derived Eq.(3.18) with s replaced by τ . In Newtonian mechanics we can
always take τ = t due to the presence of an absolute time and parametrize the flight path as
(t, x1(t), x2(t)) 1. Let us do this for the motion of a particle in a Cartesian coordinate system
with coordinates (t, x, y, z). Then the tangent to the world line is given by

v(t) =
dγ

dt
= (1,

dx

dt
,
dy

dt
,
dz

dt
) = (1,v(t))

Under the Galilean transformation (t′, x′, y′, z′) = (t, x − uxt, y − uyt, z
′ − uzt) to a frame

moving at relative velocity u = (ux, uy, uz) this four-dimensional vector transforms according to
Eq.(3.6) to

w =


1 0 0 0
−ux 1 0 0
−uy 0 1 0
−uz 0 0 1




1
vx(t)
vy(t)
vz(t)

 =


1

vx(t)− ux
vy(t)− uy
vz(t)− uz


We therefore find the proper addition law for velocities from the vector transformation properties
of four-dimensional vectors. In particular, if v(t) = 0 then v = (1, 0, 0, 0) and w = (1,−u).
The spatial components of these vectors do not transform according to a vector transformation
law, unless we restrict ourselves to purely spatial coordinate transformations.
Let us now investigate how vectors transform under mappings between manifolds. Let φ : M →
N be a mapping between manifold M and N then we have seen in Eq.(2.63) that φ∗ pulls back
a function f on N to a function φ∗f on M . If we now have a tangent vector v in p on M then
we can assign a vector φ∗v on N by the definition

(φ∗v)(f) ≡ v(φ∗f) (3.19)

We thus have a mapping φ∗ : TpM → Tφ(p)N that maps a vector onM to a vector on N . Since
the mapping φ : M → N goes in the same direction, we say that φ∗ describes a pushforward of
v. Note that we use a subscript asterisk for pushforwards and a superscript for pullbacks.

1This is, of course, also possible in a given Lorentz frame in special relativity but there t has no invariant
meaning.



3.1. VECTORS 57

Figure 3.3: Pushing vectors forward to another manifold

The procedure described by Eq.(3.19) looks a bit abstract, but the idea is actually quite simple.
Let us illustrate this again with an example. Consider again the flight path of the plane on the
Earth’s surface. We use the standard longitude and latitude coordinates and the time. More
precisely we use the coordinate map

ϕ1(t, R cosφ sin θ,R sinφ sin θ,R cos θ) = (t, φ, θ)

to describe an event. In a more mathematical language we would say that every event on the
surface of a sphere is part of the manifoldM = R×S2 (where S2 is just a common mathematical
notation for the two-dimensional surface of a sphere and R contains the time variables) and that
we use the coordinate map ϕ1 : M → R3 to describe these events. The world line of a plane in
these coordinates is then given by

γ(s) = (t(s), φ(s), θ(s))

where the world line is parametrized by a parameter s with a physical meaning that we can
choose (such as a distance or proper time). The tangent vector to this world line is given by

v(s) =
dγ

ds
= (

∂t

∂s
,
∂φ

∂s
,
∂θ

∂s
) = (vt(s), vφ(s), vθ(s))

Let us now describe the motion of the plane from a position in space outside the Earth. The
outside observer is at rest with respect to the center of mass of the Earth but sees the Earth
rotating around its axis. To describe positions in time and space this observer uses four coordi-
nates. We take the corresponding space-time manifold N of the observer simply to be equal to
R4 with the identity map ϕ2 : N → R4 as a coordinate map, i.e.

ϕ2(x0, x1, x2, x3) = (x0, x1, x2, x3)

We could have used less boring coordinates on R4 than the Cartesian ones and make the coor-
dinate map ϕ2 less trivial but this would not make our example more clear. The world line of
the plane in these coordinates is given by

γ̃(s) = (x0(s), x1(s), x2(s), x3(s))

How are the coordinates xj related to the coordinates (t, φ, θ)? This is established by a map
φ : M → N that assigns a point in space to a point on the Earth’s surface. If we take into
account the uniform rotation of the Earth with angular velocity ω one readily sees that this map
is given by

φ(t, R cosφ sin θ,R sinφ sin θ,R cos θ) = (x0(t, φ, θ), x1(t, φ, θ), x2(t, φ, θ), x3(t, φ, θ)) (3.20)
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where we defined

x0(t, φ, θ) = t

x1(t, φ, θ) = R cos(φ+ ωt) sin θ

x2(t, φ, θ) = R sin(φ+ ωt) sin θ

x3(t, φ, θ) = R cos θ

Figure 3.4: World line of a plane in Earth surface coordinates and as seen form an observer in
outer space.

With these assignments we have xj(s) = xj(t(s), φ(s), θ(s)) etc. The tangent vector ṽ to the
world line γ̃(s) in N is therefore given by

ṽ(s) =
∂γ̃

∂s
= (

∂x0

∂s
,
∂x1

∂s
,
∂x2

∂s
,
∂x3

∂s
)

Since
∂xj

∂s
=
∂xj

∂t

∂t

∂s
+
∂xj

∂φ

∂φ

∂s
+
∂xj

∂θ

∂θ

∂s

we can write 
ṽ0(s)
ṽ1(s)
ṽ2(s)
ṽ3(s)

 =


∂x0

∂t
∂x0

∂φ
∂x0

∂θ
∂x1

∂t
∂x1

∂φ
∂x1

∂θ
∂x2

∂t
∂x2

∂φ
∂x2

∂θ
∂x3

∂t
∂x3

∂φ
∂x3

∂θ


 vt(s)

vφ(s)
vθ(s)

 (3.21)

This provides an explicit mapping of a tangent vector v in M to a tangent vector ṽ in N . Let
us now see how the same transformation is produced from the definition of a push forward. Let
f : N → R now be an arbitrary function on N and p an arbitrary point of M with coordinates
(t, φ, θ) then using the map (3.20) between M and N we have

(φ∗f)(p) = f(φ(p)) = f(x0(t, φ, θ), x1(t, φ, θ), x2(t, φ, θ), x3(t, φ, θ)) (3.22)

Let us now consider an arbitrary vector on M of the form

v = vt
∂

∂t
+ vφ

∂

∂φ
+ vθ

∂

∂θ
(3.23)
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Then this vector can be pushed forward to a vector w = φ∗v on N using Eq.(3.19). We have

w(f) = (φ∗v)(f) = v(φ∗f) =

(
vt
∂

∂t
+ vφ

∂

∂φ
+ vθ

∂

∂θ

)
f(φ(p))

=

3∑
j=0

(
vt
∂xj

∂t
+ vφ

∂xj

∂φ
+ vθ

∂xj

∂θ

)
∂f

∂xj
=

3∑
j=0

wj
∂f

∂xj
(3.24)

where we defined

wj = vt
∂xj

∂t
+ vφ

∂xj

∂φ
+ vθ

∂xj

∂θ

It remains to calculate

∂

∂t
(x0, x1, x2, x3) = (1,−ωR sin(φ+ ωt) sin θ, ωR cos(φ+ ωt) sin θ, 0)

∂

∂φ
(x0, x1, x2, x3) = (0,−R sin(φ+ ωt) sin θ,R cos(φ+ ωt) sin θ, 0)

∂

∂θ
(x0, x1, x2, x3) = (0, R cos(φ+ ωt) cos θ,R sin(φ+ ωt) cos θ,− sin θ)

From this we find that we can rewrite Eq.(3.24) in components as
w0

w1

w2

w3

 =


1 0 0

−ωR sin(φ+ ωt) sin θ −R sin(φ+ ωt) sin θ R cos(φ+ ωt) cos θ
ωR cos(φ+ ωt) sin θ R cos(φ+ ωt) sin θ R sin(φ+ ωt) cos θ

0 0 − sin θ


 vt

vφ

vθ


(3.25)

This map tells us exactly how to map an arbitrary vector on M to a vector on N . It is exactly
of the same form as Eq.(3.21) but is a generalization of it since it applies to any vector on M
not only the tangent vectors to γ(s). Let us however, go back to the world line γ(s) and choose
s = t such that we have the parametrization

γ(t) = (t, φ(t), θ(t))

The tangent vector to the world line in M is then given by

v(t) = (vt(t), vφ(t), vθ(t)) = (1,
∂φ

∂t
,
∂θ

∂t
)

If we insert this expression into the right hand side of Eq.(3.25) and consider the spatial com-
ponents w(t) = (w1, w2, w2) of w we recover a three-dimensional vector that describes the
velocity of the plane with respect the observer in outer space. In particular, when the plane is
at rest on the Earth’s surface we have v(t) = (1, 0, 0) and we find that

w(t) = ωR sin θ

 − sin(φ+ ωt)
cos(φ+ ωt)

0


and therefore for the space observer the plane moves with constant angular velocity around a
circle with radius R sin θ.



60 CHAPTER 3. VECTORS AND TENSORS

3.2 Metric and volume

3.2.1 Metric

A metric is a generalization of the concept of inner product in a Euclidean space. Inner product
itself generalizes the intuitive concept of orthogonality between vectors. Let us imagine a function
g(v, w) of vectors v and w which has the property g(v, w) = 0 whenever two vectors are
orthogonal, that is when v ⊥ w. We have not defined what orthogonality is, but it has the
following properties

1] v ⊥ w ⇒ w ⊥ v

2] v ⊥ w ⇒ αv ⊥ w,α ∈ R

3] v1 ⊥ w and v2 ⊥ w ⇒ (v1 + v2) ⊥ w

Correspondingly we demand g to satisfy

1] g(v, w) = g(w, v)

2] g(αv,w) = αg(v, w)

3] g(v1 + v2, w) = g(v1, w) + g(v2, w)

Another intuitive property is that if v ⊥ w for all possible vectors w then v must be the zero
vector. This leads to the condition

4] g(v, w) = 0 ∀w ⇒ v = 0

This brings us to the following definition. A mapping g : V × V → R that assigns to a pair
of vectors (v, w) of a vector space V a real number and satisfies conditions 1]-4] is called a
semi-Riemannian metric.
If we expand the vectors v and w in a basis then we have

g(v, w) = g(

n∑
j

vjej ,

n∑
k

wkek) =

n∑
j,k

g(ej , ek) vjwk =

n∑
j,k

gjk v
jwk

where we defined gjk = g(ej , ek). The special case gjk = δjk(= 1 if j = k and zero otherwise)
gives the standard Euclidean inner product.

〈v, w〉 =

n∑
jk

δjk v
jwk = v1w1 + . . .+ vnwn

We then define v ⊥ w whenever 〈v, w〉 = 0. In the case that

gij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


we have

g(v, w) = −v1w1 + v2w2 + v3w3 + v4w4

This is the Minkowski metric that is left invariant by Lorentz transformations. This is essentially
the only metric we will use in the remainder of these Lectures. After the discussion of metrics
we turn to the next geometric concept, namely the measurement of volumes.



3.2. METRIC AND VOLUME 61

3.2.2 Volume

One concept that is invariant under coordinate transformations is the concept of volume. More
precisely we want to assign a number to the volume spanned by n vectors. For instance

Figure 3.5: The volume spanned by different vectors

In particular, if W is a vector space then we want a map V (v1, . . . , vn)

V : W × . . .×W︸ ︷︷ ︸
n times

:→ R

that assigns to n vectors the volume spanned by them. Let us list a few of the intuitively desired
properties.

1]
V (αv1, v2, . . . , vn) = αV (v1, v2, . . . , vn) α ∈ R (3.26)

Figure 3.6: Scaling a volume by scaling a spanning vector

where we require this property for the vectors vj , j = 2, . . . , n as well. If α is negative then
the sign of the volume changes. We are not concerned about this since it gives us extra
information on the orientation of the vectors. We can always defined |V | to be the volume
later.

2]
V (u1 + w1, v2, . . . , vn) = V (u1, v2, . . . , vn) + V (w1, v2, . . . , vn) (3.27)

and similarly for v2 = u2 + w2 etc. Pictorially

Figure 3.7: Adding to volumes by adding two spanning vectors
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Finally, if two vectors are identical then the spanned volume should be zero

3]
V (. . . , vi, . . . , vj , . . .) = 0 if vi = vj (3.28)

Figure 3.8: The volume spanned by identical vectors is zero

The conditions 1]-3] of Eqs.(3.26)-(3.28) uniquely specify the general form of V . From the
conditions (3.27) and (3.28) it follows that

0 = V (u+ w, u+ w, v2, . . . , vn) = V (u, u, v2, . . . , vn)︸ ︷︷ ︸
=0

+ V (u,w, v2, . . . , vn) + V (w, u, v2, . . . , vn) + V (w,w, v2, . . . , vn)︸ ︷︷ ︸
=0

and hence
V (u,w, v2, . . . , vn) = −V (w, u, v2, . . . , vn).

We can carry out the same derivation for any two other argument vectors of V and therefore

V (. . . , vi, . . . , vj , . . .) = −V (. . . , vj , . . . , vi, . . .) (3.29)

This equation completely fixes the structure of V . If we expand every vector vi in a basis

vi =
∑
j

vji ej

then, according to (3.26), we can write

V (v1, . . . , vn) =

n∑
j1,...,jn

vj11 v
j2
2 . . . vjnn V (ej1 , . . . , ejn) (3.30)

Let us now introduce the convention that the volume spanned by the basis vectors

e1 = (1, 0, . . . , 0) e2 = (0, 1, 0, . . . , 0) etc.

is equal to one, i.e.
V (e1, e2, . . . , en) = 1. (3.31)

Then any interchange of vectors according to Eq.(3.29) introduces a minus sign. If we consider
a general permutation σ(1, . . . , n) = (σ(1), . . . , σ(n)) of the labels 1, . . . , n then from Eq.(3.31)
and (3.29) we have that

V (eσ(1), . . . , eσ(n)) = (−1)|σ| (3.32)

where |σ| is the number of interchanges required to build the permutation σ. The number
(−1)|σ| is also known as the sign of the permutation. From Eq.(3.28) it also directly follows
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that none of the indices in Eq.(3.30) need to occur twice since such terms are zero anyway. So
the sum can be taken over all possible combinations of different labels and we can therefore
write

V (v1, . . . , vn) =
∑
σ

v
σ(1)
1 . . . vσ(n)

n V (eσ(1), . . . , eσ(n))

=
∑
σ

(−1)|σ| v
σ(1)
1 . . . vσ(n)

n = det(v1, . . . , vn)

where the sum over all permutations yields the well-known definition of the determinant. We
can therefore write

V (v1, . . . , vn) =

∣∣∣∣∣∣∣
v1

1 . . . v1
n

...
...

vn1 . . . vnn

∣∣∣∣∣∣∣ (3.33)

3.3 Tensors

3.3.1 Definition

Both the metric g(v, w) and the volume V (v1, . . . , vn) are multilinear functions acting on vectors,
which means that they are mapping from a n-fold product of vector spaces V × . . .× V to the
real numbers (or complex numbers if desired)

T : V × . . .× V︸ ︷︷ ︸
n times

→ R (3.34)

with the property that

T (v1, . . . , αwj + βuj , . . . , vn) = αT (v1, . . . , wj , . . . , vn) + β T (v1, . . . , uj , . . . , vn) (3.35)

Such mappings are called tensors.

Figure 3.9: A tensor maps a group of vectors to number in a linear way.

If the tensor acts on n vectors we say that it is a tensor of order n. For instance, the metric
g(v1, v2) is a tensor of order 2 whereas the volume V (v1, . . . , vn) is a tensor of order n. If we
expand the vectors vj in a basis

vj =

m∑
i=1

vijei (3.36)

for a m-dimensional vector space V the from Eq.(3.35) we see that

T (v1, . . . , vn) =

m∑
i1...in

vi11 . . . vinn T (ei1 , . . . , ein) =

m∑
i1...in

Ti1...in v
i1
1 . . . vinn (3.37)
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where we defined the components of the tensor to be

Ti1...in = T (ei1 , . . . , ein)

Tensors play a crucial role in the theory of electromagnetism. For instance, the Lorentz-invariant
relation between force and velocity is described by the electromagnetic tensor Fij , whereas
Maxwell’s equations consist of two tensorial identities involving exactly the same tensor. Fur-
thermore, energy-momentum conservation laws are described by another tensorial identity. It is
therefore important to have a good working knowledge of tensors to follow the remainder of this
course.
The most simple tensor is a tensor of order one. According to Eqs. (3.34) and (3.35) this is a
linear mapping

T : V → R

with the property
T (αv1 + βv2) = αT (v1) + β T (v2).

If we take a vector v and expand it in a basis as in Eq.(3.36) we have

T (v) =

m∑
j=1

vj T (ej) =

m∑
j=1

Tj v
j (3.38)

where we defined
Tj = T (ej).

Given a basis {ej} in the m-dimensional vector space V we can define m different first order
tensors ej with the property

ej(ei) = δji

where δji = 1 if i = j and zero otherwise. Every first order tensor can now be written as a linear
combination of the tensors ej . This is readily seen. If we write

T =

m∑
j=1

Tj e
j (3.39)

then

T (v) =

m∑
j=1

Tj e
j

(
m∑
k=1

vkek

)
=

m∑
j,k=1

Tj v
k ej(ek) =

m∑
j,k=1

Tj v
k δjk =

m∑
j=1

Tj v
j

which is exactly Eq.(3.38). We thus see from Eq.(3.39) that the tensors ej form a basis of the
linear space of first order tensors on V . This space is called the dual space V ∗ of V . With
respect to the basis {ej} of V ∗ we can therefore write the tensor T in its vector components as

T = (T1, . . . , Tm).

The basis {ej} of V ∗ is called the dual basis of the {ej} of V . Our construction immediately
raises the question whether we can similarly define a basis in the space of n-th order tensors.
This is indeed the case. To do this we start first by defining the tensor product. If T is a tensor
of order p and S is a tensor of order q then we define a new tensor T ⊗ S of order p + q that
acting by

(T ⊗ S)(v1, . . . , vp+q) = T (v1, . . . , vp)S(vp+1, . . . , vp+q).

We have T ⊗ S 6= S ⊗ T but S ⊗ (T ⊗ U) = (S ⊗ T )⊗ U as is easily checked.
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Figure 3.10: A pictorial representation of the tensor product.

With the definition of tensor product the general tensor of Eq.(3.37) can be written as

T =

m∑
i1,...,in

Ti1...in e
i1 ⊗ . . .⊗ ein (3.40)

Also this expression is readily verified. We have

T (v1, . . . , vn) =

m∑
i1,...,in

Ti1...in e
i1 ⊗ . . .⊗ ein(v1, . . . , vn)

=

m∑
i1,...,in

Ti1...in e
i1(v1) . . . ein(vn) =

m∑
i1,...,in

Ti1...in v
i1
1 . . . vinn

which is exactly Eq.(3.37). We therefore see that the set of n-th order tensors {ei1 ⊗ . . .⊗ ein}
forms a basis of the space of all tensors of order n on V . This space will be denoted by T n(V ).
In particular we have T 1(V ) = V ∗.
Let us now study how the tensor coefficients transform under coordinate transformations. Sup-
pose we had chosen a different basis {fj} in V . This basis is related to the old basis by

ei =

m∑
j

Aji fj . (3.41)

Let us then consider again an n-th order tensor T on V . Then in terms of the dual basis {f j}
the tensor T has the form

T =

m∑
i1,...,in

T̃i1...in f
i1 ⊗ . . .⊗ f in . (3.42)

From Eq.(3.41) it follows that for any v

f i(v) =

m∑
j

vj f i(ej) =

m∑
j,k

vjAkj f
i(fk) =

m∑
j,k

vjAkj δ
i
k

=

m∑
j

Aij v
j =

m∑
j

Aij e
j(v).

So with this expression we find from Eq.(3.42) that

T =

m∑
i1,...,in,j1,...jn

T̃i1...in A
i1
j1
. . . Ainjn e

j1 ⊗ . . .⊗ ejn .

Comparison to Eq.(3.37) then gives

Tj1...jn =

m∑
i1...in

T̃i1...in A
i1
j1
. . . Ainjn .
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This is how the components of a tensor transform under a coordinate transformation. The tensor
is defined independent of a basis as is, for instance, clear for the example of the volume tensor
which measures the volume spanned by n independent vectors independent of the coordinate
system in which they are expressed.

Since the dual space V ∗ of first order tensors is a vector space we can define a new type of
tensor. This tensor is defined to be the multilinear mapping

T : V ∗ × . . .× V ∗︸ ︷︷ ︸
n times

→ R (3.43)

acting on elements w1, . . . , wn ∈ V ∗. Each element w in V ∗ can be written as

w =

m∑
j

wj e
j

and therefore

T (w1, . . . , wn) =

m∑
i1...in

w1,ii . . . wn,in T (ei1 , . . . , ein) =

m∑
i1...in

T i1...in w1,ii . . . wn,in(3.44)

where we defined
T i1...in = T (ei1 , . . . , ein).

To distinguish the tensors of type (3.34) from the tensors of type (3.43) we give them different
names. A tensor of type (3.34) is called a covariant tensor of order n, whereas a tensor of
type (3.43) is called a contravariant tensor of order n. The simplest contravariant tensor is a
contravariant tensor of order 1, i.e. a linear mapping

T : V ∗ → R

which maps a covariant tensor of order one (or a dual vector) to a number. To be consistent
with our earlier definitions the set of tensors of this form should be denoted by (V ∗)∗, i.e. the
dual space of the dual space, which maybe a somewhat confusing concept. Luckily the space
(V ∗)∗ is the same as our original vector space V since we can define the action of a vector
v ∈ V on a dual vector w ∈ V ∗ to be

v(w) ≡ w(v).

and therefore every vector in V can be regarded as a contravariant tensor of order one. In
particular, we have for ei ∈ V and ej ∈ V ∗ that

ei(e
j) = ej(ei) = δji

and therefore

ei(w) =

m∑
j

wj ei(e
j) = wi.

As a consequence of this relation we can rewrite the contravariant tensor of Eq.(3.44) as

T =

m∑
i1...in

T i1...in ei1 ⊗ . . .⊗ ein . (3.45)
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Let us now see how this tensor transforms under basis transformations. from Eq.(3.41) it follows
that

fi =

m∑
j=1

(A−1)jiej (3.46)

where A−1 is the inverse matrix defined by
m∑
l=1

(A−1)jlA
l
i = δji .

If we now describe the tensor T in basis {fi}

T =

m∑
i1...in

T̃ i1...infi1 ⊗ . . .⊗ fin

then it follows from Eq.(3.46) that

T =
∑

i1...in,j1...jn

T̃ i1...in (A−1)j1i1 . . . (A
−1)jnin ej1 ⊗ . . .⊗ ejn

and we see by comparing to (3.45) that

T j1...jn =

m∑
i1...in

T̃ i1...in (A−1)j1i1 . . . (A
−1)jnin .

We thus see that the components of a contravariant tensor transform in an opposite way as
compared to the basis transformation (3.41). This is the origin of the words covariant and
contravariant.

After having defined the covariant and contravariant tensors we can go to the final generalization
by introducing the mixed tensor. A tensor that is covariant of order k and contravariant of order
l is a multilinear mapping

T : V × . . .× V︸ ︷︷ ︸
k times

×V ∗ × . . .× V ∗︸ ︷︷ ︸
l times

→ R

that assigns to k vectors v1, . . . , vk ∈ V and l dual vectors w1, . . . , wl ∈ V ∗ the real number
T (v1, . . . , vk, w1, . . . , wl). In terms of a basis {ei} in V and its dual basis {ei} in V ∗ this tensor
can be written as

T =

m∑
i1...ik,j1...jl

T j1...jli1...ik
ei1 ⊗ . . .⊗ eik ⊗ ej1 ⊗ . . .⊗ ejl (3.47)

The transformation rule under a basis transformation for a mixed tensor is derived completely
analogously as that for the co- and contravariant tensors. If in a new basis {fi} in V and its
corresponding dual basis we have

T =

m∑
i1...ik,j1...jl

T̃ j1...jli1...ik
f i1 ⊗ . . .⊗ f ik ⊗ fj1 ⊗ . . .⊗ fjl

then we have that

T j1...jli1...ik
=

m∑
β1...βk,α1...αl

Tα1...αl
β1...βk

Aβ1

i1
. . . Aβkik (A−1)j1α1

. . . (A−1)jlαl

This was how historically a tensor was first defined, as objects with indices that transform under
basis transformations in this way. The space of tensors on a vector space V that are covariant
of order k and contravariant of order l is denoted by T kl (V ).
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3.3.2 Operations on tensors

Now that we have defined general tensors we can define some commonly used operations on
them. One of the simplest ones is the contraction . A contraction with respect to indices p and
q is a mapping

cpq : T kl (V )→ T k−1
l−1 (V )

which is most easily defined in terms of the tensor components. We define

T̃
j1...jp−1jp+1...jl
i1...iq−1iq+1...ik

≡
m∑
r=1

T
j1...jp−1 r jp+1...jl
i1...iq−1 r iq+1...ik

(3.48)

For instance, the contraction c11 : T 3
2 (V )→ T 2

1 (V ) is defined by

T̃ j2j3i2
=

m∑
r=1

T r j2j3r i2

We defined this operation in a basis but as an exercise you can easily convince yourself that the
definition (3.48 ) is indeed basis independent.
The next operation that we define on tensors is usually referred to as the "raising and lowering
of indices". We have established a mapping V → V ∗ from a vector space to its dual by ei → e∗i

after choosing a basis. However, this mapping depends on the choice of a basis. A basis-
independent mapping can be defined when our vector space V is equipped with a metric g(u, v).
Being a second rank covariant tensor the metric tensor g can be written as

g =

m∑
ij

gij e
i ⊗ ej

where gij = g(ei, ej). We further define a corresponding contra variant tensor g∗ by

g∗ =

m∑
ij

gij ei ⊗ ej (3.49)

where the matrix gij is the inverse of gij , i.e.

m∑
j=1

gijgjk = δjk.

(we show below that the inverse exists). Using the metric tensor we can define a mapping from
V to V ∗ as follows. To every v ∈ V we assign a dual vector v[ ∈ V ∗ acting on vectors u ∈ V
as follows

v[(u) = g(v, u). (3.50)

This defines a mapping [ : V → V ∗ which assigns v[ to v which is clearly independent of the
choice of a basis. Since the dual vector v[ (pronounced "v flat") is in V ∗ it can be expanded in
a dual basis as

v[ =

n∑
j=1

v[j e
j

where v[j = v[(ej). This coefficient is readily calculated from Eq.(3.50). We have

v[j = v[(ej) = g(v, ej) =
∑
i

vi g(ei, ej) =
∑
i

vi gij
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Since the location of the upper or lower index indicates that we deal with a vector or its dual
one often simply writes v[j = vj such that

v[j = vj =
∑
i

vi gij

One says that the dual vector is obtained by lowering the index with the metric tensor. A natural
question to ask is whether this mapping is invertible. This is readily shown to be a consequence
of the non degeneracy of the metric. Suppose that for two vectors v1 and v2 in V we have
v[1 = v[2. This would imply that for all vectors u in V

g(v1, u) = v[1(u) = v[2(u) = g(v2, u)

and therefore
g(v1 − v2, u) = 0.

The non-degeneracy of the metric then tells us that v1 − v2 = 0 or v1 = v2. This means that
the mapping is indeed invertible. The next question we can ask is whether for any w ∈ V ∗

there is a vector v ∈ V such that w = v[. This is indeed the case and follows also from the
non-degeneracy of the metric. Let us start by taking m linearly independent vectors vj ∈ V for
j = 1, . . . ,m. and construct the m duals v[j . We first show that the dual vectors v[j are a basis
in V ∗ and hence and w ∈ V ∗ can be written as a linear combination of them. Let αj be a set
of m coefficients and suppose that

0 =

m∑
j=1

αj v[j (3.51)

As a consequence of the definition of v[j this implies that

0 =

m∑
j=1

αj v[j(u) =

m∑
j=1

αj g(vj , u) = g(

m∑
j=1

αj vj , u) (3.52)

Since g is non-degenerate this is only possible for all u when

0 =

m∑
j=1

αj vj .

However, since the vectors vj where chosen to be linearly independent this is only possible when
αj = 0. It therefore follows that Eq.(3.51) can only be valid when all coefficients vanish. But
this implies that the dual vectors v[j form a basis for V ∗. Therefore any w ∈ V ∗ can be written
as a linear combination of them, i.e.

w(u) =

m∑
j=1

βj v[j(u) =

m∑
j=1

βj g(vj , u) = g(

m∑
j=1

βjvj , u)

We therefore see that for any w ∈ V ∗ there is a unique vector v ∈ V such that w = v[. Let us
denote this vector associated to w by w] (pronounced "w sharp"). More precisely, it is defined
by

w(u) = g(w], u).

This defines a mapping ] : V ∗ → V which assigns w] to w. If we expand w] in a basis in V ∗

we have

w] =

m∑
j=1

w],jej ,
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and therefore

wi = w(ei) = g(w], ei) =

m∑
j=1

w],jg(ej , ei) =

m∑
j=1

w],jgji

Multiplying both sides with the inverse matrix gik (which we now know exists since we proved
that w] is well-defined) of Eq.(3.49) and summing over i then gives

w],k =

m∑
i=1

wi g
ik (3.53)

Again since the location of the indices tells whether we deal with vectors or their duals one
often writes w],k = wj . The vector w] with coefficient wj is then obtained by raising the
coefficients of the dual vector with the inverse metric. The mappings ] and [ between V and V ∗

are often called the "musical isomorfisms". Rather than raising and lowering tones as in music
they raise and lower indices of tensors. We will now extend the raising and lowering operations
to general tensors. We will start with a few examples. Let us consider a rank two covariant
tensor T ∈ T 2

0 (V ) which has the form

T =

m∑
ij

Tij e
i ⊗ ej

To this tensor we can assign a mixed tensor T̃ ∈ T 1
1 (V ) acting on a vector u and a dual vector

w by the definition
T̃ (u,w) = T (u,w]) (3.54)

The mixed tensor is of the form

T̃ =

m∑
ij

T̃ ji e
i ⊗ ej

We therefore have in a basis∑
ij

T̃ ji u
iwj = T̃ (u,w) = T (u,w]) =

∑
ik

Tiku
iw],k =

∑
ijk

Tiku
igkjwj

and we therefore see that
T̃ ji =

∑
k

Tikg
kj

We therefore see that we have raised the second index of T by the inverse metric tensor. This
was to be expected since the symbol sharp ] appeared in the second argument on the right hand
side of Eq.(3.54). In a second example we will lower an index. Consider a third order mixed
tensor T ∈ T 1

2 (V ) of the form

T =
∑
ijk

T jki ei ⊗ ej ⊗ ek

We then assign a new tensor T̃ ∈ T 2
1 (V ) by

T̃ (u, v, w) = T (u, v[, w)

where u, v ∈ V and v[, w ∈ V ∗. The transformation of the tensor coefficients follows immedi-
ately by writing out this equation in a basis∑

ijk

T̃ kiju
ivjwk = T̃ (u, v, w) = T (u, v[, w) =

∑
ilk

T lki u
iv[lwk =

∑
ijlk

T lki u
igljv

jwk
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and we therefore find that
T̃ kij =

∑
l

T lki glj (3.55)

We therefore lowered an upper index to a lower index using the metric tensor. We note that
when raising and lowering indices it is important to keep track of the order of the indices (e.g.
is T pq obtained from Tpq or Tqp after raising an index?). We therefore invent a suitable notation.
We illustrate it with an example. Let T ∈ T 2

3 (V ) be a mixed tensor acting on two vectors
v1, v2 ∈ V and three dual vectors w1, w2, w3 ∈ V ∗, but not in the order of Eq.(3.47). Instead
we have the order

T (v1, w1, w2, v2, w3) (3.56)

If we write this out in a basis we write

T =

m∑
i1...i5

T i2i3 i5
i1 i4

ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4 ⊗ ei5

i.e. the order of the indices up and down correspond to the order in which the arguments in
Eq.(3.56) appear. With this notation the tensor of Eq.(3.47) is written as

T =

m∑
i1...ik,j1...jl

T j1...jl
i1...ik

ei1 ⊗ . . .⊗ eik ⊗ ej1 ⊗ . . .⊗ ejl

With these preliminaries the raising and lowering operation on a general tensor is then described
as follows. If T ∈ T pq (V ) we can define assign a new tensor T̃ ∈ T p−1

q+1 (V ) by the following
procedure. If T acts on a vector as its j-th argument. Then we define

T̃ (w) = T (w])

for that argument and leave all the other arguments untouched (they are suppressed in the
notation). This will raise the j-th index of the tensor T . This corresponds to our first example
of Eq.(3.54) . In our new notation we have for the indices in this example

T̃ j
i =

m∑
k=1

Tikg
kj

where we raised the second index. If had chosen to define T̃ (w, u) = T (w], u) instead we would
have obtained

T̃ ij =

m∑
k=1

Tkjg
ki

which raises the first index. The procedure for lowering an index is analogous. If T ∈ T pq (V ) we
can define assign a new tensor T̃ ∈ T p+1

q−1 (V ) by the following procedure. If T acts on a dual
vector in its j-th argument we define

T̃ (v) = T (v[)

for that particular argument and leave all other arguments unchanged. This will lower the j-th
index of the tensor T . This is what we did in our second example of Eq.(3.55). Being careful
with the order of the indices we can write this in our new notation as

T̃ k
ij =

∑
l

T lk
i glj
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from which it is clear that we lowered the second index.

Now that we have defined the operation of raising and lowering indices it is clear that we
can also apply it repeatedly. For instance,

T ij =

m∑
pq

gipgjq Tpq (3.57)

which in our basis-independent notation amounts to

T̃ (w1, w2) = T (w]1, w
]
2) (3.58)

for two dual vectors w1 and w2. In the component notation of Eq.(3.57) we removed the tilde
on the left hand side of the components. This is customary notation as the upper indices already
indicate that we deal with a different tensor. An interesting special case is obtained when we
take T = g equal to the metric tensor. In that case Eq.(3.57) becomes the identity

gij =

m∑
pq

gipgjq gpq =
∑
p

gipδjp = gij (3.59)

where we used gij = gji. We further see from Eq.(3.58) that we have the identity

g∗(w1, w2) = g(w]1, w
]
2)

for two dual vectors w1 and w2.

3.3.3 Properties of the metric

The metric tensor presents a non-degenerate metric. In Appendix A we will show that for any
non-degenerate metric on a m-dimensional vector space V we can always find a basis ej in V
such that

gij = g(ei, ej) =

{
±1 if i = j for i = 1, . . . ,m

0 otherwise

Such a basis will be called an orthonormal basis for the metric g. For the case of a Minkowski
metric on a 4-dimensional vector space the metric looks as follows

gij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


In this case (and in fact for any non-degenerate metric) we can distinguish three types of vectors
v:

g(v, v) > 0 space-like vectors

g(v, v) = 0 light-like vectors

g(v, v) < 0 time-like vectors

The vectors with g(v, v) > 0(< 0) point more in the space (time ) direction than in the time
(space) direction and are called space- (time-) like vectors. Vectors with the property g(v, v) = 0
describe the propagation of light rays and are hence called light-like.
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A vector space with metric g can have a completely light-like basis. For instance, for our
Minkowski metric in terms of an orthonormal basis e1, e2, e3, e4 with

1 = −g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4)

and g(ei, ej) = 0 for i 6= j we can construct a new basis u1, u2, u3, u4 given by

(u1, u2, u3, u4) = (e1 − e2, e1 + e2, e1 + e3, e1 + e4)

One can check that all ui are light-like

g(ui, ui) = 0

The vectors ui are linearly independent and form a basis. We can, for instance, express the
original basis ei in terms of the new basis as follows

(e1, e2, e3, e4) = (
1

2
(u1 + u2),

1

2
(u2 − u1), u3 −

1

2
u1 −

1

2
u2, u4 −

1

2
u1 −

1

2
u2)

Hence any other vector in V can be expressed in terms of the vectors ui. The existence of
purely light-like bases means that the standard proof for the existence of an orthonormal basis
for positive definite inner products can not carried over directly to non positive definite inner
products such as the Minkowski metric. The standard proof is based on the Gram-Schmidt
procedure which assumes any vector to be normalizable to one, which clearly fails for light-like
vectors. The existence of a basis can nevertheless be proven and the proof is presented in
Appendix A.

3.3.4 A metric on the space of tensors

The metric g can be regarded as defining a non positive-definite inner product between vectors.
For any two vectors u and v in V we can define

(u|v) ≡ g(u, v) =

m∑
ij

giju
ivj

We can define such an inner product for dual vectors w1, w2 ∈ V ∗ as well by defining

(w1|w2) = g∗(w1, w2) =

m∑
ij

gijw1,iw2,j (3.60)

After our discussion on the raising and lowering of tensor indices in the previous section it is not
difficult to construct a generalization of these two equations which provides an inner product
between general tensors. For instance, for tensors T, S ∈ T 2

0 (V ) we can define

(T |S) =

m∑
i1i2

Ti1i2 S̃
i1i2 =

∑
i1i2j1j2

Ti1i2Sj1j2g
i1j1gi2j2

This brings us to the following general definition. For T, S ∈ T pq (V ) we define

(T |S) =

m∑
i1...ip,j1...jq

T
j1...jq
i1...ip

S̃
i1...ip
j1...jq

(3.61)

where

S̃
i1...ip
j1...jq

=

m∑
k1...kp,l1...lq

S
l1...lq
k1...kp

gi1k1 . . . gipkpgl1j1 . . . glqjq

by raising and lowering of all the indices. It is not difficult to check the following properties of
this inner product:
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1. (T |S) = (S|T )

2. (α1T1 + α2T2|S) = α1(T1|S) + α2(T2|S) for α1, α2 real numbers and a similar linearity
applies to the second argument S.

3. If (T |S) = 0 for all S ∈ T pq (V ) then T = 0

These properties tell us that Eq.(3.61) defines a non-degenerate metric on the space of all tensors.
From the previous section we know that any non-degenerate metric allows for the existence of
an orthonormal basis. We therefore conclude that there is a basis of tensors ei ∈ T pq (V ) with
the property

(ei|ej) = ±1 for i = 1, . . . ,m(p+ q)

(ei|ej) = 0 for i 6= j

The simplest case of a tensor inner product is, of course, the metric itself for which

gij = g(ei, ej) = (ei|ej)

and hence if ei is an orthonormal basis for the metric then it is trivially also an orthonormal basis
for the tensor inner product. The next simplest case is that of the inner product of dual vectors
as in Eq.(3.60). If ej is a dual basis to ei then since wj = w(ej) we can write Eq.(3.60) as

(w1|w2) =

m∑
ij

gijw1(ei)w2(ej)

and in particular

(ek|el) =

m∑
ij

gijek(ei)e
l(ej) =

m∑
ij

gijδki δ
l
j = gkl

In case that ek was dual to an orthornormal basis we have that g is diagonal and gii = gii = ±1
and hence

(ek|el) =

{
±1 if k = l for k = 1, . . . ,m

0 otherwise

Let us now consider two special p-th order covariant tensors of the form

T = v1 ⊗ . . .⊗ vp S = u1 ⊗ . . .⊗ up

where ui, vj ∈ V ∗. Then

(T |S) =

m∑
i1...ip,j1...jp

v1,i1 . . . vp,ipg
i1j1 . . . gipjpu1,j1 . . . up,jp

= (u1|v1) . . . (up|vp) (3.62)

From this expression it follows that if ei is an orthonormal basis in V then the tensors ei1⊗. . .⊗eip
form an orthonormal basis for the p-th order covariant tensors T p0 (V ), i.e.

(ei1 ⊗ . . .⊗ eip |ej1 ⊗ . . .⊗ ejp) = (ei1 |ej1) . . . (eip |ejp)

=

{
gi1j1 . . . gipjp = ±1 if (i1 . . . ip) = (j1 . . . jp)

0 otherwise
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For the discussion in the next section it is necessary to pay some extra attention to the anti-
symmetric covariant tensors. An arbitrary such tensor can be written as

T =

m∑
i1...ip

Ti1...ip e
i1 ⊗ . . .⊗ eip

where Ti1...ip = T (ei1 , . . . , eip). Since T is anti-symmetric we have

T (eσ(1), . . . , eσ(p)) = (−1)|σ|T (e1, . . . , ep)

where σ is a permutation of the indices (1, . . . , p). For an anti-symmetric tensor S and T we
can thus write the inner product as

(T |S) =

m∑
i1...ip

Ti1...ip S̃
i1...ip = p!

m∑
i1<...<ip

Ti1...ip S̃
i1...ip

where we sum over all ordered p-tuples i1 < . . . < ip of the set (1, . . . ,m). For the anti-
symmetric tensors of order p it is convenient to redefine the inner product as

〈T, S〉 ≡ 1

p!
(T |S) (3.63)

such that

〈T, S〉 =

m∑
i1<...<ip

Ti1...ip S̃
i1...ip

Let us now see what the orthonormal basis is with respect to this inner product. From the
anti-symmetry of T it follows that

T =

m∑
i1...ip

Ti1...ip e
i1 ⊗ . . .⊗ eip

=

m∑
i1<...<ip

Ti1...ip
∑
σ

(−1)|σ|eσ(i1) ⊗ . . .⊗ eσ(ip)

=

m∑
i1<...<ip

Ti1...ipe
i1...ip (3.64)

where we defined the basis tensor

ei1...ip ≡
∑
σ

(−1)|σ|eσ(i1) ⊗ . . .⊗ eσ(ip)

When V is an m-dimensional vector space then there are
(
m
p

)
such basis functions. Let us

now calculate the inner product between two such basis tensors. We have, when τ, σ and ρ are
permutations and τ = ρ ◦ σ that

〈ei1...ip , ej1...jp〉 =
1

p!

∑
σ,τ

(−1)|σ|+|τ |(eσ(i1) ⊗ . . .⊗ eσ(ip)|eτ(j1) ⊗ . . .⊗ eτ(jp))

=
1

p!

∑
σ,ρ

(−1)|σ|(−1)|σ|+|ρ|(eσ(i1)|eρ◦σ(j1)) . . . (eσ(ip)|eρ◦σ(jp))

=
∑
ρ

(−1)|ρ|(ei1 |eρ(j1)) . . . (eip |eρ(jp))

=
∑
ρ

(−1)|ρ|gi1 ρ(j1) . . . gip ρ(jp) = det(G) (3.65)
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where G is the matrix with entries Gpq = gipiq . For instance

〈e12, e34〉 =

∣∣∣∣ g13 g14

g23 g24

∣∣∣∣
In case that the basis ei is orthonormal we have from Eq.(3.65) that

〈ei1...ip , ej1...jp〉 =
∑
ρ

(−1)|ρ| δi1ρ(j1) . . . δ
ip
ρ(jp) g

i1i1 . . . gipip

= δ
i1...ip
j1...jp

gi1i1 . . . gipip (3.66)

where we defined the symbol

δ
i1...ip
j1...jp

=

 1 if (i1 . . . ip) is an even permutation of (j1 . . . jp)
−1 if (i1 . . . ip) is an odd permutation of (j1 . . . jp)
0 otherwise

(3.67)

For instance,
δ12
12 = −δ12

21 = 1, δ12
13 = 0

Since for an orthonormal basis gii = ±1 we see that in such a basis the tensors ei1...ip for
i1 < . . . < ip form an

(
m
p

)
-dimensional basis for the anti-symmetric covariant tensors of rank p,

i.e.

〈ei1...ip , ei1...ip〉 = gi1i1 . . . gipip = ±1

〈ei1...ip , ej1...jp〉 = 0 if (i1 < . . . < ip) 6= (j1 < . . . < jp)

This concludes our discussion on the inner product of tensors.

3.3.5 The wedge product of tensors

In the theory of electromagnetism and in physics in general anti-symmetric tensors play an
important role. For instance, the central quantity in electromagnetism is the anti-symmetric
field tensor Fµν , which is also closely related to the concept of curvature. Another reason anti-
symmetric tensors are important is that they describe volume elements and consequently they
play a crucial role in integration of volumes or fluxes. We will describe this in more detail later.
For the moment we recall the volume tensor

V (v1, . . . , vn) =

n∑
j1...jn

vj11 . . . vjnn V (ej1 , . . . , ejn)

where V (eσ(1), . . . , eσ(n)) = (−1)|σ|. If we define

εj1...jn =

{
1 if (j1 . . . jn) is an even permutation of (1 . . . n)
−1 if (j1 . . . jn) is an odd permutation of (1 . . . n)

then we can write

V (v1, . . . , vn) =

n∑
j1...jn

εj1...jn v
j1
1 . . . vjnn

or equivalently

V =

n∑
j1...jn

εj1...jn e
i1 ⊗ . . .⊗ ein (3.68)
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Let us now look at more general anti-symmetric tensors such as

T = α(e1 ⊗ e2 − e2 ⊗ e1) + β(e1 ⊗ e3 − e3 ⊗ e1) + γ(e2 ⊗ e3 − e3 ⊗ e2) (3.69)

It is easy to check that T (v1, v2) = −T (v2, v1) for all vectors v1, v2 ∈ V . If S and T are
anti-symmetric tensors then their tensor product is in general not. For instance, if S ∈ T 3

0 (V )
and T ∈ T 2

0 (V ) are both anti-symmetric then

(S ⊗ T )(v1, v2, v3, v4, v5) = S(v1, v2, v3)T (v4, v5)

is not anti-symmetric upon interchange of the vectors v1, v2, v3 with v4, v5. We will therefore in-
troduce a new product S∧T , known as the wedge product that does produce an anti-symmetric
tensor. First some definitions.

We define Ωp(V ) to be the space of p-fold covariant anti-symmetric tensors on a vector
space V . We include the case p = 1 as well and define Ω1(V ) = V ∗. Then a set of indices
(i1 . . . ip) will be denoted by I and similarly a set of indices (j1 . . . jp) will be denoted by J .
Further

vI ≡ (vi1 , . . . , vip)

and
δIJ ≡ δ

i1...ip
j1...jp

where δi1...ipj1...jp
was defined before in Eq.(3.67). Then for S ∈ Ωp(V ) and T ∈ Ωq(V ) we define

S ∧ T ∈ Ωp+q(V ) by

(S ∧ T )(vI) ≡
1

p!q!

∑
JK

δJKI S(vJ)T (vK) (3.70)

where JK = (j1 . . . jp, k1 . . . kq) , J = (j1 . . . jp) and K = (k1 . . . kq) are subsets of I. The sum
in Eq. (3.70) runs over all subsets of I. Since δJKI changes sign upon interchange of any two
indices in I it is clear that the tensor S ∧ T is anti-symmetric and hence element of Ωp+q(V ).
Let us give an example. If S ∈ Ω2(V ) and T ∈ Ω1(V ) = V ∗ we have

(S ∧ T )(v1, v2, v3) =
1

2!1!

[
δ123
123 S(v1, v2)T (v3) + δ213

123 S(v2, v1)T (v3)

+δ132
123 S(v1, v3)T (v2) + δ312

123 S(v3, v1)T (v2)

+δ231
123 S(v2, v3)T (v1) + δ321

123 S(v3, v2)T (v1)
]

=
1

2
(S(v1, v2)− S(v2, v1))T (v3)− 1

2
(S(v1, v3)− S(v3, v1))T (v3)

+
1

2
(S(v2, v3)− S(v3, v2))T (v1) (3.71)

This represents an anti-symmetric tensor, even if S would not have been anti-symmetric (and
this is also true for the general Eq.(50)) . However, since we know that S(v1, v2) = −S(v2, v1)
we can simplify Eq.(3.71) to

(S ∧ T )(v1, v2, v3) = S(v1, v2)T (v3)− S(v1, v3)T (v2) + S(v2, v3)T (v1) (3.72)

This procedure works in general. If S and T in Eq.(3.70) are anti-symmetric (and they are by
definition) we can rewrite the equation as

(S ∧ T )(vI) =
∑
J K

δJKI S(vJ)T (vK) (3.73)
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where now J = (j1 < . . . < jp) and K = (k1 < . . . < kq) are ordered subsets of I. This is easily
derived by noting that both δJKI and S(vJ) and T (vK) are anti-symmetric under permutations
of indices in J and K. For example, if S, T ∈ Ω2(V ) then

(S ∧ T )(v1, v2, v3, v4) =
∑
j1<j2

∑
k1<k2

δj1j2k1k21234 S(vj1 , vj2)T (vk1 , vk2)

=δ1234
1234 S(v1, v2)T (v3, v4) + δ1324

1234 S(v1, v3)T (v2, v4)

=δ1423
1234 S(v1, v4)T (v2, v3) + δ2314

1234 S(v2, v3)T (v1, v4)

=δ2413
1234 S(v2, v4)T (v1, v3) + δ1234

3412 S(v3, v4)T (v1, v2)

= S(v1, v2)T (v3, v4)− S(v1, v3)T (v2, v4) + S(v1, v4)T (v2, v3)

+S(v2, v3)T (v1, v4)− S(v2, v4)T (v1, v3) + S(v3, v4)T (v1, v2) (3.74)

One can again check that this tensor is anti-symmetric and hence an element of Ω4(V ). We
have thus established the mapping

∧ : Ωp(V )× Ωq(V )→ Ωp+q(V )

This product is known as the wedge product. If S ∈ Ωp(V ) and T ∈ Ωq(V ) then we see that

(S ∧ T )(vI) =
∑
J K

δJKI S(vJ)T (vK) = (−1)pq
∑
J K

δKJI T (vK)S(vJ)

= (−1)pq (T ∧ S)(vI)

since we need pq transpositions to go from JK to KJ . We thus have

(S ∧ T ) = (−1)pq(T ∧ S) (3.75)

We can further check that for S, T, U ∈ Ωp,Ωq,Ωr that

(S ∧ (T ∧ U))(vI) =
∑
J K

δJKI S(vJ) (T ∧ U)(vK)

=
∑

J K,L,M

δJKI δLMK S(vJ)T (vL)U(vM ) =
∑
J L,M

δJLMI S(vJ)T (vL)U(vM )

=
∑

J L,M,N

δJLN δNMI S(vJ)T (vL)U(vM ) =
∑
M,N

δNMI (S ∧ T )(vN )U(vM )

= ((S ∧ T ) ∧ U)(vI)

where we used that ∑
K

δJKI δLMK = δJLMI

which is an identity that you can check for yourself. We have thus shown that

S ∧ (T ∧ U) = (S ∧ T ) ∧ U.

There is therefore no need to use brackets and we can simply write S ∧T ∧U . We can therefore
apply the wedge product repeatedly. In particular when Tj ∈ Ω1(V ) = V ∗ for j = 1 . . . n then
we can calculate that

(T1 ∧ . . . ∧ Tn)(v1, . . . , vn) =
∑
j1...jn

δj1...jn1...n T1(vj1) . . . Tn(vjn)

=
∑
σ

(−1)|σ| T1(vσ(1)) . . . Tn(vσ(n)) =
∑
σ

(−1)|σ| Tσ(1)(v1) . . . Tσ(n)(vn)
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where we sum over all permutations σ of the labels and therefore

T1 ∧ . . . ∧ Tn =
∑
σ

(−1)|σ| Tσ(1) ⊗ . . .⊗ Tσ(n).

If we take the special case Tk = eik , i.e. the dual basis vectors, then we have

ei1 ∧ . . . ∧ ein =
∑
σ

(−1)|σ| eσ(i1) ⊗ . . .⊗ eσ(in) (3.76)

We see that these are exactly the basis vectors ei1...in encountered in Eq.(3.3.4). We can
therefore express a general anti-symmetric tensor as in Eq.(3.64) as

T =
∑

i1<...<ip

Ti1...ip e
i1 ∧ . . . ∧ eip (3.77)

We have, for instance, from Eq.(3.76) that

e1 ∧ e2 = e1 ⊗ e2 − e2 ⊗ e1

and therefore the antisymmetric tensor of Eq.(3.69) can be rewritten as

T = α e1 ∧ e2 + β e1 ∧ e3 + γ e2 ∧ e3

With the short notation eI = ei1 ∧ . . .∧ eip , TI = Ti1...ip and I = (11 < . . . < ip) we can write
Eq.(3.77) compactly as

T =
∑
I

TI e
I

If the dimension of the vector space V is m then the number of basis functions eI is given by(
m
p

)
since to construct all eI we need to pick p distinct integers out of m. We this have that

dim Ωp(V ) =

(
m

p

)
=

m!

p!(m− p)!
m = dimV (3.78)

Let us now think a bit about the geometrical meaning of the wedge product. If we take u,w ∈ V ∗
then we have

u ∧ w =

(
m∑
i

uie
i

)
∧

 m∑
j

wje
j

 =

m∑
ij

ui wj e
i ∧ ej

=

m∑
i<j

(uiwj − ujwi) ei ∧ ej =

m∑
i<j

∣∣∣∣ ui wi
uj wj

∣∣∣∣ ei ∧ ej (3.79)

Now the 2× 2-determinant in this equation describes the area in the (ei, ej)-plane spanned by
the vectors u and w projected on that plane. Pictorially, when V ∗ is three-dimensional
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Figure 3.11: The are spanned by vectors u and w in the (e1, e2)-plane

One has, however, to be a bit careful with this picture since we have not assumed anything
about the orthogonality of e1, e2, e3 which requires a metric to define. We will, however, often
take an orthonormal basis. More generally, we have

w1 ∧ . . . ∧ wp =
∑
i1...ip

w1,i1 . . . wp,ip e
i1 ∧ . . . ∧ eip

=
∑

i1<...<ip

∑
σ

(−1)|σ| w1,σ(i1) . . . wn,σ(ip) e
i1 ∧ . . . ∧ eip

=
∑

i1<...<ip

det(wi1 , . . . , wip) ei1 ∧ . . . ∧ eip (3.80)

where det(wi1 , . . . , wip) is the p × p-determinant of vectors wi1 , . . . , wip ∈ V ∗ with only
rows (i1, . . . , ip) present. This is precisely the p-dimensional volume spanned by the vectors
wi1 , . . . , wip projected on the (ei1 , . . . , eip)-plane of the m-dimensional space V ∗. This feature
explains why the anti-symmetric tensors play an important role in the theory of integration.

3.3.6 The invariant volume

In Eq.(3.68) we presented the volume tensor. In our new wedge notation this expression can
now be written as

V = e1 ∧ . . . ∧ en

Let us now consider the transformation to another dual basis f j of V ∗, i.e.

ei =

n∑
j=1

Bijf
j

Then the volume tensor V becomes

V =
∑

j1,...,jn

B1
j1 . . . B

n
jn f

j1 ∧ . . . ∧ f jn =
∑

j1,...,jn

B1
j1 . . . B

n
jn δ

j1...jn
1...n f1 ∧ . . . ∧ fn

= det(B) f1 ∧ . . . fn (3.81)

Let us further look at the transformation of the metric tensor g to the new basis. We have

g =

n∑
ij

gij e
i ⊗ ej =

n∑
ijkl

gijB
i
kB

j
l f

k ⊗ f l =

n∑
kl

g′kl f
k ⊗ f l (3.82)
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where

g′kl =

n∑
ij

gijB
i
kB

j
l

is the metric tensor in the new basis. By taking the determinant on both sides of this equation
we see that

det(g′) = (det(B))2 det(g)

If we denote g = det(g) (unfortunately the tensor and its determinant have the same name, but
in practice it is allows clear from the context which meaning one should use) then this equation
gives √

|g′| = |det(B)|
√
|g| (3.83)

Let us consider basis transformation that do not change the orientation of the basis, i.e.
det(B) > 0. Then from Eq.(3.81) and (3.83) we see that√

|g| e1 ∧ . . . ∧ en =
√
|g|det(B) f1 ∧ . . . ∧ fn =

√
|g′| f1 ∧ . . . ∧ fn

Therefore the quantity
Ω =

√
|g| e1 ∧ . . . ∧ en (3.84)

transforms as a scalar under basis transformations. The quantity Ω is known as the volume form.
So far we have not said anything about the properties of ej and f j (apart from the fact that
they are a basis). If we make the special choice of an orthonormal basis g(ei, ej) = ±δij then
|g| = 1. in terms of the corresponding dual basis ej in V ∗ the volume form Ω then attains the
simple form

Ω = e1 ∧ . . . ∧ en

However, when transforming this equation to a general other basis, one should remember that
there is a hidden

√
|g| = 1 in this equation.

3.4 The Hodge ? operator

We note that the space Ωp(V ) of anti-symmetric tensors of order p on a vector space V of
dimension n has the same dimension as the space Ωn−p(V ) of anti-symmetric tensors of order
n− p, i.e.

dim Ωp(V ) =

(
n

p

)
=

(
n

n− p

)
= dim Ωn−p(V ).

This opens up the possibility of an invertible linear mapping

? : Ωp(V )→ Ωn−p(V )

known as the Hodge star operator that assigns a tensor of order n− p to a tensor of order p.
It is not difficult to interpret this geometrically. If we consider a p-dimensional plane W in a
n-dimensional space, then the space W⊥ spanned by the vectors orthogonal to W is (n − p)-
dimensional. Note that to speak about orthogonality we first need to define a metric. We have
seen in Eq.(3.80) that the p-form ei1 ∧ . . . ∧ eip can be regarded as spanning a p-dimensional
volume. We can therefore try to construct the mapping ? by assigning to a p-form that spans
W a (n − p)-form that spans W⊥. Let us draw this pictorially. To draw orthogonal axes we
assume an orthogonal basis. Let us take n = 3 and the 2-form e1 ∧ e2 ∈ Ω2 and 〈ei, ej〉 = ±δij
as in Eq.(3.66). We then have
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Figure 3.12: Geometrical interpretation of the wedge product

If we imagine e1 ∧ e2 to be spanning a square in the (e1, e2)-plane then the orthogonal space is
spanned by e3, so we would write

?(e1 ∧ e2) = ±e3

where we would still need a good convention for the ± sign in this equation. Similarly we would
have

?(e1 ∧ e3) = ±e2 ? (e2 ∧ e3) = ±e1.

The signs can not be chosen arbitrarily if we want the mapping ? to be independent of the basis.
We can see this in a simpler example where V is two-dimensional and Ωp = Ω1 = V ∗.

Figure 3.13: Two different orthonormal bases

Consider two orthogonal vectors e1 and e2 with respect to the standard Euclidean metric

gij = gij =

(
1 0
0 1

)
,

i.e. 〈e1, e2〉 = 0 and 〈e1, e1〉 = 〈e2, e2〉 = 1 (see again Eq.(3.80) ). From the picture we see
that

?e1 = αe2

?e2 = βe1 (3.85)

where α, β = ±1. Let us now consider a different orthonormal basis (f1, f2). Since the mapping
? should be basis independent we want

?f1 = αf2

?f2 = βf1 (3.86)
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with the same values for α and β as before in Eq.(3.85). The bases (e1, e2) and (f1, f2) are
related by the orthogonal transformation(

f1

f2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
e1

e2

)
One readily checks that 〈f1, f1〉 = 〈f2, f2〉 = 1 and 〈f1, f2〉 = 0. Since we want the operation
? to be linear we must have

α(− sin θ e1 + cos θ e2) = αf2 = ?f1 = ?(cos θ e1 + sin θ e2)

= cos θ ? e1 + sin θ ? e2 = α cos θ e2 + β sin θ e1

from which we see that α = −β. The equation ?f2 = βf1 produces the same result. We thus
find the following two choices for the signs which are valid in for any orthonormal basis:

?e1 = e2

?e2 = −e1

or

?e1 = −e2

?e2 = e1

We will see later that these two possible choices corresponds to different choices for the orien-
tation of the basis.
Let us now see what happens when we change the metric. Let us instead of an Euclidean metric
choose a Minkowski-type of metric

gij = gij =

(
−1 0
0 1

)
,

In this case we have 〈e1, e2〉 = 0, 〈e1, e1〉 = −1 and 〈e2, e2〉 = 1. A transformation to a new
orthonormal basis is given by(

f1

f2

)
=

(
coshφ sinhφ
sinhφ coshφ

)(
e1

e2

)
One can readily check again that 〈f1, f2〉 = 0, 〈f1, f1〉 = −1 and 〈f2, f2〉 = 1. If we make the
same assumptions of Eqs.(3.85 ) and (3.86) as before then we see that

α(sinhφ e1 + coshφ e2) = αf2 = ?f1 = ?(coshφ e1 + sinhφ e2)

= coshφ ? e1 + sinhφ ? e2 = α coshφ e2 + β sinhφ e1

from which we see that α = β. So in this case we see that the only basis-independent possibilities
are

?e1 = e2

?e2 = e1 (3.87)

or

?e1 = −e2

?e2 = −e1. (3.88)
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We conclude that the choice of the signs in the mapping ? must depend on the metric g. After
these preliminary insights let us now try to define the mapping ? more generally.

Let ω, µ ∈ Ωp(V ), then ?µ ∈ Ωn−p(V ) and hence

ω ∧ ?µ ∈ Ωn(V ).

But the space Ωn(V ) is one-dimensional and the volume form Ω of Eq.(3.84) forms a basis. We
can thus write

ω ∧ ?µ = c(ω, µ) Ω (3.89)

where c(ω, µ) is a number depending on ω and µ. We now want to define ?µ by this equation
by making a suitable choice for the function c(ω, µ). Let us, for the moment, suppose that we
would be given a such function. Then the validity of Eq.(3.89) for all possible ω ∈ Ωp would
uniquely assign a (n− p)-form ?µ to a given p-form µ. Suppose, namely, that for a given µ and
all possible ω there would be two (n− p)-forms ν and ν′ satisfying

ω ∧ ν = c(ω, µ) Ω (3.90)

and
ω ∧ ν′ = c(ω, µ) Ω

then by subtracting we have

ω ∧ (ν − ν′) = 0 ∀ω ∈ Ωp(V )

which implies (check for yourself) that ν − ν′ = 0 and hence ν = ν′. We therefore see that
Eq.(3.90) has a unique solution for ν which is determined by µ and which we denote by ν = ?µ.
It only remains to specify the function c(ω, µ). We first note that, since we want the operation
? to be linear, the function c(ω, µ) is linear in both its arguments. If ω = α1ω1 + α2ω2 and
µ = β1µ1 + β2µ2 then

c(ω, µ)Ω = (α1ω1 + α2ω2) ∧ ?µ = α1ω1 ∧ ?µ+ α2ω2 ∧ ?µ
= (α1c(ω1, µ) + α2c(ω2, µ))Ω (3.91)

and

c(ω, µ)Ω = ω ∧ ?(β1µ1 + β2µ2) = β1ω ∧ ?µ1 + β2ω ∧ ?µ2

= (β1c(ω, µ1) + β2c(ω, µ2))Ω (3.92)

and we therefore conclude that

c(α1ω1 + α2ω2, µ) = α1 c(ω1, µ) + α2 c(ω2, µ)

c(ω, β1µ1 + β2µ2) = β1 c(ω, µ1) + β2 c(ω, µ2)

and we find that the function c is linear in both arguments. Although we derived that a given
µ uniquely determines ?µ there is still the possibility that two different µ1, µ2 ∈ Ωp(V ) map to
the same ?µ ∈ Ωn−p(V ) in which case ? would not be an invertible mapping. We do not want
this and we therefore need the condition that if ?µ1 = ?µ2 then it must follow that µ1 = µ2.
The condition ?µ1 = ?µ2 gives us

0 = ω ∧ ?(µ1 − µ2) = c(ω, µ1 − µ2) ∀ω ∈ Ωp(V )

If we want to conclude from this equation that µ1 = µ2 we need that the function c satisfies
the condition

c(ω, µ) = 0 ∀ω ∈ Ωp(V ) ⇒ µ = 0
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This condition together with the linearity in both arguments suggests that for c we should take
a non-degenerate inner product on Ωp(V ). We learned before that the space Ωn−p(V ) has such
an inner product given by Eq.(3.63). We therefore define

c(ω, µ) = 〈ω, µ〉

and the defining equation for ?µ therefore becomes

ω ∧ ?µ = 〈ω, µ〉Ω ∀ω ∈ Ωp(V ) (3.93)

Since we nowhere used an explicit basis this equation defines ?µ in a completely basis indepen-
dent manner.

Let us now give some examples. Let us take a two-dimensional space with a Minkowski-type
metric

gij = gij =

(
−1 0
0 1

)
.

Then 〈e1, e1〉 = g11 = −1 and 〈e2, e2〉 = g22 = 1. Further, since |g| = 1 we see from Eq.(3.84)
that

Ω = e1 ∧ e2.

Then Eq.(3.93) tells us that

e1 ∧ ?e1 = 〈e1, e1〉 e1 ∧ e2 = −e1 ∧ e2

e2 ∧ ?e2 = 〈e2, e2〉 e1 ∧ e2 = e1 ∧ e2

from which we deduce

?e1 = −e2

?e2 = −e1

This corresponds to Eq.(3.88). If we had defined the volume form to be Ω = e2 ∧ e1, which
would correspond to a change of the orientation of the basis to (e2, e1) we would have obtained
Eq.(3.87). We therefore see that, apart from a dependence on a metric, the Hodge star operator
also depends on the chosen orientation of the basis used in the volume form. For a general
one-form ω = w1e

1 + w2e
2 we find that

?ω = w1 ? e
1 + w2 ? e

2 = −w1 e
1 − w2 e

2

Let us now go back to our first picture and take a three-dimensional Euclidean space with a
metric

g =

 1 0 0
0 1 0
0 0 1


such that 〈ei, ej〉 = δji . Then Eq.(3.93) tells us that

e1 ∧ e2 ∧ ?(e1 ∧ e2) = 〈e1 ∧ e2, e1 ∧ e2〉 e1 ∧ e2 ∧ e3 = e1 ∧ e2 ∧ e3

e1 ∧ e3 ∧ ?(e1 ∧ e3) = 〈e1 ∧ e3, e1 ∧ e3〉 e1 ∧ e2 ∧ e3 = e1 ∧ e2 ∧ e3

e2 ∧ e3 ∧ ?(e2 ∧ e3) = 〈e2 ∧ e3, e2 ∧ e3〉 e1 ∧ e2 ∧ e3 = e1 ∧ e2 ∧ e3

and we therefore find that

?(e1 ∧ e2) = e3 , ?(e1 ∧ e3) = −e2 , ?(e2 ∧ e3) = e1 (3.94)
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For a general tensor T ∈ Ω2(V ) of the form

T = α e1 ∧ e2 + β e3 ∧ e1 + γ e2 ∧ e3

we thus find
?T = γ e1 + β e2 + α e3

After these examples it is not difficult to derive the action of the Hodge star operator on a
general p-form in an orthonormal basis. We have

ei1 ∧ . . . ∧ eip ∧ ?(ei1 ∧ . . . ∧ eip) = 〈ei1 ∧ . . . ∧ eip , ei1 ∧ . . . ∧ eip〉 e1 ∧ . . . ∧ en

= gi1i1 . . . gipip e1 ∧ . . . ∧ en

where we used Eq.(3.66). From this equation we find that

?(ei1 ∧ . . . ∧ eip) = εi1...in g
i1i1 . . . gipip eip+1 ∧ . . . ∧ ein (3.95)

where (ip+1, . . . , in) are the numbers (1, . . . , n) with the numbers (i1, . . . , ip) removed (the
order of the remaining numbers is irrelevant since both the wedge product and the ε-tensor are
anti-symmetric) . For instance, for a 3-form defined on a 5-dimensional space we have

?(e1 ∧ e3 ∧ e5) = ε13524 g
11g33g55 e2 ∧ e4 = −g11g33g55 e2 ∧ e4 (3.96)

We can also calculate the action of the Hodge star in a general non-orthonormal basis using
Eq.(3.65). In that case we have

ei1 ∧ . . . ∧ eip ∧ ?(ei1 ∧ . . . ∧ eip) = 〈ei1 ∧ . . . ∧ eip , ei1 ∧ . . . ∧ eip〉
√
|g| e1 ∧ . . . ∧ en

= det(G)
√
|g| e1 ∧ . . . ∧ en

where G is the p × p matrix with entries Gkl = gikil for k, l = 1, . . . , p. The equivalent of
Eq.(3.95) in a non-orthonormal basis therefore becomes

?(ei1 ∧ . . . ∧ eip) = εi1...in det(G)
√
|g| eip+1 ∧ . . . ∧ ein (3.97)

The equivalent of example (3.95) in a general basis is then

?(e1 ∧ e3 ∧ e5) = ε13524

∣∣∣∣∣∣
g11 g13 g15

g31 g33 g35

g51 g53 g55

∣∣∣∣∣∣ √|g| e2 ∧ e4 (3.98)

which clearly reduces to Eq.(3.95) for an orthonormal basis. Eq.(3.97) is sometimes also written
in a different way as

?(ei1 ∧ . . . ∧ eip) =
1

(n− p)!

n∑
ip+1...in

εi1...in det(G)
√
|g| eip+1 ∧ . . . ∧ ein

which follows from the fact that both the ε-tensor and the wedge product are anti-symmetric.
We can further write out det(G) explicitly as

det(G) =

n∑
j1...jp

δ
i1...ip
j1...jp

gi1j1 . . . gipjp
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Inserting this expression then yields

?(ei1 ∧ . . . ∧ eip) =
1

(n− p)!

n∑
j1...jp,ip+1...in

εi1...inδ
i1...ip
j1...jp

gi1j1 . . . gipjp
√
|g| eip+1 ∧ . . . ∧ ein

=
1

(n− p)!

n∑
j1...jp,ip+1...in

εj1...jp,ip+1...in g
i1j1 . . . gipjp

√
|g| eip+1 ∧ . . . ∧ ein

(3.99)

where we used that εi1...inδ
i1...ip
j1...jp

= εj1...jp,ip+1...in . We will use this expression to calculate the
components of ?ω for a general p-form ω

ω =

n∑
i1...ip

ωi1...ipe
i1 ⊗ . . .⊗ eip =

n∑
i1<...<ip

ωi1...ipe
i1 ∧ . . . ∧ eip (3.100)

Since the components ωi1...ip are anti-symmetric under interchange of indices we can equivalently
write

ω =
1

p!

n∑
i1...ip

ωi1...ipe
i1 ∧ . . . ∧ eip

From Eq.(3.99) we then obtain that

?ω =
1

p!

n∑
i1...ip

ωi1...ip ? (ei1 ∧ . . . ∧ eip)

=
1

p!(n− p)!

n∑
j1...jp,i1...in

εj1...jp,ip+1...inωi1...ip g
i1j1 . . . gipjp

√
|g| eip+1 ∧ . . . ∧ ein

=
1

p!(n− p)!

n∑
j1...jp,ip+1...in

ωj1...jpεj1...jp,ip+1...in

√
|g| eip+1 ∧ . . . ∧ ein

=
1

(n− p)!

n∑
ip+1...in

(?ω)ip+1...in e
ip+1 ∧ . . . ∧ ein

=

n∑
ip+1<...<in

(?ω)ip+1...in e
ip+1 ∧ . . . ∧ ein

where we defined

(?ω)ip+1...in =
1

p!

√
|g|

n∑
j1...jp

ωj1...jpεj1...jp,ip+1...in

=
√
|g|

n∑
j1<...<jp

ωj1...jpεj1...jp,ip+1...in (3.101)

where we raised the indices on ω. This equation gives the desired explicit expression for the
components of the (n− p)-form ?ω in terms of the components of the p-form ω.

Let us now apply this to the important case of the electromagnetic field tensor about which
we will hear much more later. For the moment it is sufficient to know that it is a 2-form on a
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4-dimensional vector space with Minkowski metric. We write it as

F =

4∑
µν

Fµν e
µ ⊗ eν =

∑
µ<ν

Fµν (eµ ⊗ eν − eν ⊗ eµ) =
∑
µ<ν

Fµν e
µ ∧ eν

=
1

2

4∑
µν

Fµν e
µ ∧ eν

where

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (3.102)

We see that Fµν = −Fνµ is an anti-symmetric and covariant second order tensor. The compo-
nents Ej and Bj have the physical meaning of electric and magnetic field components. To use
Eqn.(3.101) we need to raise the indices on Fµν . We do this with the Minkowski metric

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This gives

Fµν =

4∑
τρ

gµτgνρFτρ = gµµgννFµν

since the metric tensor is diagonal. This gives

Fµν =


0 Ex Ey Ez
−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0

 (3.103)

Now we can calculate (?F )µν from Eq.(3.101). Since in our case |g| = 1 we find

(?F )µν =
∑
α<β

Fαβεαβµν =
∑
α<β

εµναβF
αβ

More explicitly this gives

(?F )12 = ε1234F
34 = Bx (?F )13 = ε1324F

24 = −(−By) = By

(?F )14 = ε1423F
23 = Bz (?F )23 = ε2314F

14 = Ez

(?F )24 = ε2413F
13 = −Ey (?F )34 = ε3412F

12 = Ex

and we therefore find that

(?F )µν =


0 Bx By Bz
−Bx 0 Ez −Ey
−By −Ez 0 Ex
−Bz Ey −Ex 0

 (3.104)

If we compare this equation to Eq.(3.102) we see that making the Hodge star operation amounts
to the operation

Ei → −Bi , Bi → Ei
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on the electric and magnetic fields. Looking at the Maxwell equations we see that the Hodge
star transforms one set of Maxwell’s equations, namely

∇ ·B = 0 , ∇×E +
1

c

∂B

∂t
= 0

into another pair

∇ ·E = 0 , ∇×B− 1

c

∂E

∂t
= 0

(in the absence of charges and currents). This will be explained more fully later.

Let us finalize our discussion by deriving some further properties of the Hodge star operator.
The first one that we will prove is

〈?α, ?β〉 = 〈α, β〉 sign(g) (3.105)

where α, β ∈ Ωp(V ) and sign(g) is the sign of the determinant of the metric (e.g. -1 for the
Minkowski metric). This can be shown by a more or less straightforward calculation. According
to the definition of the inner product we have

〈?α, ?β〉 =
1

(n− p)!

n∑
ip+1...in

(?α)ip+1...in(?β)ip+1...in

Let us first raise the indices of ?β. According to Eq.(3.101) we have

(?β)ip+1...in =

n∑
jp+1...jn

(?β)jp+1...jn g
ip+1jp+1 . . . ginjn

=
1

p!

√
|g|

n∑
j1...jn

βj1...jpεj1...jn g
ip+1jp+1 . . . ginjn

=
1

p!

√
|g|

n∑
j1...jn,i1...ip

βi1...ipεj1...jn g
i1j1 . . . ginjn (3.106)

Now we note that

εi1...in =

n∑
j1...jn

εj1...jn g
i1j1 . . . ginjn = εi1...inε

1...n

since εi1...in is anti-symmetric and we therefore need only the component ε1...n to determine all
other components. The component ε1...n is simply given by

ε1...n =

n∑
j1...jn

εj1...jn g
1j1 . . . gnjn = det(gij) = det(gij)

−1 =
1

g
(3.107)

We therefore find that

(?β)ip+1...in =
1

p!

sign(g)√
|g|

n∑
i1...ip

βi1...ipεi1...in
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With this equation and the explicit form of ?α from Eq.(3.101) we then find that

〈?α, ?β〉 =
sign(g)

p!p!(n− p)!

n∑
j1...jp,i1...in

αj1...jpεj1...jp,ip+1...inεi1...inβi1...ip

=
sign(g)

p!p!

n∑
j1...jp,i1...ip

αj1...jpδ
i1...ip
j1...jp

βi1...ip

= sign(g)
1

p!

n∑
j1...jp

αj1...jpβj1...jp = sign(g)〈α, β〉

which proves Eq.(3.105). This equation is very useful for moving around stars in equations. For
instance, we can deduce that

sign(g) ? α ∧ ? ? β = sign(g)〈?α, ?β〉Ω = 〈α, β〉Ω = 〈β, α〉Ω
= β ∧ ?α = (−1)p(n−p) ? α ∧ β

where in the last step we used the property (3.75) of the wedge product. From this equation we
therefore deduce that for a p-form β on a n-dimensional space with metric g we have

? ? β = (−1)p(n−p) sign(g)β (3.108)

For instance, for the electromagnetic field tensor of Eq.(3.102) we have

(? ? F )µν = (−1)2(4−2)(−1)Fµν = −Fµν

With Eq.(3.108) we can also write Eq.(3.93) in a different way. If we let the p-form µ in Eq.(3.93)
be equal to ?ν (so ν is an (n− p)-form) then we can write

ω ∧ ? ? ν = 〈ω, ?ν〉Ω

which, with Eq.(3.108) gives

(−1)p(n−p) sign(g)ω ∧ ν = 〈ω, ?ν〉Ω (3.109)

Let now ω be a 1-form and take
ν = ν1 ∧ . . . ∧ νn−1

where ν1, . . . , νn−1 are also 1-forms, i.e. elements of V ∗. Then Eq.(3.109) tells that

(−1)n(n−1)sign(g)ω ∧ ν1 ∧ . . . νn−1 = 〈ω, ?(ν1 ∧ . . . ∧ νn−1)〉Ω

Now the left-hand side of this equation vanishes when ω is equal to one of the νj for j =
1, . . . , n− 1 or a linear combination of them. We therefore see that

〈νj , ?(ν1 ∧ . . . ∧ νn−1)〉 = 0 j = 1, . . . , n− 1 (3.110)

The dual vector ?(ν1 ∧ . . . ∧ νn−1) is therefore orthogonal to all the vectors ν1, . . . , νn−1. This
represents the generalization of the outer product in three-dimensional spaces to vector spaces
with arbitrary dimensions and metrics. For the familiar case of a three-dimensional vector space
with Euclidean metric we have that if

a = a1e
1 + a2e

2 + a3e
3

b = b1e
1 + b2e

2 + b3e
3
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then

a ∧ b = (a1e
1 + a2e

2 + a3e
3) ∧ (b1e

1 + b2e
2 + b3e

3)

= (a1b2 − a2b1)e1 ∧ e2 + (a1b3 − a3b1)e1 ∧ e3 + (a2b3 − a3b2)e2 ∧ e3

From Eq.(3.94) we therefore find that

?(a ∧ b) = (a2b3 − a3b2)e1 − (a1b3 − a3b1)e2 + (a1b2 − a2b1)e3

=

 a1

a2

a3

×
 b1

b2
b3


i.e. we recover the familiar outer product in three dimensions.

3.5 Tensors along curves and surfaces
In the previous sections we discussed the properties of vectors and tensors. In this section we will
discuss how tensors can be applied applied to tangent vectors to curves and surfaces. The only
thing we need to do for this is to replace the general vector space V used in the previoussections
by the tangent space TpM at the point p of some manifold M . Similarly, we need to replace
the dual space V ∗ by TpM∗.
Let us illustrate everything with an example. Since we already used the sphere several times, we
will use the torus instead.

Figure 3.14: Parametrization of the torus.

As a coordinate map we use

ϕ−1(u, v) =

 (a+ b cos v) cosu
(a+ b cos v) sinu

b sin v


Here ϕ : M → R2 is a coordinate map from the torus to the two-dimensional space R2. A curve

γ(t) = (u(t), v(t))
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parametrized by t (which may be interpreted as time, for instance when we imagine the motion
of a particle along the surface) represents via the inverse coordinate map ϕ−1(u(t), v(t)) a curve
on the torus. Let f : M → R be a scalar function defined on M , such as a static temperature
field. We can calculate the rate of change of change of the temperature along γ(t) by calculating
the derivative

∂f(γ(t))

∂t
=
∂f(u(t), v(t))

∂t
=
∂u

∂t

∂f

∂u
+
∂v

∂t

∂f

∂v

We write this as
∂γ

∂t
(f) =

[
∂u

∂t

∂

∂u
+
∂v

∂t

∂

∂v

]
(f)

From our discussion in the previous Chapter we see that

∂γ

∂t
=
∂u

∂t

∂

∂u
+
∂v

∂t

∂

∂v
= (

∂u

∂t
,
∂v

∂t
)

is a vector in point γ(t). We may call it the velocity vector at point γ(t). The most general
vector field on the torus is of the form

ν = a(u, v)
∂

∂u
+ b(u, v)

∂

∂v
(3.111)

Any vector field on the torus can be completely described by such two-dimensional vectors. if
we want to map these vectors to three-component vectors ω in the surrounding space we have
to push forward the vectors Eq.(3.111) with the embedding map i : M → R3 given by

x1(u, v) = (a+ b cos v) cosu

x2(u, v) = (a+ b cos v) sinu (3.112)

x3(u, v) = b sin v

We can then let ν of Eq.(3.111) act on any function f(x1, x2, x3) defined on R3 by

ω(f) = i∗ν(f) = ν(f ◦ i)

=

(
a(u, v)

∂

∂u
+ b(u, v)

∂

∂v

)
f(x1(u, v), x2(u, v), x3(u, v))

=

3∑
j=1

(
a
∂xj

∂u
+ b

∂xj

∂v

)
∂f

∂xj
=

3∑
j=1

ωj
∂f

∂xj
(3.113)

where

i∗ν =

 ω1

ω2

ω3

 =

 ∂x1

∂u
∂x1

∂v
∂x2

∂u
∂x2

∂v
∂x3

∂u
∂x3

∂v

( a
b

)
(3.114)

In particular we have

i∗(
∂

∂u
) =

 ∂x1

∂u
∂x1

∂v
∂x2

∂u
∂x2

∂v
∂x3

∂u
∂x3

∂v

( 1
0

)
=

 ∂x1

∂u
∂x2

∂u
∂x3

∂u


Let us denote this vector by ∂x/∂u. Then for the case of the torus we have

i∗(
∂

∂u
) =

∂x

∂u
=

 −(a+ b cos v) sinu
(a+ b cos v) cosu

0

 (3.115)
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which describes the tangent vector to the torus in the u-direction. Similarly we have

i∗(
∂

∂v
) =

∂x

∂v
=

 −b sin v cosu
−b sin v sinu

b cos v

 (3.116)

So far the discussion of tangent vectors. Let us now discuss the cotangent vectors. We first
discuss the general case and come back to the example of the torus.
A covariance tensor of order 1, or simply a covector on a tangent space TpM is a linear mapping
from TpM to the real numbers. One such a mapping is suggested by the definition of the
tangent vector itself as a linear operation on functions f on an manifold. We define a mapping
df : TpM → R by

df(v) = v(f) (3.117)

for a given choice of function f . The mapping df is obviously linear. For if v, w ∈ TpM and
α, β ∈ R then we have

df(α v + β w) = (α v + β w)(f) = α v(f) + β w(f) = αdf(v) + β df(w)

Let us write out Eq.(3.117) in a coordinate system x = (x1, . . . , xn). We have

df(v) = v(f) =

n∑
j=1

vj(x)
∂f

∂xj
(3.118)

In particular, if we choose f(x) = xk, i.e. just the coordinate function, we obtain

dxk(v) =

n∑
j=1

vj(x)
∂xk

∂xj
=

n∑
j=1

vj(x)δkj = vk(x)

If we now take
v =

∂

∂xj
= (0, . . . , 0, 1, 0 . . . , 0)

where there is a 1 on the j-th position, then

dxk(
∂

∂xj
) = δkj (3.119)

So the covectors form a basis which is dual to the basis vectors ∂/∂xj of TpM . Let us now take
an arbitrary covector ω ∈ TpM∗ then

ω(v) = ω(

n∑
j=1

vj
∂

∂xj
) =

n∑
j=1

vjω(
∂

∂xj
) =

n∑
j=1

vjωj =

n∑
j=1

ωj dx
j(v) (3.120)

where we defined
ωj = ω(

∂

∂xj
)

We thus have

ω =

n∑
j=1

ωj dx
j = (ω1, . . . , ωn) (3.121)

and we find that any dual vector ω in TpM∗ can be expressed in terms of the dual basis dxj .
In particular for the covector df of Eq.(3.118) we have

df =

n∑
j=1

∂f

∂xj
dxj = (

∂f

∂x1
, . . . ,

∂f

∂xn
) (3.122)
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which is just the familiar gradient of the function f . Let us now see how the covectors trans-
form under coordinate transformations. Taking in Eq.(3.122) the function f(x) = x′k(x) for a
coordinate function of a new coordinate system we have

dx′k =

n∑
j=1

∂x′k

∂xj
dxj (3.123)

If we therefore write ω of Eq.(3.121) in two different coordinate systems

ω =

n∑
j=1

ωj dx
j =

n∑
j=1

ω′j dx
′j

then we see from Eq.(3.123) that

n∑
j=1

ω′j dx
′j =

n∑
j,k=1

ω′j
∂x′j

∂xk
dxk =

n∑
k=1

ωk dx
k

where

ωk =

n∑
j=1

∂x′j

∂xk
ω′j (3.124)

This should be compared to the transformation law for vectors.

v =

n∑
j=1

v′j
∂

∂x′j
=

n∑
j,k=1

v′j
∂xk

∂x′j
∂

∂xk
=

n∑
k=1

vk
∂

∂xk

i.e.

vk =

n∑
j=1

∂xk

∂x′j
v′j (3.125)

We see that vectors and convectors transform opposite to each other under coordinate transfor-
mations. A commonly occurring covector in physics is the force vector. If we write Newton’s
equations for the force in components

Fj = − ∂V
∂xj

(3.126)

where V (x1, . . . , xn) is a potential function. Then we see that under coordinate transformations
to new coordinates (x′1, . . . , x′n)

Fj =

n∑
k=1

− ∂V

∂x′k
∂x′k

∂xj
=
∑
k=1n

∂x′k

∂xj
F ′k (3.127)

and hence F transforms as a covector. So if we write in three dimensions

F = (F1, F2, F3) = F1dx
1 + F2dx

2 + F3dx
3

then Eq.(3.126) can be written as
F = −dV

How this fits with F = mdv/dt where we are used to call both sides vectors, we will see later.
If we act with the force covector F on the velocity vector

v = v1(t)
∂

∂x1
+ v2(t)

∂

∂x2
+ v3(t)

∂

∂x3
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we have

F (v) =

n∑
k=1

Fkdx
k(

n∑
j=1

vj
∂

∂xj
) =

n∑
j,k=1

Fkv
jdxk(

∂

∂xj
) =

n∑
j,k=1

Fkv
jδkj =

n∑
j=1

Fjv
j = F · v

This is a coordinate invariant scalar (under spatial transformations) representing the work done
by the force F on a particle moving at velocity v.

Now that we have defined the tangent space V = TpM with basis ej = ∂/∂xj and the dual
tangent space V ∗ = TpM

∗ with basis dxj we can directly copy all results of the previous Chapter
and define tensors. A k-th order covariant tensor is a multilinear mapping

T : TpM × . . .× TpM → R

In the basis {dxk} of TpM∗ it has the form

T =

n∑
j1...jk

Tj1...jk(x) dxj1 ⊗ . . .⊗ dxjk (3.128)

From Eq.(3.123) we can the readily derive the transformation law for the components of T . We
have

T =

n∑
j1...jp

T ′j1...jp dx
′j1 ⊗ . . .⊗ dx′jp

=

n∑
j1...jp,k1...kp

T ′j1...jp
∂x′j1

∂xk1
. . .

∂x′jp

∂xkp
dxk1 ⊗ . . .⊗ dxkp

=

n∑
k1...kp

Tk1...kp dx
k1 ⊗ . . .⊗ dxkp (3.129)

and hence

Tk1...kp =

n∑
j1...jp

T ′j1...jp
∂x′j1

∂xk1
. . .

∂x′jp

∂xkp
(3.130)

which is generalization of Eq.(3.124). Similarly we can also consider contravariant tensors.
Remember that the action of a basis vector ei on a dual vector ej is given by ei(ej) = ej(ei) = δji .
In our case this means that

∂

∂xi
(dxj) = dxj(

∂

∂xi
) = δji

The general form of a contravariant tensor is therefore

T =

n∑
j1...jp

T j1...jp
∂

∂xj1
⊗ . . .⊗ ∂

∂xjp

For the transformation law we have

T =

n∑
j1...jp

T ′j1...jp
∂

∂x′j1
⊗ . . .⊗ ∂

∂x′jp

=

n∑
j1...jp,k1...kp

T ′j1...jp
∂xk1

∂x′j1
. . .

∂xkp

∂x′jp
∂

∂xk1
⊗ . . .⊗ ∂

∂xkp

=

n∑
k1...kp

T k1...kn
∂

∂xk1
⊗ . . .⊗ ∂

∂xkp
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and hence

T k1...kn =

n∑
j1...jp

T ′j1...jp
∂xk1

∂x′j1
. . .

∂xkp

∂x′jp
(3.131)

which is a generalization of the transformation law of vectors Eq.(3.125).
Finally we can consider mixed tensors. A mixed tensor which is covariant of order p and contra
variant of order q has the form

T =

n∑
j1...jp,i1...iq

T
i1...iq

j1...jp
dxj1 ⊗ . . .⊗ dxjp ⊗ ∂

∂xi1
⊗ . . .⊗ ∂

∂xiq

The transformation law for this tensor is, as you can check for yourself, given by

T
i1...iq

j1...jp
=

∑
k1...kp,l1...lq

T
l1...lq

k1...kp

∂x′k1

∂xj1
. . .

∂x′kp

∂xjp
∂xi1

∂x′l1
. . .

∂xiq

∂x′lq

A feature that we will often use is how tensors change under mappings between manifolds. Let
us first consider the case of convectors. We saw that if we have a map φ : M → N from a
manifold M to a manifold M then there is a map φ∗ : TpM → TpN called the push-forward,
that maps a tangent vector at M to a tangent vector at N . This can used to define a dual map
φ∗ : TpN

∗ → TpM
∗ that maps a covector on N to a covector on M . If ω is a covector on N ,

then we define a new covector φ∗ω of M by

(φ∗ω)(v) = ω(φ∗v) (3.132)

where v is a vector on M . Since φ∗ω is a covector on M we say that ω is pulled back by φ from
N to M . Remember from Chapter 2 (see Eq.(2.63)) that functions defined on manifolds have
the same property. If f is a function on N then φ∗f = f ◦ φ is a function on M . So functions
are also pulled back. In fact, we can derive the following useful formula

φ∗df = d(φ∗f) (3.133)

This formula follows directly from all our definitions of pullbacks and push forwards. We have

(φ∗df)(v) = df(φ∗v) = (φ∗v)(f) = v(φ∗f) = v(f ◦ φ) = d(f ◦ φ)(v) = d(φ∗f)(v)

You can check each step by reviewing all our definitions Eqs.(2.63), (3.19), (3.117) and (3.132).
As an example we take as φ the embedding map of the torus i : M → R3 of Eq.(3.112). Take
an arbitrary covector

ω = ω1dx
1 + ω2dx

2 + ω3dx
3

on R3. Then

i∗ω = ω1d(i∗x1) + ω2d(i∗x2) + ω3d(i∗x3)

= ω1d(x1 ◦ i) + ω2d(x2 ◦ i) + ω3d(x3 ◦ i) (3.134)

We have

d(x1 ◦ i) = d((a+ b cos v) cosu) = − sinu(a+ b cos v)du− b sin v cosudv

d(x2 ◦ i) = d((a+ b cos v) sinu) = cosu(a+ b cos v)du− b sin v sinudv

d(x2 ◦ i) = d(b sin v) = b cos vdv
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In matrix notation

i∗ω =

(
− sinu(a+ b cos v) cosu(a+ b cos v) 0
−b sin v cosu b sin v sinu b cos v

) ω1

ω2

ω3


This is nothing but the transpose of the matrix in Eq.(3.114) of the push forward mapping i∗.
Let us finally extend the pullback and push forward transformations to general tensors. For
a general covariant tensor of order q we can define a pullback similarly as in Eq.(3.132). If
φ : M → N and T is a covariant tensor on N then φ∗T is a covariant tensor on M given by

(φ∗T )(p)(v1, . . . , vq) = T (φ(p))(φ∗v1, . . . , φ∗vq) (3.135)

where vj are vectors on M and φ maps point p on M to a point φ(p) of N . Similarly if T is a
contravariant tensor of order q on M then φ∗T is a contravariant tensor on N given by

(φ∗T )(φ(p))(ω1, . . . , ωq) = T (p)(φ∗ω1, . . . , φ
∗ωq) (3.136)

where ωj are covectors on N . This defines the push forward of contravariant tensors. We will
mostly use the pullback operation of Eq.(3.135). For example, if

g =

n∑
i,j

gij(x)dxi ⊗ dxj

is a metric tensor in coordinate system x = (x1, . . . , xn) on N then for vectors v1, v2 ∈ TpM
we have

(φ∗g)(p)(v1, v2) =

n∑
i,j

gij(φ(p))dxi ⊗ dxj(φ∗v1, φ∗v2) =

n∑
i,j

gij(φ(p))dxi(φ∗v1)dxj(φ∗v2)

=

n∑
i,j

gij(φ(p))d(φ∗xi)(v1)d(φ∗xj)(v2)

=

n∑
i,j

gij(φ(p))d(φ∗xi)⊗ d(φ∗xj)(v1, v2) (3.137)

We can, for instance, apply this to the embedding of the torus in R3. We take the Euclidean
metric on R3 given by

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 (3.138)

Then under the embedding mapping i of Eq.(3.112) we have

i∗g = d(x1 ◦ i)⊗ d(x1 ◦ i) + d(x2 ◦ i)⊗ d(x2 ◦ i) + d(x3 ◦ i)⊗ d(x3 ◦ i)

=

3∑
j=1

(
∂xj

∂u
du+

∂xj

∂v
dv

)
⊗
(
∂xj

∂u
du+

∂xj

∂v
dv

)
= guu du⊗ du+ guv (du⊗ dv + dv ⊗ du) + gvv dv ⊗ dv (3.139)
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where we defined

guu =

3∑
j=1

∂xj

∂u

∂xj

∂u
= 〈∂x

∂u
,
∂x

∂u
〉

guv =

3∑
j=1

∂xj

∂u

∂xj

∂v
= 〈∂x

∂u
,
∂x

∂v
〉 (3.140)

gvv =

3∑
j=1

∂xj

∂v

∂xj

∂v
= 〈∂x

∂v
,
∂x

∂v
〉

and defined the standard inner product

〈a, b〉 = a1b1 + a2b2 + a3b3

on R3. From Eqs.(3.115) and (3.116) we see that

guu = 〈∂x
∂u
,
∂x

∂u
〉 = (a+ b cos v)2

guv = 〈∂x
∂u
,
∂x

∂v
〉 = 0 (3.141)

gvv = 〈∂x
∂v
,
∂x

∂v
〉 = b2

We therefore see that the usual Euclidean inner product restricted to the torus attains the form

i∗g = (a+ b cos v)2du⊗ du+ b2dv ⊗ dv (3.142)

A similar procedure can be carried out for calculating the components of the metric tensor after
a coordinate transformation. After all, a coordinate transformation is just a special case of a
mapping φ : M → N where M = N . We have

g′kl =

n∑
ij

gij
∂xi

∂x′k
∂xj

∂x′l
= 〈 ∂x

∂x′k
,
∂x

∂x′l
〉

where we defined

〈a, b〉 =

n∑
i,j

gija
ibj

If we take (x1, x2, x3) to be the Cartesian coordinates on R3 with the usual Euclidean metric
gij = δij and take (x′1, x′2, x′3) = (r, φ, θ) to be the spherical coordinates

x1 = r cosφ sin θ

x2 = r sinφ sin θ

x3 = r cos θ

then we have

∂x

∂φ
=

 −r sinφ sin θ
r cosφ sin θ

0

 ,
∂x

∂θ
=

 r cosφ cos θ
r sinφ cos θ
−r sin θ

 ,
∂x

∂r
=

 cosφ sin θ
sinφ sin θ

cos θ


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Then

gφφ = 〈∂x
∂φ

,
∂x

∂φ
〉 = r2 sin2 θ

gθθ = 〈∂x
∂θ
,
∂x

∂θ
〉 = r2

grr = 〈∂x
∂r
,
∂x

∂r
〉 = 1

(3.143)

and grφ = grθ = gφθ = 0. We therefore find that the metric tensor in spherical coordinates
attains the form

g = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdφ⊗ dφ (3.144)

In a similar manner you can check that the metric of the unit sphere (r = 1) inherits the metric

i∗g = dθ ⊗ dθ + sin2 θdφ⊗ dφ

by embedding in R3 with the usual Euclidean inner product.
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Chapter 4

Motion of particles

We use the Lagrangian principle to write Newton’s law of motion in general coordinates and
deduce its transformation law to different coordinates. We show that particles which move
freely restricted to a two-dimensional surface move at constant speed along geodesic curves. We
further give a condition that tells us whether a given metric can be reduced to Euclidean form,
which leads us to the introduction of the Riemann tensor.

4.1 Lagrangian equations
The goal of this section is to write Newton’s law

m
d2xi

dt2
= − ∂V

∂xi
(4.1)

in such a way that it is valid in any spatial coordinate system. The key step in doing this is by
using the Lagrangian formulation of classical mechanics. We define the Lagrangian to be

L(x, ẋ) = T − V =

3∑
i=1

1

2
m(ẋi)2 − V (x1, x2, x3) (4.2)

which is just the difference between the kinetic energy T and the potential energy T . We will
further use the notation ẋi = dxi/dt and ẍi = d2xi/dt2 to compactify our notation. We then
define the action functional to be

S[x] =

∫ t1

t0

dtL(x, ẋ) (4.3)

where the square brackets denote a functional dependence on the path. Eq.(4.1) then follows
as the stationary point of the action, i.e. as the equation for the trajectory x that is a local
minimum, maximum, or saddle point of S subject to the constraint that the endpoints x(t0)
and x(t1) of the path x(t) are fixed.

Figure 4.1: Different paths subject to the condition δx(t0) = δx(t1) = 0.
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This means the following. If x(t) is a stationary path for S[x] then any other path x(t) + εδx(t)
with δx(t0) = δx(t1) = 0 will to first order in ε not change the value of S[x]. This implies that

∂

∂ε
S[x+ εδx] = 0

or equivalently

0 = lim
ε→0

S[x+ εδx]− S[x]

ε
(4.4)

Let us apply this condition to Eq.(4.2). We have

S[x+ εδx]− S[x] =

∫ t1

t0

dt(L(x+ εδx, ẋ+ εδẋ)− L(x, ẋ))

= ε

3∑
j=1

∫ t1

t0

dt

(
∂L

∂xi
δxi(t) +

∂L

∂ẋi
δẋi(t)

)
+O(ε2)

= ε

3∑
j=1

∫ t1

t0

dtδxi(t)

[
∂L

∂xi
− ∂

∂t

∂L

∂ẋi

]
+O(ε2)

where we used the boundary condition δx(t0) = δx(t1) = 0 when we performed the partial
integration. Then we see that we must have the condition

0 =

∫ t1

t0

dtδxi(t)

[
∂L

∂xi
− ∂

∂t

∂L

∂ẋi

]
(4.5)

in order to satisfy Eq.(4.5). Since Eq.(4.5) must be true for any variation δxi(t) the stationary
path must satisfy

0 =
∂L

∂xi
− ∂

∂t

∂L

∂ẋi
(4.6)

If we take the Lagrangian L to be equal to Eq.(4.2) then we find

∂L

∂xi
= − ∂V

∂xi
,

∂L

∂ẋi
= mẋi

and we find that Eq.(4.6) yields the equation of motion of Eq.(4.1). The main reason that we
went through all this trouble in deriving Newton’s law once again is that the Lagrangian principle
can be applied in any coordinate system. If we go from coordinates xi to new coordinates yi

then from differentiation of xi(y1, . . . , yn) we have

ẋi =

n∑
k=1

∂xi

∂yk
ẏk

and consequently
n∑
i=1

(ẋi)2 =

n∑
i,k,l=1

∂xi

∂yk
∂xi

∂yl
ẏkẏl =

n∑
k,l=1

gklẏ
kẏl

where we defined

gkl =

n∑
i,j=1

δij
∂xi

∂yk
∂xj

∂yl
(4.7)
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which represents a transformation of the Euclidean metric to general coordinates. As a conse-
quence Eq.(4.2) attains the form

L(y, ẏ) =

3∑
k,l

1

2
mgkl ẏ

kẏl − V (y1, y2, y3) (4.8)

where, with some abuse of notation, we wrote V (y1, y2, y3) = V (x1(y), x2(y), x3(y)). The
action van now be written as

S[y] =

∫ t1

t0

dtL(y, ẏ) (4.9)

Obviously, since Eq.(4.9) is identical to Eq.(4.3) the stationary path will be identical. It will just
be expressed in different coordinates. For instance, in spherical coordinates we have

L =
1

2
m (ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2)− V (r, φ, θ) (4.10)

This Lagrangian is very useful for problems of spherical symmetry, such as planetary motion
around the Sun. Let us see how the equations of motion in general coordinates look like. We
write

S[x] =

∫ t1

t0

dt

 n∑
i,j

1

2
mgij ẋ

iẋj − V (x)

 (4.11)

where xi now represent general coordinates. We have

∂L

∂xk
= − ∂V

∂xk
+

1

2
m

3∑
i,j=1

∂gij
∂xk

ẋiẋj

∂L

∂ẋk
=

1

2
m

n∑
i,j=1

gij(δikẋ
j + ẋiδjk) = m

n∑
j=1

gkj ẋ
j

Eq.(4.6) then gives

0 =
∂

∂t

∂L

∂ẋi
− ∂L

∂xi
= m

∂

∂t

 n∑
j=1

gkj ẋ
j

+
∂V

∂xk
− 1

2
m

3∑
i,j=1

∂gij
∂xk

ẋiẋj

This can be rewritten as

m

n∑
i,j=1

∂gkj
∂xi

ẋiẋj +m

n∑
j=1

gkj ẍ
j − 1

2
m

3∑
i,j=1

∂gij
∂xk

ẋiẋj = − ∂V
∂xk

and with the notation

[ij, k] =
1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
(4.12)

as

m

n∑
j=1

gkj ẍ
j +m

n∑
i,j=1

[ij, k] ẋiẋj = − ∂V
∂xk

(4.13)

the symbols [ij, k] are called Christoffel symbols of the first kind. Eq.(4.13) can be further
rewritten by multiplication with glk and carrying out a summation over k. this yields

m

ẍl +

n∑
i,j=1

Γlij ẋ
iẋj

 = −
n∑
k=1

glk
∂V

∂xk
(4.14)
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where we defined

Γlij =

n∑
k=1

glk[ij, k] (4.15)

where Γlij are called Christoffel symbols of the second kind. The right hand side of Eq.(4.13)
transforms like a covector (see Eq.(3.127)) and hence so must the left hand side. In Eq.(4.14)
we transformed the right hand side to vector by raising an index, and therefore the left hand
side must also transform like a vector. This fact leads to a specific transformation law for the
Christoffel symbols Γkij . If we change coordinates to yα with α = 1, . . . , n we have

ẋi =

n∑
α

∂xi

∂yα
ẏα

ẍi =

n∑
α

∂xi

∂yα
ÿα +

n∑
α,β

∂2xi

∂yα∂yβ
ẏαẏβ

Inserting these expressions into Eq.(4.14) then yields

m

n∑
α

∂xl

∂yα
ÿα +m

n∑
α,β,i,j

ẏαẏβ
(

Γlij
∂xi

∂yα
∂xj

∂yβ
+

∂2xl

∂yα∂yβ

)

= −
∑

k,α,β,γ

g′αβ
∂xl

∂yα
∂xk

∂yβ
∂yγ

∂xk
∂V

∂yγ

= −
∑
α,β,γ

g′αβ
∂xl

∂yα
δγβ
∂V

∂yγ
= −

∑
α,β

∂xl

∂yα
g′αβ

∂V

∂yβ
(4.16)

where we used
n∑
k

∂xk

∂yβ
∂yγ

∂xk
=
∂yγ

∂yβ
= δγβ

and where g′αβ is the inverse metric tensor in coordinates system y. Multiplying Eq.(4.16) by
∂yγ/∂xl and summing over l then yields

mÿγ +

n∑
α,β,l,i,j

ẏαẏβ
(

Γlij
∂xi

∂yα
∂xj

∂yβ
∂yγ

∂xl
+

∂2xl

∂yα∂yβ
∂yγ

∂xl

)
= −

n∑
β

g′γβ
∂V

∂yβ
(4.17)

This equation can be rewritten as

m

ÿγ +

n∑
α,β,

Γ
′γ
αβ ẏ

αẏβ

 = −
n∑
β

g′γβ
∂V

∂yβ
(4.18)

provided that

Γ
′γ
αβ =

n∑
i,j,l

(
Γlij

∂xi

∂yα
∂xj

∂yβ
∂yγ

∂xl
+

∂2xl

∂yα∂yβ
∂yγ

∂xl

)
(4.19)

Since we know that Eq.(4.14) is valid in any coordinate system the Christoffel symbols must in
fact transform according to Eq.(4.19). It is not difficult to check this explicitly. We start by
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calculating

∂g′αβ
∂yγ

=
∂

∂yγ

 n∑
i,j

gij
∂xi

∂yα
∂xj

∂yβ

 =

n∑
i,j,k

∂gij
∂xk

∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ

+

n∑
i,j

gij

(
∂xi

∂yα
∂2xj

∂yβ∂yγ
+
∂xj

∂yβ
∂2xi

∂yα∂yγ

)
If we use this equation then from Eq.(4.12) it follows that

[αβ, γ]′ =
1

2

(
∂g′αγ
∂yβ

+
∂g′βγ
∂yα

−
∂g′αβ
∂yγ

)
=

1

2

n∑
i,j,k

∂gij
∂xk

(
∂xi

∂yα
∂xj

∂yγ
∂xk

∂yβ
+
∂xi

∂yβ
∂xj

∂yγ
∂xk

∂yα
− ∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ

)

+
1

2

n∑
i,j

gij

(
∂xi

∂yα
∂2xj

∂yγ∂yβ
+
∂xj

∂yγ
∂2xi

∂yα∂yβ
+
∂xi

∂yβ
∂2xj

∂yγ∂yα
+
∂xj

∂yγ
∂2xi

∂yβ∂yα

− ∂x
i

∂yα
∂2xj

∂yβ∂yγ
− ∂xj

∂yβ
∂2xi

∂yα∂yγ

)
After some relabeling of indices this is then rewritten as

[αβ, γ]′ =
1

2

n∑
i,j,k

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ
+

n∑
i,j

gij
∂xi

∂yγ
∂2xj

∂yα∂yβ

=
1

2

n∑
i,j,k

[ij, k]
∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ
+

n∑
i,j

gij
∂xi

∂yγ
∂2xj

∂yα∂yβ
(4.20)

Using Eq.(4.20) we then have

Γ
′γ
αβ =

n∑
δ

g
′γδ[αβ, δ]′ =

n∑
p,q,δ

gpq
∂yγ

∂xp
∂yδ

∂xq
[αβ, δ]′

=

n∑
i,j,k,p,q,δ

gpq[ij, k]
∂yγ

∂xp
∂yδ

∂xq
∂xk

∂yδ︸ ︷︷ ︸
δkq

∂xi

∂yα
∂xj

∂yβ
+

n∑
i,j,p,q,δ

gpqgij
∂yγ

∂xp
∂yδ

∂xq
∂xi

∂yδ︸ ︷︷ ︸
δiq

∂2xj

∂yα∂yβ

=

n∑
i,j,p,q

gpq[ij, q]
∂xi

∂yα
∂xj

∂yβ
∂yγ

∂xp
+
∑
p,q,j

gpqgqj︸ ︷︷ ︸
δpj

∂yγ

∂xp
∂2xj

∂yα∂yβ

=

n∑
i,j,p

Γpij
∂xi

∂yα
∂xj

∂yβ
∂yγ

∂xp
+

n∑
j

∂2xj

∂yα∂yβ
∂yγ

∂xj
(4.21)

which is exactly the transformation law of Eq.(4.19).
The form of the Langrangian (4.8) is unavoidable for the description of particle motion con-
strained to surfaces since in that case no metric of Euclidean form is available. For a general
surface parametrized by (x1(u, v), x2(u, v), x3(u, v)) we have

T =
1

2
m

3∑
i=1

(ẋi)2 =
1

2
m

3∑
i=1

(
∂xi

∂u
u̇+

∂xi

∂v
v̇)2 =

1

2
m(guuu̇

2 + 2guvu̇v̇ + gvv v̇
2) (4.22)
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where guu, gvv and guv are given by the expressions (3.140). In particular, for particles on a
torus we have from Eq.(3.141) that

L =
1

2
m((a+ b cos v)2u̇2 + b2v̇2)− V (u, v) (4.23)

For the equations of motion we have

0 =
∂L

∂u
− ∂

∂t

∂L

∂u̇
= −∂V

∂u
− ∂

∂t
(m(a+ b cos v)2u̇)

0 =
∂L

∂v
− ∂

∂t

∂L

∂v̇
= −∂V

∂v
−mu̇2(a+ b cos v)b sin v −mb2v̈

which can be rewritten as

m(a+ b cos v)2 ü− 2mb sin v(a+ b cos v) u̇ v̇ = −∂V
∂u

mb2 v̈ +mb sin v(a+ b cos v) u̇2 = −∂V
∂v

These equations are equivalent to Eq.(4.13). Multiplying with the inverse metric (which is easy
since the metric is diagonal) we have

m

[
ü− 2b sin v

a+ b cos v
u̇ v̇

]
= − 1

(a+ b cos v)2

∂V

∂u
(4.24)

m

[
v̈ +

1

b
sin v (a+ b cos v) u̇2

]
= − 1

b2
∂V

∂v
(4.25)

These equations are equivalent to Eq.(4.14). From these equations we can directly read off the
Christoffel symbols Γkij . We have

Γuuv = Γuvu = − b sin v

a+ b cos v

Γvuu =
1

b
sin v (a+ b cos v)

and all other Christoffel symbols are zero. We can check this using Eqs.(4.12) and (4.15). We
have

[uv, u] =
1

2

(
∂guu
∂v

+
∂gvu
∂u
− ∂guv

∂u

)
=

1

2

∂

∂v
(a+ b cos v)2 = −b sin v (a+ b cos v) (4.26)

[uu, v] =
1

2

(
∂guv
∂u

+
∂guv
∂u
− ∂guu

∂v

)
= −1

2

∂

∂v
(a+ b cos v)2 = b sin v (a+ b cos v) (4.27)

and therefore

Γuuv = guu[uv, u] = −b sin v(a+ b cos v)

(a+ b cos v)2
= − b sin v

(a+ b cos v)

Γvuu = gvv[uu, v] =
1

b
sin v(a+ b cos v)

which gives the same result as before.
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4.2 Energy conservation and geodesic motion
Let us further check another well known feature of Newton’s equations, namely the conservation
of energy (provided that the potential V does not explicitly depend on time). Let us take the
time-derivative of the kinetic energy

∂T

∂t
=

∂

∂t

1

2
m

n∑
i,j

gij ẋ
iẋj

 =
1

2
m

n∑
i,j,k

∂gij
∂xk

ẋiẋj ẋk +
1

2
m

n∑
i,j

gij(ẍ
iẋj + ẋiẍj) (4.28)

From Eq.(4.12) we see that
∂gij
∂xk

= [ik, j] + [jk, i]

If we insert this expression into Eq.(4.28) we obtain

∂T

∂t
=

1

2
m

n∑
j

ẋj

 n∑
i

gij ẍ
i +

n∑
i,k

[ik, j]ẋiẋk

+
1

2
m

n∑
i

ẋi

 n∑
j

gij ẍ
j +

n∑
j,k

[jk, i]ẋj ẋk


= −1

2

n∑
j

ẋj
∂V

∂xj
− 1

2

n∑
i

ẋi
∂V

∂xi
= −∂V

∂t
(4.29)

where we used the equations of motion (4.13). We therefore find that

∂

∂t
(T + V ) = 0 (4.30)

and therefore the total energy E = T + V is conserved.
A special case arises when we take V = 0 and therefore consider free particle motion restricted
to the surface. Eq.(4.22) and (4.30) then tell us that

E =
1

2
m|v|2 =

1

2
m

3∑
j=1

(ẋj)2 =

2∑
i,j=1

gij ẏ
iẏj (4.31)

is a constant where xj(y1, y2) are the coordinates on R3 and (y1, y2) are the surface coordinates
(see Eq.(4.22)). As one expects the speed |v| of a freely moving particle is constant. Its path is,
however, not a straight line in three-dimensional space but a curve on the surface of the specific
manifold that we are considering. What is the shape of this curve? We will show that this curve
is a geodesic, which is the shortest path connecting two points on the surface. Therefore, freely
moving particles move along geodesics. To see this we first have to calculate the length of a
curve.

Figure 4.2: Segmentation of a path.
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Suppose a particle moves along a curve γ(t) in a three-dimensional Cartesian coordinate system.
To measure the length of the curve between two points γ(ta) and γ(tb) we consider the position
of the particle at different times tj = ta + j∆t, where ∆t = (tb − ta)/n and approximate the
path with linear segments as displayed in Fig. 4.2. The length of the segmented path is then
given by

lab =

n−1∑
j=0

|x(tj + ∆t)− x(tj)|

where
|x| =

√
(x1)2 + (x2)2 + (x3)2

In the limit n→∞ this sum becomes an integral

lab = lim
n→∞

n−1∑
j=0

|x(tj + ∆t)− x(tj)|
∆t

∆t =

∫ tb

ta

dt |dx
dt
| =

∫ tb

ta

dt
√

(ẋ1)2 + (ẋ2)2 + (ẋ3)2

In case the motion is restricted to a surface we can use Eq. (4.22) to write

lab =

∫ tb

ta

dt

 2∑
i,j=1

gij ẏ
iẏj

1/2

(4.32)

where (y1, y2) are surface coordinates (our derivation was is, of course, also valid for higher
dimensional surfaces in Rn as you can readily check yourself). The quantity

s(t) =

∫ t

ta

dt̄

 2∑
i,j=1

gij ẏ
iẏj

1/2

=

∫ t

ta

dt̄ |dx
dt̄
| (4.33)

is called the arc length and represents the distance travelled between times ta and t (in this
equation we denoted ẏi = dyi/dt̄). Since there is a 1 − 1-correspondence between the time t
and the distance s(t) travelled, we can also use s to parametrize the path γ rather than t. In
that case we have

sb = s(tb) =

∫ tb

ta

dt |dx
dt
| =

∫ tb

ta

dt |dx
ds
|ds
dt

=

∫ sb

sa

ds |dx
ds
|

Differentiating both sides of this equation with respect to sb gives

1 = |dx
ds
| (4.34)

So for a curve parametrized by arc length the length of the tangent vector is always equal to
one. The relation between t and s is particularly simple for a freely moving particle since in that
case |v| = |dx/dt| is constant (see Eq.(4.31)) and then Eq.(4.33) gives

s(t) =

∫ t

ta

dt̄|v| = |v|(t− ta)

which, of course, was to be expected for a particle with constant speed. Let us now derive the
equation for the curve with the shortest length between two points. We then need to find the
stationary point of the functional

l[y] =

∫ tb

ta

dt
√
L(y, ẏ) (4.35)
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where

L(y, ẏ) =

n∑
i,j

gij ẏ
i ẏj (4.36)

This is just a special form of a Lagrangian L =
√
L where we again fix the beginning and

endpoints of the path. Therefore the variational equations are as in Eq.(4.6) and we find

0 =
∂
√
L

∂yi
− ∂

∂t

∂
√
L

∂ẏi
=

1

2
√
L
∂L
∂yi
− ∂

∂t

(
1

2
√
L
∂L
∂ẏi

)
=

1

2
√
L

(
∂L
∂yi
− ∂

∂t

∂L
∂ẏi

)
+

1

4L3/2

∂L
∂t

∂L
∂ẏi

which can be rewritten as
0 =

∂L
∂yi
− ∂

∂t

∂L
∂ẏi

+
1

2L
∂L
∂t

∂L
∂ẏi

(4.37)

For a freely moving particle L represents the kinetic energy up to a multiplicative factor and
hence

0 =
∂L
∂yi
− ∂

∂t

∂L
∂ẏi

, 0 =
∂L
∂t

(4.38)

as a consequence of the equations of motion and the conservation of the energy Eq.(4.31). So
the stationary paths of the action of a free particle are also the paths that make the length
functional (4.35) stationary and therefore represent geodesic paths. The opposite is also true.
We first observe that

1

2L
∂L
∂t

=
1√
L
∂
√
L

∂t
=

1

|dxdt |
∂

∂t
|dx
dt
| = 1

ds
dt

∂

∂t

(
ds

dt

)
(4.39)

where in the last step we used Eq.(4.33). Let yi(t) be a solution to Eq.(4.37). Then we can
reparametrize to yi(s) where s is the arc length. The curve will still be a stationary point but
now the last term in Eq.(4.39) vanishes since for t = s we have ds/dt = 1. Consequently the
last term in Eq.(4.37) vanishes. But this means that the Eqs.(4.38) are satisfied and that yi(s)
is a stationary point of the action for a free particle. This means that any geodesic is the path
of a freely moving particle. The general conclusion of all this analysis is therefore that freely
moving particles move along geodesics with constant speed.
Let us discuss this more specifically for the case of a particle on the torus. If we put V = 0 it
follows from Eqs.(4.24) and (4.25) that

ü =
2b sin v

a+ b cos v
u̇ v̇ (4.40)

v̈ = −1

b
sin v (a+ b cos v) u̇2 (4.41)

Furthermore from Eq.(4.23) and energy conservation it follows that

E =
1

2
m((a+ b cos v)2u̇2 + b2v̇2) (4.42)

These equations can be simplified to obtain first order differential equations. From Eq.(4.40) we
see that we can integrate to

u̇ =
K

(a+ b cos v)2
(4.43)

where K is a constant. You can check that the time-derivative of this expression gives back
Eq.(4.40). From this equation we can see that that the coordinate velocity u̇ in the u-direction
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is smaller when the particle is on the outside of the torus (v = 0) than when it is on the inside
(v = π). The constant K is related to the angular momentum around the x3-axis. This is
not unexpected since due to the rotational symmetry of the torus around the x3-axis we can
expect that the x3-component of the angular momentum will be conserved. Let us check this,
the angular momentum is given by the outer product

L = mx× dx

dt

The x3-component ` of this quantity is therefore given by

` = m(x1ẋ2 − x2ẋ1) = m(a+ b cos v) cosu [u̇ (a+ b cos v) cosu− v̇ b sin v sinu]

−m(a+ b cos v) sinu [−u̇ (a+ b cos v) sinu− v̇ b sin v cosu]

= mu̇(a+ b cos v)2 (4.44)

If we compare this to Eq.(4.43) we see that K = `/m. The equations of motion therefore indeed
tell us that ` is a conserved quantity. Inserting Eq.(4.43) into the energy formula (4.42) gives

E =
1

2
mb2v̇2 +

`2

2m(a+ b cos v)2
(4.45)

From this equation we see immediately a few useful things. First of all, if the angular momentum
is zero ` = 0, then v̇ = (

√
2E/m)/b is constant and Eq.(4.43) tells us that u̇ = 0. We therefore

immediately find a solution

(u(t), v(t)) = (u0,
1

b

√
2E

m
t+ v0) (4.46)

where u0 and v0 are constants. This geodesic is simply a circle in the plane u = u0 where
the particle moves with uniform velocity around the circle. Further insight in the geodesics is
obtained by setting x = bv and rewriting Eq.(4.45) as

E =
1

2
mẋ2 +

`2

2m(a+ b cos(x/b))2
(4.47)

This is simply the total energy of a single particle moving in an effective potential

V (x) =
`2

2m(a+ b cos(x/b))2

The corresponding equation of motion

mẍ = −∂V
∂x

=
`2 sin(x/b)

m(a+ b cos(x/b))3
(4.48)

is, of course, nothing but Eq.(4.41) after insertion of Eq.(4.43). The shape of the effective
potential V (x) is drawn in Fig.4.3
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Figure 4.3: Effective potential for the motion in the v-direction on the torus.

This potential is periodic with maxima and minima. One simple solution to the Eq.(4.48) is
when the particle is at rest at the minimum or maximum of the potential at x = 0 and x = bπ,
or equivalently v = 0 and v = π. With help of Eq.(4.43) we find two other geodesics given by

(u1(t), v1(t)) = (
` t

2m(a+ b)2
+ u0, 0)

(u2(t), v2(t)) = (
` t

2m(a− b)2
+ u0, π)

which describe the uniform motion of the particle along the larger outer or smaller inner circle
of the torus in the plane x3 = 0. The other geodesics are not so easy to obtain in closed form
but we can easily deduce their properties from Fig.4.3. Let us denote the values of the maxima
of the potential by

E0 =
`2

2m(a− b)2

If the energy of the effective particle is smaller than E0 it will oscillate back and forth in the
potential. This means that v(t) oscillates between values −v0 and v0 with v0 < π. The particle
moves on the torus without ever making a full twist around the tube that forms the torus. If
the energy of the particle is larger than E0 the particle is unbound and v(t) describes a motion
in which the particle twists around the tube infinitely many times. An interesting problem is
whether some of these orbits are closed orbits. This will be a nice puzzle for you to answer.

4.3 When is the world flat?
We the knowledge gained in the previous section we can now answer the following question.
Suppose we are given a metric gij(y) in coordinates yj . Then how do we know whether there
exists a coordinate transformation to new coordinates xk(y) such that in these new coordinates

g =

n∑
k

dxk ⊗ dxk (4.49)

in other words when can we transform to a Euclidean metric? First of all, we note that a metric
of the form (4.49) does not imply that the manifold we consider is equal to Rn. It applies, for
instance, also to the cylinder of radius R which we can parametrize as embedded in R3 as

x1 = R cos(φ/R)

x2 = R sin(φ/R)

x3 = z
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with z ∈ R and φ ∈ [0, 2πR] and which inherits from R3 induced metric

g = dφ⊗ dφ+ dz ⊗ dz (4.50)

which is exactly of the form of an Euclidean metric. After some thought this does not surprise
us so much since we know that we can easily roll a piece of paper around a cylinder without
wrinkling or tearing. This is, for instance, not true when we try to wrap a piece of paper around
a sphere or a torus. In some sense these objects are more curved and we suspect that it is not
possible to define an Euclidean metric on these surfaces. How can we quantify this? Let us
suppose that our given metric gij(y) can be obtained from an Euclidean metric as we also did
in Eq.(4.7). Then, since in the Euclidean coordinate system the Christoffel symbols vanish, we
see from Eq.(4.19) that the Christoffel symbols in the y-coordinate system are given by

Γγαβ(y) =

n∑
l

∂2xl

∂yα∂yβ
∂yγ

∂xl

or equivalently
∂2xl

∂yα∂yβ
=

n∑
γ

Γγαβ(y)
∂xl

∂yγ

Which can be written as
∂

∂yβ

(
∂xl

∂yα

)
=

n∑
γ

Γγαβ(y)
∂xl

∂yγ
(4.51)

We can view this as a set of differential equations for ∂xl/∂yα since the Christoffel symbols are
known from our given metric gij(y). The solutions to these equations determine the desired
functions xl(y) which transform the metric to an Euclidean one. The central question is therefore
to determine when the equations (4.51) have a solution. Note further that the index l does not
play any special role since all functions xl satisfy exactly the same equation. Let us denote the
vector a and the n vector valued functions fβ by

aα =
∂xl

∂yα

fαβ (y, z) =

n∑
γ

Γγαβ(y) zγ (4.52)

Then the differential equations (4.51) attain the form

∂aα

∂yβ
= fαβ (y, a(y)) (4.53)

This is a differential equation which is linear in a. If these equations have a solution then there
will be n linearly independent solutions a (corresponding to n different coordinate functions
xl(y) ). The necessary conditions for the existence of a solution to the Eqs.(4.53) are given by

∂fαβ
∂yρ

=
∂aα

∂yρ∂yβ
=

∂aα

∂yβ∂yρ
=
∂fαρ
∂yβ

which can also be shown to be sufficient conditions. These integrability conditions can be
rewritten as

0 =
∂fαβ
∂yρ

(y, a(y))−
∂fαρ
∂yβ

(y, a(y)) =
∂fαβ
∂yρ
|z −

∂fαρ
∂yβ
|z +

n∑
µ

∂fαβ
∂zµ
|y
∂aµ

∂yρ
−

n∑
µ

∂fαρ
∂zµ
|y
∂aµ

∂yβ

=
∂fαβ
∂yρ
|z −

∂fαρ
∂yβ
|z +

n∑
µ

∂fαβ
∂zµ
|yfµρ −

n∑
µ

∂fαρ
∂zµ
|yfµβ (4.54)
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If we insert the explicit form of the functions f from Eq.(4.52) we obtain

0 =

n∑
γ

∂Γγαβ
∂yρ

zγ −
n∑
γ

∂Γγαρ
∂yβ

zγ +

n∑
µ

Γµαβ

n∑
γ

Γγµρ z
γ −

n∑
µ

Γµαρ

n∑
γ

Γγµβ z
γ

Since there are n-independent solutions to Eq.(4.51) this condition must be valid for all z =
(z1, . . . , zn) and we obtain

Rγαρβ = 0 (4.55)

where we defined

Rγαρβ =
∂Γγαβ
∂yρ

−
∂Γγαρ
∂yβ

+

n∑
µ

(ΓµαβΓγµρ − ΓµαρΓ
γ
µβ) (4.56)

The vanishing of these coefficients imply the existence of a coordinate transformation to an
Euclidean metric. Since the condition should be valid in any coordinate system y that we started
with we already can expect these coefficients to be coefficients of a tensor. This is indeed
true, the corresponding tensor is known as the Riemann tensor which is a mixed tensor of type
(3, 1). We have not shown that it is a tensor, but if you have a lot of paper and patience you can
check from Eq.(4.19) for the transformation law of the Christoffel symbols that under coordinate
transformations it transforms correctly as

R′αβγδ(y) =

n∑
i,j,k,l

Rijkl(x)
∂xj

∂yβ
∂xk

∂yγ
∂xl

∂yδ
∂yα

∂xi
(4.57)

The non-vanishing of Rijkl implies that we our metric corresponds to that of a curved manifold.
The tensor has n4 components so to check that all of them vanish maybe a lot of work. However,
not all components are independent. From the definition (4.56) we see that

Rijkl = −Rijlk (4.58)

0 = Rijkl +Riklj +Riljk (4.59)

Another way to reduce the number of indices is to perform a contraction of the upper index and
a lower one. In fact, there is only one independent tensor that can be obtained in this way. To
see this we need a few more hidden symmetries which become apparent by using the explicit
form of the Christoffel symbols and lowering the upper index. This gives the tensor

Rijkl =

n∑
m

giγR
γ
jkl (4.60)

The vanishing of this tensor is equivalent to the vanishing of the Riemann tensor, so we can also
use this tensor to find out if our metric describes a curved space. With help of the relation

n∑
γ

giγ
∂Γγjl
∂yk

=
∂

∂yk

(
n∑
γ

giγΓγjl

)
−

n∑
γ

Γγjl
∂giγ
∂yk

=
∂[jl, i]

∂yk
−

n∑
γ

Γγjl([ik, γ] + [γk, i])

as well as the explicit form of the Christoffel symbols of the first kind of Eq.(4.12) we find from
Eq.(4.60) that

Rijkl =
1

2

(
∂2gil
∂yj∂yk

+
∂2gjk
∂yi∂yl

− ∂2gik
∂yj∂yl

− ∂2gjl
∂yi∂yk

)
+

n∑
α,β

gαβ([jk, α][il, β]− [ik, α][jl, β]) (4.61)
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This equation reveals the further symmetries

Rijkl = −Rijlk = −Rjikl = Rklij (4.62)

In particular if follows from the anti-symmetry in the first two indices that the following con-
traction vanishes, ∑

i

Riijk =
∑
i,γ

gimRmijk = 0

since the metric tensor gim is symmetric in i and m. Then taking i = j in Eq.(4.59) and
summing over i then gives

n∑
i

Rilik = −
n∑
i

Rikli

There is therefore only one possible independent contraction of the Riemann tensor, which is
called the Ricci tensor Rlk defined by

Rlk =

n∑
i

Rilik = −
n∑
i

Rikli =

n∑
i

Rikil = Rkl (4.63)

where in the last step we used Eq.(4.58) to switch the last two lower indices. The Ricci tensor
is therefore a symmetric tensor. Finally, there is the possibility to define a scalar called the Ricci
scalar by

R =

n∑
i,j

gijRij (4.64)

The Ricci and Riemann tensors can be used to characterize curved spaces. If the Ricci tensor or
scalar does not vanish then the space does not admit an Euclidean metric. It is possible that the
Ricci tensor vanishes while the Riemann tensor does not1 so the most robust characterization of
a curved space is given by the Riemann tensor.
Let us now given an example to illustrate our derivations. We calculate the Riemann tensor
for the torus. Because of the symmetries (4.62) and the fact that we only have two indices we
find that for two-dimensional surfaces there is only one non-vanishing independent component,
which for the torus in u and v coordinates is given by

Ruvuv = −Rvuuv = Rvuvu = −Ruvvu
We can calculate Ruvuv directly from Eq.(4.61). The metric is given in Eq.(3.141) and the
relevant Christoffel symbols were already calculated in Eqs.(4.26) and (4.27). Since guv = 0
and gvv is constant we have from (4.61)

Ruvuv = −1

2

∂2guu
∂v2

+
∑
α,β

gαβ([vu, α][uv, β]− [uu, α][vv, β])

Since the only non-vanishing Christoffel symbols of are [uv, u] = [vu, u] and [uu, v] we find

Ruvuv = −1

2

∂2

∂v2
(a+ b cos v)2 + guu[uv, u][vu, u] = b cos v(a+ b cos v)

This immediately gives the non-vanishing coefficients of the Riemann tensor

Ruvuv = guuRuvuv =
b cos v

a+ b cos v
= −Ruvvu

Rvuvu = gvvRvuvu =
1

b
cos v(a+ b cos v) = −Rvuuv

1In general relativity a well-known example is that of the Schwarzschild solution of the black hole for which
the Ricci tensor vanishes but the Riemann tensor does not.
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For the Ricci tensor Rik we find that the only non-vanishing elements are

Ruu = Rvuvu =
1

b
cos v(a+ b cos v) , Rvv = Ruvuv =

b cos v

a+ b cos v

whereas the Ricci scalar is given by

R = guuRuu + gvvRvv =
2 cos v

b(a+ b cos v)

In any case, we see that the Riemann tensor for the torus does not vanish and therefore there
does not exist a coordinate transformation that would make its metric Euclidean.
As a final note we remark that the Ricci tensor plays an important role in the general theory of
relativity where it is linearly related to the energy-momentum tensor about which we will hear
more later. In any case, the physical picture is that energy and mass distributions determine the
form of Rik from which we can calculate the metric (up to a coordinate transformation). In the
language of the examples of embedded surfaces we have been using, the energy and momentum
distribution determines the shape of the manifold on which the particle is moving. However,
this shape is in general not static but changing in time, for instance due to gravitational waves,
which in our picture describe moving ripples along the surface of the manifold. In any case, an
important thing to remember is that the shape of the manifold is completely independent of the
type of coordinate system one wants to employ on it and therefore the physical laws should be
given in a way that does not depend on the coordinate system.
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Chapter 5

The covariant derivative

We will discuss how to differentiate vectors and tensors in general coordinates. We start out
by discussing differentiation of vector fields in flat space. Then we discuss how to differentiate
vector fields on a surface embedded in three-dimensional space. This motivates our final general
definitions of the covariant derivative of vector and tensor fields which do not rely on any
embedding in a higher dimensional flat space. We further discuss the geometric meaning of the
vanishing of the covariant derivative of the metric tensor.

5.1 Differentiating vector fields along curves

In the previous Chapter we saw that constrained particle motion gives a nice geometric and
easily imaginable picture of motion in general coordinate systems. We start by exploring this
picture a bit further by studying how vector fields change along particle trajectories. Since this
is a more complicated concept than the change of scalar fields we introduce the concept in three
steps. We first consider vector fields in flat space, then we consider vector fields along surfaces
embedded in three-dimensional flat space and finally discuss the general case of curved spaces.
Let us start with the case of vector fields in flat space.
Imagine a flat two-dimensional plane in which at each point we assign a vector w. This could,
for instance, represent a wind flow over the surface of the plane or the water flow in a river. We
assume that the vector field is static and that the vectors only depend on their spatial position.
We can now imagine that we can travel along a path c(t) parametrized by time t in the plane and
at each point measure the two components (w1, w2) of the vector. To do this we can construct
a Cartesian frame with coordinates (x1, x2) and orthogonal basis vectors (e1, e2) as displayed in
Fig.5.1a. The path has coordinates c(t) = (x1(t), x2(t)) and at each point along the path we
register the two components (w1(t), w2(t)) with respect to the orthonormal basis (e1, e2).

117
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Figure 5.1: A vector field w along a path c(t) (a). We rigidly translated the vectors to the same
point (b). These endpoints trace out a path in time and the time derivative ∂w/∂t is a tangent
vector to this path (c).

In Fig. 5.1a we display three of such vectors registered at three different times. To compare these
vectors at different locations we can translate each of the vectors rigidly along the coordinate
axes to the same point and compare them in a single graph. This is done in Fig.5.1b. In this
graph the endpoints of the vectors w(t) trace out a path in time. Then we can calculate the
derivative

∂w

∂t
= (

∂w1

∂t
,
∂w2

∂t
) (5.1)

which is the tangent vector to the path traced out by the endpoints of the vectors w(t) as
displayed in Fig. 5.1c. We can express this more explicitly in coordinates as

∂wj

∂t
=

2∑
k=1

∂wj

∂xk
∂xk

∂t
=

2∑
k=1

∂wj

∂xk
ċk(t) (5.2)

where we introduced the notation

∂c(t)

∂t
= (

∂x1

∂t
,
∂x1

∂t
) = (ċ1, ċ2) = ċ(t) (5.3)

which is just the tangent vector along the path c(t). The expression (5.2) represents the change
of the vector field w if we move in the direction of the vector ċ. We will denote this new vector
by ∇ċ w. In components

(∇ċ w)j =

2∑
k=1

∂wj

∂xk
ċk(t) (5.4)

Figure 5.2: The vector field along a path c(t) from as viewed in a polar coordinate system.
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Let us now see what happens in a different coordinate frame, such as the polar coordinate system
discussed in Fig. 3.2 of Chapter 3. In Fig. 5.2 we display a vector field along a path c(t) in a
polar coordinate system. Now we see that the basis vectors er and eφ rotate as we move along
the path, which affects the rate of change of component projections of the vectors w as we
move along the path. For instance, the vectors w(t1) and w(t2) in the figure have very different
components (wr, wφ) with respect to the polar basis vectors, although the vectors are almost
parallel from the viewpoint of the Cartesian coordinate system. To calculate the vector ∇ċ w in
the polar coordinate system we therefore also have to take into account the change in the basis
vectors (er, eφ) when we move along the path c(t). Since we already calculated this quantity
in Eq.(5.2) we can find the result in any other coordinate system by transforming this result to
different coordinates. Let us call these new coordinates (y1, y2). in these coordinates we have

∂wj

∂t
=

∂

∂t

(∑
k

w′k
∂xj

∂yk

)
=
∑
k

∂w′k

∂t

∂xj

∂yk
+
∑
k,l

w′k
∂2xj

∂yk∂yl
∂yl

∂t
(5.5)

The last term can be expressed in terms of the Christoffel symbols of the new coordinate
system. Now in the Cartesian coordinate system the metric tensor is simply given by gij = δij
and therefore the Christoffel symbols vanish in this system. Therefore the transformation law
Eq.(4.19) tells us that the Christoffel symbols in the new coordinate frame are given by

Γ′ pkl =
∑
q

∂2xq

∂yk∂yl
∂yp

∂xq

or equivalently
∂2xj

∂yk∂yl
=
∑
p

Γ′ pkl
∂xj

∂yp

If we insert this into Eq.(5.5) we find

(∇ċ w)j =
∂wj

∂t
=
∑
p

∂w′p

∂t

∂xj

∂yp
+
∑
k,l,p

w′kΓ′ pkl
∂xj

∂yp
∂yl

∂t

=
∑
p

∂xj

∂yp

∂w′p
∂t

+
∑
k,l

w′kΓ′ pkl
∂yl

∂t

 =
∑
p

∂xj

∂yp
(∇ċ w)′ p (5.6)

where we denote

(∇ċ w)′ p =
∂w′p

∂t
+
∑
k,l

w′kΓ′ pkl
∂yl

∂t
=
∑
l

(
∂w′p

∂yl
+
∑
k

w′kΓ′ pkl

)
∂yl

∂t

=
∑
l

(
∂w′p

∂yl
+
∑
k

w′kΓ′ pkl

)
ċ′ l (5.7)

where c′(t) = (y1(t), y2(t)) is the path c(t) in the y-coordinate system. Equation (5.7) is the
main result of our derivation. It represents a generalization to general coordinates of the vector
Eq.(5.4) in the Cartesian coordinate system. Equation (5.6) shows that this quantity indeed
transforms as a vector under coordinate transformations. We will derive this in more detail
below as well.
Now we consider a slightly more difficult case, namely that of a vector field along a surface.
This will at the same time help to get a very nice geometrical insight into the expression (5.7).
We consider a vector field along a curve c(t) that describes the motion of a particle in a surface
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parametrized by coordinates (u1, u2), i.e. we have x = (x1, x2, x3) with xj = xj(u1, u2). We
consider again a vector field w which is tangent to the surface, for instance, a vector field that
describes a wind flow or temperature gradient on the surface of the Earth. Pictorially we have

Figure 5.3: A tangent vector field w along a surface. The vector ∇ċ w is defined as the tangential
component of ∂w/∂t.

The curve has the form c(t) = (u1(t), u2(t)) in terms of surface coordinates. The velocity vector

ċ(t) = u̇1(t)
∂

∂u1
+ u̇2(t)

∂

∂u2

has, when mapped to the surrounding three-dimensional space using an embedding mapping the
form

ċ(t) = u̇1(t)
∂x

∂u1
+ u̇2(t)

∂x

∂u2

with respect to Cartesian basis vectors in R3, where ∂x/∂ui are the tangents to the coordinate
curves on the surface. Since the vector field w is tangential it can be expressed as

w = w1 ∂x

∂u1
+ w2 ∂x

∂u2
(5.8)

We want to see how this vector field changes when we move along the curve c(t). As in the case
of the two-dimensional plane (see Fig.5.1b), we can move the vectors w(t) at different points
to the same point in space by rigid translations along the coordinate axes of the surrounding
three-dimensional space. The end points of these vectors trace out a curve in three-dimensional
space and we can calculate the tangent to this curve. We have

∂w

∂t
=

∂

∂t

(∑
i

wi
∂x

∂ui

)
=
∑
i

∂wi

∂t

∂x

∂ui
+
∑
i,j

wi
∂2x

∂ui∂uj
u̇j

=
∑
i,j

(
∂wi

∂uj
∂x

∂ui
u̇j + wi

∂2x

∂ui∂uj
u̇j
)

(5.9)

The first term in Eq.(5.9) is a linear combination of ∂x/∂ui and therefore represents a vector
in the tangent plane to the surface. The last term, however, has in general also components
pointing out of the surface. This is not difficult to understand physically. In the special case that
we take w(c(t)) = ċ(t) the vector ∂w/∂t would represent the the acceleration of the particle
which in general also has a normal component that wants to push the particle outside of the
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surface. What we now can do is to calculate the component of ∂w/∂t parallel to the surface
which we will call ∇ċ w (the relation to Eq.(5.7) will become clear soon). It is given by

∇ċ w =
∂w

∂t
− n 〈∂w

∂t
,n〉 (5.10)

where n is a unit normal vector to the surface and we used the standard Euclidean inner product.
So 〈n,∇ċ w〉 = 0, which means that we projected ∂w/∂t back into the tangent plane. The
notation ∇ċ w is therefore a short notation for the rate of change of the vector field w within
the tangent plane in the direction of ċ. The mapping

w → ∇ċ w

for a given tangent vector ċ to the path c(t) in a point p maps tangent vectors in TpM to new
tangent vectors of TpM . Since the definition (5.10) is a geometric one, independent of the
surface parametrization, ∇ċ w is a coordinate invariant object and we expect it to transform like
a vector under change of surface coordinates. We will see that this is indeed the case.
First of all, since ∇ċ w lies in the tangent plane we can expand it in terms of ∂x/∂ui as

∇ċ w =
∑
i

(∇ċ w)i
∂x

∂ui
(5.11)

To find a more explicit expression for the coefficients (∇ċ w)i we take the inner product on both
sides of this expression with ∂x/∂uj . This gives

〈∇ċ w,
∂x

∂uj
〉 =

∑
i

(∇ċ w)i〈 ∂x
∂ui

,
∂x

∂uj
〉 =

∑
i

(∇ċ w)i gij (5.12)

where we used Eq.(3.140), i.e.

gij = 〈 ∂x
∂ui

,
∂x

∂uj
〉

Consequently we find that

(∇ċ w)l =
∑
k

glk 〈∇ċ w,
∂x

∂uk
〉 (5.13)

from Eqs.(5.10) and (5.9) we then see that

〈∇ċ w,
∂x

∂uk
〉 = 〈∂w

∂t
,
∂x

∂uk
〉 =

∑
i,j

(
∂wi

∂uj
u̇j〈 ∂x

∂ui
,
∂x

∂uk
〉+ wiu̇j〈 ∂2x

∂ui∂uj
,
∂x

∂uk
〉
)

=
∑
i,j

(
∂wi

∂uj
u̇j gik + wiu̇j〈 ∂2x

∂ui∂uj
,
∂x

∂uk
〉
)

Inserting this back into Eq.(5.13) then gives

(∇ċ w)l =
∑
j

∂wl

∂uj
u̇j +

∑
i,j,k

wiu̇jglk〈 ∂2x

∂ui∂uj
,
∂x

∂uk
〉 (5.14)

We now only need a more explicit expression for the last term in this equation. We can do this
by calculating the derivatives of the coefficients of the metric tensor. using the short notation

〈ij, k〉 = 〈 ∂2x

∂ui∂uj
,
∂x

∂uk
〉 (5.15)
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we have

∂gik
∂uj

=
∂

∂uj
〈 ∂x
∂ui

,
∂x

∂uk
〉 = 〈ij, k〉+ 〈jk, i〉

∂gjk
∂ui

=
∂

∂ui
〈 ∂x
∂uj

,
∂x

∂uk
〉 = 〈ij, k〉+ 〈ik, j〉

∂gij
∂uk

=
∂

∂uk
〈 ∂x
∂ui

,
∂x

∂uj
〉 = 〈ik, j〉+ 〈jk, i〉

and we therefore see that

〈ij, k〉 =
1

2

(
∂gik
∂uj

+
∂gjk
∂ui

− ∂gij
∂uk

)
Comparison with Eq.(4.12) then tells us that 〈ij, k〉 = [ij, k] and we see that they are equal to
the Christoffel symbols of the first kind. Then Eq.(5.14) becomes

(∇ċ w)l =
∑
j

∂wl

∂uj
u̇j +

∑
i,j,k

wiu̇jglk[ij, k]

=
∑
j

(
∂wl

∂uj
+
∑
i

wiΓlij

)
u̇j =

∑
j

wl;j u̇
j (5.16)

where we defined

wl;j =
∂wl

∂uj
+
∑
i

wiΓlij (5.17)

It remains to show that ∇ċ w actually transforms as a vector. We start by showing that the
components wi;j transform as the components of a mixed tensor of type (1, 1), i.e.

wi;j =
∑
α,β

w′α;β
∂ui

∂u′α
∂u′β

∂uj

The validity of this equation only depends on the transformation law of the Christoffel sym-
bols and hence is valid for any n-dimensional manifold. Instead of (u1, u2) we therefore use
(x1, . . . , xn) as coordinates. Let us then write

wl;j =
∂wl

∂xj
+
∑
i

wiΓlij (5.18)

then in new coordinates yj we have using the transformation law Eq.(4.19) for the Christoffel
symbols that

wl;j =
∂

∂xj

(∑
k

w′k
∂xl

∂yk

)
+
∑
i,k

w′k
∂xi

∂yk

∑
α,β,γ

Γ′γαβ
∂yα

∂xi
∂yβ

∂xj
∂xl

∂yγ
+
∑
p

∂2yp

∂xi∂xj
∂xl

∂yp


=
∑
p,k

∂w′k

∂yp
∂yp

∂xj
∂xl

∂yk
+
∑
p,k

w′k
∂2xl

∂yk∂yp
∂yp

∂xj
+
∑
α,β,γ

w′αΓ′γαβ
∂yβ

∂xj
∂xl

∂yγ
+
∑
i,p,k

w′k
∂xi

∂yk
∂2yp

∂xi∂xj
∂xl

∂yp

=
∑
p,k

(
∂w′k

∂yp
+
∑
q

w′qΓ′kqp

)
∂yp

∂xj
∂xl

∂yk
+
∑
k

w′k

∑
p

∂2xl

∂yk∂yp
∂yp

∂xj
+
∑
i,p

∂xi

∂yk
∂2yp

∂xi∂xj
∂xl

∂yp


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Now the last term in this equation vanishes since it represents the derivative of

δlj =
∂xl

∂xj
=
∑
p

∂xl

∂yp
∂yp

∂xj

with respect to yk which is zero, and we therefore obtain

wl;j =
∑
p,k

w′ k;p
∂yp

∂xj
∂xl

∂yk
(5.19)

which is exactly what we wanted to prove. If we now use Eq.(5.19) in Eq.(5.16) then we see
that

(∇ċ w)l =
∑
j

vl;j u̇
j =

∑
j,α,β,γ

w′α;β
∂ul

∂u′α
∂u′β

∂uj
∂uj

∂u′γ
u̇′γ =

∑
α,β

w′α;β u̇
′β ∂ul

∂u′α

=
∑
α

(∇ċ w)′α
∂ul

∂u′α
(5.20)

which is exactly the transformation law of a vector. If we now go back to the vector ∇ċ w of
Eq.(5.11) rather than its components we see that

∇ċ w =
∑
i

(∇ċ w)i
∂x

∂ui
=
∑
i,α

(∇ċ w)′α
∂ui

∂u′α
∂x

∂ui
=
∑
α

(∇ċ w)′α
∂x

∂u′α
(5.21)

In this equation we wrote ∇ċ w as a three-dimensional vector, but it is clear that the equation
is just as valid when we write it as

∇ċ w =
∑
i

(∇ċ w)i
∂

∂ui
=
∑
α

(∇ċ w)′α
∂

∂u′α

in which the vectors live on a two-dimensional manifold parametrized by (u1, u2). This is not
surprising since

∂x

∂uj
=

3∑
k=1

∂xj

∂uj
ek =

3∑
k=1

∂xj

∂uj
∂

∂xk
= i∗(

∂

∂uj
)

i.e. Eq.(5.21) is simply the push forward of Eq.(5.22) by the embedding mapping i of the surface
in the three-dimensional space. Since Eq.(5.22) is generally valid, what we could have done, is
to skip the whole geometric motivation based on the embedded surface and state the following
definition of a directional derivative on a general manifold. Given a n-dimensional vector field

v =

n∑
j

vj
∂

∂xj

and given another vector field

w =

n∑
j

wj
∂

∂xj

there is a new vector field ∇v w, called the derivative of w in the direction of v given by

∇v w =

n∑
j

(∇v w)j
∂

∂xj
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with components

(∇v w)k =

n∑
j

(
∂wk

∂xj
+

n∑
i

Γkjiw
i

)
vj (5.22)

The proof that ∇v w is a vector field is simple. Just do the coordinate transformation and
use the transformation properties of the Christoffel symbols as well as the vectors v and w.
Although the definition (5.22) is easy to understand algebraically and the proof straightforward
the geometric meaning would have been hard to grasp if we had not given the motivation on
the previous pages.

5.2 A fancy definition
Now that we know that Eq.(5.22) gives the components of a vector we can reverse the logic
and give a "clean" coordinate independent definition of ∇v w on a manifold M . Let us start by
deriving some properties of ∇v w. First of all, it is immediately clear from Eq.(5.22) that

∇v1+v2 w = ∇v1 w +∇v2 w (5.23)
∇v (w1 + w2) = ∇v w1 +∇v w2 (5.24)

∇f v w = f∇v w (5.25)
∇v (f w) = f ∇v w + v(f)w (5.26)

where f : M → R is a function on the manifold and v, vi, w, wi vector fields defined on M .
This brings us to the following definition:
A connection or covariant derivative on a manifold M is a function ∇ which assigns a vector
field ∇v w to any two vector fields v and w and which satisfies Eqs.(5.23)-(5.26).
Note that this definition does not require that we have defined a metric on the manifold M .
Given the properties (5.23)-(5.26) it is not difficult to derive an explicit form of ∇v w. We have

∇v w = ∇v

(
n∑
k

wk
∂

∂xk

)
=

n∑
k

∇v
(
wk

∂

∂xk

)
=

n∑
k

(
wk∇v

(
∂

∂xk

)
+ v(wk)

∂

∂xk

)

=

n∑
j,k

vj
∂wk

∂xj
∂

∂xk
+

n∑
j,k

wkvj∇ ∂

∂xj

∂

∂xk
(5.27)

The last term contains a vector field on M which can be expanded in the basis ∂/∂xi, i.e.

∇ ∂

∂xj

∂

∂xk
=

n∑
i

Γijk
∂

∂xi
(5.28)

where Γijk are called the connection coefficients. Not surprisingly we can make a special choice
such that these coefficients are actually equal to the Christoffel symbols, but at the moment we
will not make this assumption. In terms of these coefficients we can now write

∇v w =

n∑
j,k

vj
∂wk

∂xj
∂

∂xk
+

n∑
i,j,k

wkvjΓijk
∂

∂xi
=
∑
j,k

vj

(
∂wk

∂xj
+

n∑
i

Γkjiv
i

)
∂

∂xk

=
∑
k

(∇v w)k
∂

∂xk
(5.29)

in which we recovered the coefficients of Eq.(5.22). However, we have not assumed that we
had a metric so at this moment we do not need to assume that the connection coefficients are
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symmetric, i.e. Γkij = Γkji. They do, however, transform exactly as the Christoffel symbols in
Eq.(4.19). Let us check this. First we introduce the short notation

∇ ∂

∂xi
= ∇i

then Eq.(5.28) is written as

∇i
∂

∂xj
=

n∑
k

Γkij
∂

∂xk
(5.30)

Similarly in a coordinate system yj we have

∇′α
∂

∂yβ
=

n∑
γ

Γ′ γαβ
∂

∂yγ
(5.31)

Then

∇′α
∂

∂yβ
= ∇′α

(
n∑
k

∂xk

∂yβ
∂

∂xk

)
=

n∑
k

(
∂

∂yα

(
∂xk

∂yβ

)
+
∂xk

∂yβ
∇′α

∂

∂xk

)
(5.32)

Now since

∇′α = ∇ ∂
∂yα

= ∇∑
l
∂xl

∂yα
∂

∂xl

=

n∑
l

∂xl

∂yα
∇l

it follows from Eq.(5.32) that

∇′α
∂

∂yβ
=

n∑
k

∂2xk

∂yα∂yβ
∂

∂xk
+

n∑
k,l

∂xk

∂yβ
∂xl

∂yα
∇l

∂

∂xk
=

n∑
k

∂2xk

∂yα∂yβ
∂

∂xk
+

n∑
k,l,m

∂xk

∂yβ
∂xl

∂yα
Γmlk

∂

∂xm

=

n∑
k,γ

∂2xk

∂yα∂yβ
∂yγ

∂xk
∂

∂yγ
+

n∑
k,l,m,γ

Γmlk
∂xk

∂yβ
∂xl

∂yα
∂yγ

∂xm
∂

∂yγ
(5.33)

Comparison of this expression with Eq.(5.31) then yields

Γ′ γαβ =

n∑
k,l,m

Γmlk
∂xl

∂yα
∂xk

∂yβ
∂yγ

∂xm
+

n∑
k

∂2xk

∂yα∂yβ
∂yγ

∂xk
(5.34)

which is identical to the transformation law for the Christoffel symbols of Eq.(4.19). However,
we deduced it without making any reference to a metric.
We can further look at the connection ∇v w in a different way. We have seen in Eq.(5.19) that
the coefficients wk;j transform as a mixed tensor of type (1, 1). This is not so surprising since
∇v w is a vector and can therefore act on a covector . Moreover it is linear in v (see Eq.(5.25)).
Therefore, for a given vector field w we can define a tensor ∇w ∈ T 1

1 (TpM) by

∇w (v, u) = ∇vw (u) (5.35)

where v is a vector field and u a covector field. In components this means the following. If

v =

n∑
j

vj
∂

∂xj
, u =

n∑
j

ujdx
j

then

∇w(v, u) =

n∑
j

(∇v w)j
∂

∂xj
(u) =

n∑
j

(∇v w)juj =

n∑
j,k

(
∂wj

∂xk
+

n∑
i

wiΓjki

)
vkuj

=

n∑
j,k

wj;k v
kuj =

n∑
j,k

wj;k dx
k ⊗ ∂

∂xj
(v, u)
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and therefore

∇w =

n∑
j,k

wj;k dx
k ⊗ ∂

∂xj
(5.36)

The operator ∇ is usually called the connection or covariant derivative operator. Here we defined
the covariant derivative on a vector field. We can, however, extend the definition of ∇ and ∇v
such that they can act on arbitrary tensor fields.
Let v be a vector field and let ∇ be a connection on vector fields. Then there is a unique
operator A→ ∇vA from tensor fields to tensor fields, preserving the type (k, l) such that

∇vf = v(f) (5.37)
∇vw is the vector field given by the connection ∇ (5.38)
∇v(λA) = λ∇A λ ∈ R (5.39)
∇v(A⊗B) = ∇vA⊗B +A⊗∇vB (5.40)
For any contraction C we have ∇v ◦ C = C ◦ ∇v (5.41)

Here f is a function and for any tensor A and a function f we define f ⊗A = fA. With these
conditions we can construct the required mapping. Let us first consider the vector field w and
covector field u and construct the tensor

A = u⊗ w =

n∑
j,k

ujw
kdxj ⊗ ∂

∂xk
=

n∑
j,k

Akj dx
j ⊗ ∂

∂xk

The contraction of A is the scalar
n∑
k

Akk =

n∑
k

uk w
k

Condition (5.41) tells us that ∇v should commute with tensor contractions C. First of all we
have using Eq.(5.37) that

∇v ◦ C(A) = ∇v(
n∑
k

uk w
k) =

n∑
k

v(ukw
k) =

n∑
j,k

vj
∂

∂xj
(ukwk) (5.42)

Next we will evaluate C ◦ ∇v. We have using condition (5.40) that

∇vA = ∇v(u⊗ w) = ∇v u⊗ w + u⊗∇v w (5.43)

From condition (5.38) we have that

∇v w =

n∑
j,k

wk;jv
j ∂

∂xk

We do not yet know the explicit form of ∇vu but we know it will be again a covector field and
we can therefore write

∇vu =

n∑
l

(∇vu)l dx
l (5.44)

Inserting this into Eq.(5.43) then gives

∇vA =

n∑
k,l

[
(∇vu)lw

k + ul(∇vw)k
]
dxl ⊗ ∂

∂xk
=

n∑
k,l

(∇vA)kl dx
l ⊗ ∂

∂xk
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The contraction of A therefore gives the scalar function.

C ◦ ∇vA =

n∑
k

(∇A)kk =

n∑
k

[
(∇vu)kw

k + uk(∇vw)k
]

=

n∑
k

(∇vu)kw
k +

n∑
j,k

ukw
k
;jv

j

=

n∑
k

(∇vu)kw
k +

n∑
j,k

uk

(
∂wk

∂xj
+
∑
l

wlΓkjl

)
vj

=

n∑
j,k

vj
∂

∂xj
(ukw

k)−
n∑
j,k

wk
∂uk
∂xj

vj +

n∑
k

(∇vu)kw
k +

∑
j,k,l

ukw
lΓkjlv

j

This expression must be equal to Eq.(5.42) and by comparison we therefore find that

0 =

n∑
k

(∇vu)k −
n∑
j

vj

(
∂uk
∂xj
−

n∑
l

ulΓ
l
jk

)wk

Since this must be valid for any set of coefficients wk we find that

(∇vu)k =

n∑
j

uk;jv
j (5.45)

where we defined

uk;j =
∂uk
∂xj
−

n∑
l

ulΓ
l
jk (5.46)

In particular if v = ∂/∂xj we have from Eq.(5.44) that

∇ju =

n∑
k

wk;jdx
k =

n∑
k

(
∂uk
∂xj
−

n∑
l

ulΓ
l
jk

)
dxk (5.47)

If we further specialize to u = dxi we see from this equation that

∇jdxi = −
n∑
k

Γijk dx
k (5.48)

Together with Eq.(5.30) this can be used to calculate the derivative of a tensor of general type
(p, q). If

A =

n∑
i1...ip
j1...jq

A
j1...jq
i1...ip

dxi1 ⊗ . . .⊗ dxip ⊗ ∂

∂xj1
⊗ . . .⊗ ∂

∂xjq
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then as a consequence of conditions (5.37) and (5.40) we have for v = ∂/∂xk that

∇kA =

n∑
i1...ip,j1...jq

∂A
j1...jq
i1...ip

∂xk
dxi1 ⊗ . . .⊗ dxip ⊗ ∂

∂xj1
⊗ . . .⊗ ∂

∂xjq

+

n∑
i1...ip,j1...jq

A
j1...jq
i1...ip

[
∇kdxi1 ⊗ . . .⊗ dxip ⊗

∂

∂xj1
⊗ . . .⊗ ∂

∂xjq

+ dxi1 ⊗∇kdxi2 ⊗ . . .⊗ dxip ⊗
∂

∂xj1
⊗ . . .⊗ ∂

∂xjq
+ . . .

+ dxi1 ⊗ . . .⊗ dxip ⊗∇k
∂

∂xj1
⊗ . . .⊗ ∂

∂xjq
+ . . .

+ dxi1 ⊗ . . .⊗ dxip ⊗ ∂

∂xj1
⊗ . . .⊗∇k

∂

∂xjq

]
=

n∑
i1...ip,j1...jq

A
j1...jq
i1...ip;k dx

i1 ⊗ . . .⊗ dxip ⊗ ∂

∂xj1
⊗ . . .⊗ ∂

∂xjq

where we used Eqs.(5.30) and (5.48) and relabeled some indices. We further defined

A
j1...jq
i1...ip;k =

∂A
j1...jq
i1...ip

∂xk
−

n∑
l

A
j1...jq
li2...ip

Γlki1 − . . .−
n∑
l

A
j1...jq
i1...ip−1l

Γlkip

+

n∑
l

A
lj2...jq
i1...ip

Γj1kl + . . .+

n∑
l

A
j1...jq−1l
i1...ip

Γ
jq
kl (5.49)

If you have some patience and a lot of paper then you can check that these coefficients transform
properly as tensor coefficients under coordinate transformations. For the general operator ∇vA
we have

∇vA =

n∑
k

vk∇kA =

n∑
k,i1...ip
j1...jq

A
j1...jq
i1...ip;k v

k dxi1 ⊗ . . .⊗ dxip ⊗ ∂

∂xj1
⊗ . . .⊗ ∂

∂xjq
(5.50)

Let us finally check that Eq.(5.49) indeed satisfies condition (5.41). If we, for example, contract
the tensor A with respect to the indices i1 and j1 we obtain a new tensor B with components

B
j2...jq
i2...ip

=

n∑
i1

A
i1j2...jq
i1i2...ip

We need to verify the identity

B
j2...jq
i2...ip;k =

n∑
i1

A
i1j2...jq
i1i2...ip;k (5.51)

This follows from a direct computation. We have

n∑
i1

A
i1j2...jq
i1i2...ip;k =

∂

∂xk

(
n∑
i1

A
i1j2...jq
i1i2...ip

)
−

n∑
i1,l

A
i1j2...jq
li2...ip

Γlki1 − . . .−
n∑
i1,l

A
i1j2...jq
i1i2...ip−1l

Γlkip

+

n∑
i1,l

A
lj2...jq
i1i2...ip

Γi1kl + . . .+

n∑
i1,l

A
i1j2...jq−1l
i1i2...ip

Γ
jq
kl (5.52)
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We see that the second and the fourth term after the equality sign cancel. A quick inspection
shows that the remaining terms sum up to Bj2...jqi2...ip;k such that covariant differentiation indeed
commutes with contractions.
Let us finally give the analog of Eq.(5.35). Let v1, . . . , vp be vector fields and u1, . . . , uq be
covector fields. Then we define

∇A(v, v1, . . . , vp, u1, . . . , uq) = ∇v A(v1, . . . , vp, u1, . . . , uq) (5.53)

which implies that

∇A =

n∑
k,i1...ip
j1...jq

A
j1...jq
i1...ip;k dx

k ⊗ dxi1 ⊗ . . .⊗ dxip ⊗ ∂

∂xj1
⊗ . . .⊗ ∂

∂xjq
(5.54)

So ∇ is a mapping from tensor fields of type (p, q) to tensor fields of type (p+ 1, q).

5.3 Tensors along curves and particle motion revisited

So far we kept the connection coefficients general. The familiar Christoffel symbols that we used
in the description of particle motion are recovered when we require that Γkij = Γkji and that the
covariant derivative of the metric tensor vanishes, i.e.

∇g =

n∑
i,j,k

gij;k dx
k ⊗ dxi ⊗ dxj = 0 (5.55)

This condition yields explicitly using (5.49)

0 = gij;k =
∂gij
∂xk

−
n∑
l

gljΓ
l
ki −

n∑
l

gilΓ
l
kj

This yields
∂gij
∂xk

= [ik, j] + [jk, i] (5.56)

where we defined

[ik, j] =

n∑
l

glj Γlik

and used the symmetry requirement Γkij = Γkji. By relabeling we then find

[ij, k] =
1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
and

Γkij =

n∑
l

gkl[ij, l]

which is the familiar expression for the Christoffel symbols of the second kind. This connection
is called the Riemann connection and arises from the condition (5.55). We will look into the
geometrical meaning of this condition below. Let us, however, first deduce some consequences.
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These follow from a combination of the conditions (5.40) and (5.41). For example, if A is a
tensor of type (2, 2) and B a tensor of type (1, 1) then we have(

Aj1j2i1i1
Bj3i3

)
;k

= Aj1j2i1i1;kB
j3
i3

+Aj1j2i1i1
Bj3i3;k(

n∑
l

Aj1lli1

)
;k

=

n∑
l

Aj1lli1;k

In particular, if we take the contraction of the metric tensor g with a vector v we have n∑
j

gijv
j


;k

=

n∑
j

(
gijv

j
)

;k
=

n∑
j

(
gij;kv

j + gijv
j
;k

)
=

n∑
j

gijv
j
;k (5.57)

as a consequence of the condition gij;k = 0. Therefore lowering the index of a vector commutes
with taking the covariant derivative. The same applies when we want to raise indices. To see
this we consider the identity

δij =

n∑
l

gilglj (5.58)

Now for the tensor

δ =

n∑
i,j

δij dx
j ⊗ ∂

∂xi

we have according to Eq.(5.49)

δij;k =
∂

∂xk
δij −

n∑
l

δilΓ
l
kj +

n∑
l

δljΓ
i
kl = −Γikj + Γikj = 0

and hence from Eq.(5.58) we have

0 = δij;k =

n∑
l

(
gil;kglj + gilglj;k

)
=

n∑
l

gil;kglj

Multiplying by gjm and summing over j then yields gim;k = 0. Therefore completely analogously
to Eq.(5.57) we have that if w is a covector then n∑

j

gijwj


;k

=

n∑
j

gijwj;k (5.59)

and therefore raising indices commutes with covariant differentiation. Let us finally explain the
geometrical meaning of the condition ∇g = 0. Let us go back to the operator ∇vw. In case v
is the tangent vector to a curve c(t) = (x1(t), . . . , xn(t)) we have

v(t) =

n∑
j

vj(t)
∂

∂xj

We introduce the notation
Dw

dt
= ∇ċ w (5.60)
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This derivative is precisely the one we considered in the introduction of this Chapter. As we
explained before, if w is the tangent vector field to a surface then Dw/dt represents the change
in the vector field w in the tangent plane as we move along the curve c(t). In case Dw/dt = 0
then, as a consequence of definition (5.10), there is only a change normal to the surface. In that
case, if xk are surface coordinates, we have

0 =
Dw

dt
= ∇ċ w =

n∑
k

(∇ċ w)k
∂

∂xk

and hence

0 = (∇ċ w)k =

n∑
j

wk;j ẋ
j =

n∑
j

(
∂wk

∂xj
+

n∑
i

wiΓkji

)
ẋj (5.61)

Let us consider a special case. When the surface is a plane in R3 then the induced metric on
the plane is flat and Γkij = 0. In that case Eq.(5.61) yields

0 =

n∑
j

∂wk

∂xj
ẋj =

∂

∂t
wk(x(t))

and we find that wk(x(t)) is constant. In that case Dw/dt = 0 implies that the vector field
along the curve consists of parallel vectors as displayed in Fig.5.5

Figure 5.4: A parallel vector field along a path c(t).

There is no change of the vectors in the plane and, in this particular case, the change normal to
the surface is zero as well. In general we will call a vector field with the property Dw/dt = 0 a
parallel vector field along the curve c(t). Let us now go back to a generally curved surface and
let u and w be parallel vector fields along c(t), then

∂

∂t
g(u,w) =

∂

∂t

n∑
i,j

giju
iwj =

n∑
i,j,k

ẋk
∂

∂xk
(giju

iwj) =

n∑
i,j,k

ẋk(giju
iwj);k

=

n∑
i,j,k

ẋk
(
gij;ku

ivj + giju
i
;kw

j + giju
iwj;k

)

=

n∑
i,j

(
gij

(
Du

dt

)i
wj + giju

i

(
Dw

dt

)j)
= 0 (5.62)

as a consequence of gij;k = 0 and the fact that we chose parallel vector fields. Therefore, if a
connection is chosen to satisfy ∇g = 0 then

g(u,w) = constant



132 CHAPTER 5. THE COVARIANT DERIVATIVE

for parallel vector fields u and w. In particular g(u, u) is constant and therefore a Riemannian
connection preserves the length of parallel vectors, as well as the angle between them.
So far we defined Dw/dt for a vector field w which was defined in a neighborhood of a curve
c(t). Suppose now that w(t) is only defined on the curve c(t) as is the case when w(t) = ċ(t)
is the tangent vector to the curve c(t). In such a case it does not make sense to write

∂wk

∂t
=

n∑
j

∂wk

∂xj
ẋj

since wk(t) depends only on the values xj(t) on the curve an hence the partial derivatives
∂wk/∂xj are not known. For this case we therefore define

Dw

dt
=

n∑
k

(
Dw

dt

)k
∂

∂xk
(5.63)

where (
Dw

dt

)k
=
∂wk

∂t
+

n∑
i,j

wiΓkjiẋ
j (5.64)

Remember from our definitions that vectors are defined in single points, not necessarily as a vector
field in the neighborhood of point. We only require that they act on functions f defined in the
neighborhood of the point and that the coordinate system is defined in the same neighbourhood.
More precisely if x(t) is the coordinate of the point then

v(f)(x(t)) =

n∑
j

vj(t)
∂f

∂xj
(x(t))

If we introduce a new coordinate system y(x) then the tangent vector to a curve c(t) in the new
coordinate system y is given by

v′j(t) =
∂yj

∂t
=

n∑
k

∂yj

∂xk
∂xk

∂t
=

n∑
k

∂yj

∂xk
vk(t)

and the vector simply transforms as vector in the tangent space at c(t). What we did for vectors
also works for tensor fields that are only defined along a curve c(t). For a tensor A of type (p, q)
we define

DA

dt
=

n∑
i1...ip
j1...jq

(
DA

dt

)j1...jq
i1...ip

(t) dxi1 ⊗ . . .⊗ dxip ⊗ ∂

∂xj1
⊗ . . .⊗ ∂

∂xjq
(5.65)

where(
DA

dt

)j1...jq
i1...ip

(t) =
∂A

j1...jq
i1...ip

∂t
(t) +

n∑
k

ẋk

{
n∑
l

A
lj2...jq
i1...ip

Γj1kl + . . .+

n∑
l

A
j1...jq−1l
i1...ip

Γ
jq
kl

−
n∑
l

A
j1...jq
li2...ip

Γlki1 − . . .−
n∑
l

A
j1...jq
i1...ip−1l

Γlkip

}
(5.66)

An important case of Eq.(5.64) is when w = ċ or equivalently wk(t) = ẋk, which is the case in
which we consider w to be tangent or velocity vector along the curve. In that case we obtain(

Dw

dt

)k
= ẍk +

n∑
i,j

Γkij ẋ
i ẋj (5.67)
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If we imagine the coordinates xi to be surface coordinates (u1, u2) of a two-dimensional surface
in R3 then we see from Eqs.(5.11) and (5.16) by taking w equal to the velocity vector v = ċ
that Dv/dt represents the acceleration a‖ of the particle parallel to the surface

a‖ =
Dv

dt
= ∇ċ ċ (5.68)

Newton’s law for the motion of a particle of mass m along the surface therefore becomes

ma‖ = m
Dv

dt
= F ‖ (5.69)

where F ‖ is the applied force. Let the force field be given by the gradient of a potential V in
the surrounding three-dimensional space 1.

F =

3∑
j=1

F j
∂

∂xj
= −

3∑
j=1

∂V

∂xj
∂

∂xj

For example, if the particle would be charged this could be an applied electric field. If mechanical
forces keep the particle restricted to the surface we need to calculate the component F ‖ parallel
to the surface. To do this we expand the force into the tangent vectors to the surface and the
normal vector n as

F = F 1,‖ ∂x

∂u1
+ F 2,‖ ∂x

∂u2
+ F⊥ n

We have

〈 ∂x
∂ui

, F 〉 =

2∑
j=1

〈 ∂x
∂ui

,
∂x

∂uj
〉F j,‖ =

2∑
i=1

gijF
j,‖

and we therefore find

F j,‖ =

2∑
k=1

gjk〈 ∂x
∂uk

, F 〉 = −
2∑
k=1

gjk
3∑
l=1

∂xl

∂uk
∂V

∂xl
= −

2∑
k=1

gjk
∂V

∂uk
(5.70)

Therefore we find that Newton’s law (5.69) for the motion of the particle along the surface
attains the form

m

(
Dv

dt

)j
= m

(
üj +

2∑
p,q=1

Γjpq u̇
p u̇q

)
= −

2∑
k=1

gjk
∂V

∂uk
(5.71)

This is exactly Eq.(4.14) which we derived from the Lagrangian principle. Here we recovered
the same equation by studying the forces and accelerations tangent to a surface. The equivalent
equation (4.13) can be written in our new notation as

m

2∑
l=1

gkl

(
Dv

dt

)l
= − ∂V

∂xk
(5.72)

where both sides of the equation are now covectors rather than vectors. What we now want to
show that we can also rewrite this equation as

m

(
Dv[

dt

)
k

= − ∂V
∂xk

(5.73)

1There seems to be mismatch in the position of the indices. However, this is simply appearance because the
metric is Euclidean gij = δij . We have F j = −

∑
k g

jk∂V/∂xk = −∂V/∂xj .
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where we take the covariant derivative of the covector v[ obtained by lowering the indices on v.
Since v[ is a covector the covariant derivative should be taken according to Eq.(5.66) as(

Dv[

dt

)
k

=
∂vk
∂t
−

2∑
l,m=1

u̇mvl Γ
l
mk (5.74)

This is, in fact, an immediate consequence of Eq.(5.59) but let us check it explicitly for vectors
and covectors defined along a curve. Rather tan restricting ourselves to two-dimensional surface
we consider the case that we have n general coordinates. We have(

Dv[

dt

)
k

=
∂

∂t

(
n∑
l

gklv
l

)
−

n∑
l,m,p

u̇mglpvp Γlmk

=

n∑
l,m

∂gkl
∂xm

ẋmvl +

n∑
l

gkl
∂vl

∂t
−

n∑
m,p

ẋmvp[mk, p] (5.75)

where in the last term we used that (see Eq.(5.56))
n∑
l

Γlmkglp =

n∑
l,q

glqglp[mk, q] =

n∑
q

δqp[mk, q] = [mk, p]

If we further use that
∂gkl
∂xm

= [km, l] + [lm, k]

then Eq.(5.75) becomes(
Dv[

dt

)
k

=

n∑
l

gkl
∂vl

∂t
+

n∑
l,m

([km, l] + [lm, k]− [mk, l])ẋmvl

=

n∑
l

gkl
∂vl

∂t
+

n∑
l,m

[lm, k]ẋmvl =

n∑
l

gkl
∂vl

∂t
+

n∑
l,m,p

gkpΓ
p
lmẋ

mvl

=

n∑
l

gkl

∂vl
∂t

+

n∑
i,j

Γlij ẋ
ivj

 =

n∑
l

gkl

(
Dv

dt

)l
(5.76)

which was exactly what we wanted to show. Therefore raising and lowering of indices commutes
with D/dt.

5.4 Parallel vectors on a sphere
Let us finish with an explicit example that illustrates many of the things discussed. Let us
parametrize a sphere with unit radius with the usual spherical coordinates

x1 = cosφ sin θ

x2 = sinφ sin θ

x3 = cos θ

Then tangent vectors to the surface of the sphere (when imbedded in R3) are given by

∂x

∂φ
=

 − sinφ sin θ
cosφ sin θ

0

 ,
∂x

∂θ
=

 cosφ cos θ
sinφ cos θ
− sin θ

 (5.77)
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The metric tensor is then readily calculated from

gφφ = 〈∂x
∂φ

,
∂x

∂φ
〉 = sin2 θ , gφθ = 〈∂x

∂φ
,
∂x

∂θ
〉 = 0 , gθθ = 〈∂x

∂θ
,
∂x

∂θ
〉 = 1

and we therefore find that
g = dθ ⊗ dθ + sin2 θ dφ⊗ dφ (5.78)

Let us now calculate the Christoffel symbols of the first kind using Eq.(5.15). We have

∂2x

∂φ2
=

 − cosφ sin θ
− sinφ sin θ

0

 ,
∂2x

∂φ∂θ
=

 − sinφ cos θ
cosφ cos θ

0

 ,
∂2x

∂θ2
=

 − cosφ sin θ
− sinφ sin θ
− cos θ


and find that the only non-vanishing Christoffel symbols are given by

[φφ, θ] = − sin θ cos θ , [φθ, φ] = [θφ, φ] = sin θ cos θ (5.79)

We can check some relations that we used, such as Eq.(5.56). We have, for instance, that

∂gφφ
∂θ

=
∂

∂θ
(sin2 θ) = 2 sin θ cos θ = [θφ, φ] + [φθ, φ]

∂gφθ
∂φ

= 0 = [φφ, θ] + [θφ, φ]

The only non-vanishing Christoffel symbols of the second kind are given by

Γφφθ = gφφ[φθ, φ] =
1

sin2 θ
sin θ cos θ = cot θ

Γθφφ = gθθ[φφ, θ] = − sin θ cos θ

This yields the following two equations for the geodesics

φ̈+ 2 θ̇φ̇ cot θ = 0

θ̈ − φ̇2 sin θ cos θ = 0

From Eq.(5.17) we see that the equations for the covariant derivative of a vector field

v = vθ
∂

∂θ
+ vφ

∂

∂φ

are given by

(∇φv) = (∇φv)θ
∂

∂θ
+ (∇φv)φ

∂

∂φ

(∇θv) = (∇θv)θ
∂

∂θ
+ (∇θv)φ

∂

∂φ

where

(∇φv)θ = vθ;φ =
∂vθ

∂φ
+ Γθφφv

φ =
∂vθ

∂φ
− sin θ cos θ vφ

(∇φv)φ = vφ;φ =
∂vφ

∂φ
+ Γφφθv

θ =
∂vφ

∂φ
+ cot θ vθ

(∇θv)θ = vθ;θ =
∂vθ

∂θ

(∇θv)φ = vφ;θ =
∂vφ

∂θ
+ Γφφθv

φ =
∂vφ

∂θ
+ cot θ vφ
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We can check that we can properly lower the indices on these quantities. The covector v[

obtained by lowering the indices on v is given by

v[ = vθ dθ + vφ dφ (5.80)

where

vθ = gθθ v
θ = vθ

vφ = gφφ v
φ = sin2 θ vφ

We can now calculate the covariant derivative of the covector using Eq.(5.46). We have

(∇φv)θ = vφ;θ =
∂vφ
∂θ
− Γφφθvφ =

∂vφ
∂θ
− cot θ vφ =

∂

∂θ
(sin2 θ vφ)− cot θ sin2 θ vφ

= sin2 θ

[
∂vφ

∂θ
+ cot θ vφ

]
= gφφ v

φ
;θ

(∇φv)φ = vφ;φ =
∂vφ
∂φ
− Γθφφvθ =

∂vφ
∂φ

+ sin θ cos θ vθ =
∂

∂φ

(
sin2 θ vφ

)
+ sin θ cos θ vθ

= sin2 θ

[
∂vφ

∂φ
+ cot θ vθ

]
= gφφ v

φ
;φ

(∇θv)θ =
∂vθ
∂θ

=
∂vθ

∂θ
= gθθ v

θ
;θ

(∇θv)φ = vθ;φ =
∂vθ
∂φ
− Γφθφvφ =

∂vθ
∂φ
− cot θ vφ =

∂vθ
∂φ
− cot θ sin2 θ vφ

=
∂vθ
∂φ
− sin θ cos θ vφ = gθθ v

θ
;φ

Let us finally calculate the coefficients of Dv/dt. Using Eq.(5.64) we have(
Dv

dt

)θ
=
∂vθ

∂t
+ Γθφφφ̇ v

φ =
∂vθ

∂t
− sin θ cos θ φ̇ vφ (5.81)(

Dv

dt

)φ
=
∂vφ

∂t
+ Γφθφθ̇ v

φ + Γφφθφ̇ v
θ =

∂vφ

∂t
+ cot θ θ̇ vφ + cot θ φ̇ vθ (5.82)

Let us from these two equations calculate the parallel vector fields satisfying Dv/dt = 0 in two
cases. In the first case we take θ(t) = t and φ = φ0 to be constant. Then Eqs.(5.81) and (5.82)
yield

0 =

(
Dv

dt

)θ
=
∂vθ

∂t

0 =

(
Dv

dt

)φ
=
∂vφ

∂t
+ cot(t) vφ

The solution to these equations is

vθ = v0 , vφ =
K

sin t
(5.83)

where v0 and K are constants. We can check that the length of the vector is constant along
the curve. We have

g(v, v) = gθθ(v
θ)2 + gφφ(vφ)2 = v2

0 + sin2 t
K2

sin2 t
= v2

0 +K2
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The reason that the component vφ seems to grow as we move from the equator to the poles
of the sphere is simply that are basis vector ∂x/∂φ has length sin θ with decreases towards the
pole. If we would introduce a normalized basis vector ẽφ = (1/ sin θ)∂x/∂φ then with respect
to this basis we would have ṽφ = K. We therefore have the following picture for the vector field.

Figure 5.5: A parallel vector field along the curve φ = φ0 and θ(t) = t.

In the second case we take φ(t) = t and θ = θ0 to be constant. In that case Eqs.(5.81) and
(5.82) give

0 =

(
Dv

dt

)θ
=
∂vθ

∂t
− sin θ0 cos θ0 v

φ

0 =

(
Dv

dt

)φ
=
∂vφ

∂t
+ cot θ0 v

θ

From the first equation we find

vφ =
1

sin θ0 cos θ0

∂vθ

∂t

which inserted into the second equation yields

∂2vθ

∂t2
= − cos2 θ0 v

θ

The general solution to this equation is

vθ(t) = A cos(ωt) +B sin(ωt)

with ω = cos θ0 (let us take the northern hemisphere such that θ0 ∈ [0, π/2] then cos θ0 > 0 )
and hence

vφ(t) =
1

sin θ0 cos θ0

∂vθ

∂t
=

ω

sin θ0 cos θ0
(−A sin(ωt) +B cos(ωt))

=
1

sin θ0
(−A sin(ωt) +B cos(ωt))



138 CHAPTER 5. THE COVARIANT DERIVATIVE

Then (
vθ

vφ

)
=

A

sin θ0

(
cos(ωt) sin θ0

− sin(ωt)

)
+

B

sin θ0

(
sin(ωt) sin θ0

cos(ωt)

)
Let us, for example, take A = 1 and B = 0. Then(

vθ

vφ

)
=

1

sin θ0

(
cos(ωt) sin θ0

− sin(ωt)

)
(5.84)

Let us check that the length of the vectors is preserved if we move along the curve. We have

g(v, v) = gθθ(v
θ)2 + gφφ(vφ)2 = cos2(ωt) + sin2 θ0

sin2(ωt)

sin2 θ0

= 1

which is constant. As a three-dimensional vector field (i.e. embedded in the surrounding R3)
this has the form

v(t) = vθ(t)
∂x

∂θ
(t) + vφ(t)

∂x

∂φ
(t) = cos(ωt)

 cos t cos θ0

sin t cos θ0

− sin θ0

− sin(ωt)

sin θ0

 − sin t sin θ0

cos t sin θ0

0


=

 ω cos(ωt) cos t+ sin(ωt) sin t
ω cos(ωt) sin t− sin(ωt) cos t

− sin θ0 cos(ωt)

 (5.85)

If our calculation was right then ∂v/∂ must only have a component normal to the surface.
Differentiating Eq.(5.85) we find

∂v

∂t
=

 (1− ω2) sin(ωt) cos t
(1− ω2) sin(ωt) sin t
ω sin θ0 sin(ωt)

 = sin(ωt)

 sin2 θ0 cos t
sin2 θ0 sin t
sin θ0 cos θ0

 = sin(ωt) sin θ0 n(t)

where

n(t) =

 cos t sin θ0

sin t sin θ0

cos θ0


is a unit vector normal to the surface of the sphere. The change in the vector field is therefore
indeed only normal to the surface. From Eq.(5.85) we see that in order to achieve this the vector
field must rotate in the tangent plane. We can rewrite Eq.(5.85) as

v(t) = cos(ωt)eθ(t)− sin(ωt)eφ(t) (5.86)

where we defined

eθ(t) =
∂x

∂θ
(t) , eφ(t) =

1

sin θ0

∂x

∂φ
(t) (5.87)

to be unit tangent vectors to the sphere. Pictorially this looks like
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Figure 5.6: A parallel vector field along a the curve φ(t) = t and θ = θ0.
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Chapter 6

Relativistic mechanics and the
Lorentz force

We present the relativistic force law, introduce the four-momentum and show how momentum
and energy transform under Lorentz transformations. We show how the Lorentz force law as
well as the electromagnetic field tensor F arise naturally from the assumption that the force is
linear in the four-velocity. We derive the transformation laws of the electric and magnetic fields
under a Lorentz transformation and work out two examples of particle motion in static fields.

6.1 Momentum and force in general coordinates
In Chapter 4 we discussed particle motion in general coordinates in Newtonian context. We
found that the force law in general spatial coordinates has the form

F k = m

(
Dv

dt

)k
= m [ẍk +

3∑
i,j=1

Γkij ẋ
i ẋj ] (6.1)

where

F k = −
3∑
l=1

gkl
∂V

∂xl
, ẋk =

∂xk

∂t
= vk (6.2)

The path of the particle x(t) is a function of time which in a Newtonian theory is the same for
any observer. In a Lorentz invariant theory space and time are transformed among each other.
In this case only the proper time coordinate τ has an invariant meaning. It is therefore clear
that the invariant generalization of Eq.(6.1) to general space-time transformations must be

F k = m

(
Dv

dτ

)k
= m [ẍk +

3∑
i,j=0

Γkij ẋ
i ẋj ] (6.3)

where

ẋk =
∂xk

∂τ
= vk(τ) (6.4)

Eq.(6.3) looks completely identical to Eq.(6.1). We have only replaced the absolute time of the
Newtonian theory by the proper time τ . We further deal with a four-dimensional space-time
manifold rather than a three-dimensional spatial manifold. The vectors in Eq.(6.3) and (6.4)
have four components and are therefore referred to a four-vectors. The simplest four-vector is

141
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the velocity four-vector vk(τ) of Eq.6.4) which is just the tangent vector to the world line of
the particle in space-time. In Chapter 1 we defined the world line in a Cartesian coordinate
system but it is clear that we can do this in any coordinate system that we like. Let us, for
the moment, stick to standard coordinates in a Lorentzian frame xk(τ) = (x0 = ct, x1, x2, x3))
then according to Eq.(1.64) we have

−c2dτ2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 (6.5)

where dxk are the infinitesimal differences between two space-time events that happen at the
same spatial points in the reference frame that moves with the particle. From Eq.(6.5) it follows
that

−c2 = −
(
dx0

dτ

)2

+

(
dx1

dτ

)2

+

(
dx2

dτ

)2

+

(
dx3

dτ

)2

(6.6)

If we introduce the metric tensor for the Minkowski metric

g =

3∑
i,j=0

gij dx
i ⊗ dxj (6.7)

where

gij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and write

v(τ) =

3∑
j=0

vj(τ)
∂

∂xj
=

3∑
j=0

∂xj

∂τ

∂

∂xj
(6.8)

then Eq.(6.5) is equivalent to
−c2 = g(v, v) (6.9)

From this equation we see that the tangent vector v to the world line has constant length. This
means that the world line curve, up to a factor of c, is parametrized by arc length (see Eq.(4.34)).
if we transform to arbitrary new coordinates (y0, y1, y2, y3) then Eq.(6.6) becomes

−c2 =

3∑
i,j,k,l=0

gij
∂xi

∂yk
∂xj

∂yl
∂yk

∂τ

∂yl

∂τ
=

3∑
k,l=0

g′kl
∂yk

∂τ

∂yl

∂τ

where

g′kl =

3∑
i,j=0

gij
∂xi

∂yk
∂xj

∂yl

For instance, when transforming the spatial Cartesian coordinates to spherical coordinates (x0, r, θ, φ)
we have

−c2 = −
(
dx0

dτ

)2

+

(
dr

dτ

)2

+ r2

(
dθ

dτ

)2

+ r2 sin2 θ

(
dφ

dτ

)2

In the absence of gravitational forces (or more precisely for a vanishing Riemann tensor) the
metric can always globally be transformed to the Minkowskian form. This metric defines a
equivalence class of physically equivalent metrics up to a coordinate transformation (which for
instance includes the metric of the rotating disc discussed in Chapter 2). In the presence of
gravitational fields Minkowskian form can only be achieved locally, describing non-rotating and
free falling frames. These are the local inertial frames described in Chapter 2. The global metric
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is determined by the mass and energy distribution and represents again an equivalence class of
metrics up to a coordinate transformation.
The next step is to give a description of the four-force in Eq.(6.3). For classical (i.e. non-
quantum) applications the most important are electromagnetism and gravity. The simplest case
is gravity since in that case we simply have F k = 0 as particles in a gravity field move freely
along geodesics in space-time. The only way gravity enters is via the Christoffel symbols Γkij
which are determined by the metric gij . We see that gravity is actually no force. This is exactly
as the constrained motion of particles along surfaces which we considered in Chapter 4. The
deviation from geodesic motion is caused by true forces not related to the curvature of space
the particles moves in. Consider, for example, the motion of two electrically charged particles
on the surface of torus. The interaction between the particles will push them away from free
geodesic motion. We will soon see what form F k attains in the case of electromagnetism, but
let us for the moment keep the vector F k general.
We start by defining the four-momentum vector in arbitrary coordinates xk

pk = m
∂xk

∂τ
= mvk(τ) (6.10)

where m is the mass (or more appropriately the rest mass of the particle). The four-force F k is
then defined to be

F k =

(
Dp

dτ

)k
= m

(
Dv

dτ

)k
(6.11)

i.e. it is the covariant derivative of the vector p along the path xk(τ) of the particle. This
is exactly Eq.(6.3). Our definition is not useful until we have also given a description of the
physical origin of the force. Let us, however, start by deriving a condition on F k. From Eq.(6.9)
it follows that

0 =
∂

∂τ
g(v, v) =

∂

∂τ

∑
i,j

gijv
ivj =

∑
i,j,k

∂gij
∂xk

∂xk

∂τ
vivj +

∑
i,j

gij

(
∂vi

∂t
vj + vi

∂vj

∂τ

)

=
∑
i,j,k

([ik, j] + [jk, i])
∂xk

∂τ
vivj +

∑
i,j

gij

(
∂vi

∂t
vj + vi

∂vj

∂τ

)

=
∑
i,j

gij

(
∂vi

∂t
vj + vi

∂vj

∂τ

)
+
∑
i,j,k,l

(Γlikglj + Γljkgli)
∂xk

∂τ
vivj

=
∑
i,j

gij


∂vi
∂τ

+
∑
k,l

Γilkv
l ∂x

k

∂τ

 vj + vi

∂vj
∂τ

+
∑
k,l

Γjlkv
l ∂x

k

∂τ


=
∑
i,j

gij

{(
Dv

dτ

)i
vj + vi

(
Dv

dτ

)j}
= 2

∑
i,j

gij

(
Dv

dτ

)i
vj

It therefore follows that
0 = g(v,

Dv

dτ
) (6.12)

and consequently from Eq.(6.11) that

0 = g(v, F ) =

3∑
i,j=0

gijv
iF j =

3∑
i=0

Fiv
i (6.13)

We therefore see that the contraction of the covector F [ with components

Fi =

3∑
j=0

gijF
j
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with the vector v is zero. We can also write this as F [(v) = 0. Since the momentum p and
force F are vectors, it is clear how they transform under general coordinate transformations.
However, to get some insight into the physical meaning of these vectors we will return to the
case of standard Lorentz frames in the next Section.

6.2 Lorentz transformation of momentum and energy
Let us now again consider the case that we have Cartesian coordinates and let us describe the
motion of a particle in terms of the time-variable t in some Lorentz frame. Then the world line
is given by

x(t) = (x0(t) = ct, x1(t), x2(t), x3(t)) (6.14)

It is clear that there is a one-to-one correspondence between t and the proper time τ since t
grows monotonically with τ . We can therefore regard t(τ) as a function of τ . If we differentiate
Eq.(6.14) with respect to τ we find

vk(τ) =
∂xk

∂τ
=
∂xk

∂t

∂t

∂τ

and therefore

v(τ) =

(
c,
∂x1

∂t
,
∂x2

∂t
,
∂x3

∂t

)
∂t

∂τ
(6.15)

The last three components within brackets are simply the components of the velocity as observed
from the Lorentz frame in which the particle moves. From Eqs.(6.15) and (6.6) we then find

−c2 =

[
−c2 +

(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2
](

∂t

∂τ

)2

and therefore
∂t

∂τ
=

1√
1− u(t)2

c2

= γ (6.16)

where we used that ∂t/∂τ > 0 and defined the velocity

u(t) =

√(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

From Eq.(6.15) we then see that

v(τ) = γ(c, u1, u2, u3) (6.17)

where ui = ∂xi/∂t for i = 1, 2, 3. From Eq.(6.17) we then see that the momentum four-vector
takes the form

p = mv = γ(mc,mu1,mu2,mu3) (6.18)

The three-vector
p(t) = γmu =

mu√
1− u2

c2

(6.19)

where u = (u1, u2, u3) represents the generalization of the Newtonian momentum p = mu to
Lorentz frames. Let us see if we can attach some physical meaning to the component p0 as
well. If there is no force acting on the particle then dp/dτ = 0 and p(τ) is a constant vector.
For the three spatial components this implies conservation of three-momentum. We also know
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that the energy of a freely moving particle is conserved. It is therefore to be expected that this
is described by the p0 component in Eq.(6.18). From dimensional considerations we see that
p0 = E/c where E is the energy. Eq.(6.18) then tells us that

E = p0c =
mc2√
1− u2

c2

(6.20)

We can also arrive at this result in a different way. We will use the following familiar equation
form classical mechanics

∂E

∂t
= F · u = m

∂u

∂t
· u =

∂

∂t

(
1

2
mu2

)
which says that the rate of change of the energy of a particle is equal to the work F ·u done on
the particle. Let us see what the equivalent of this equation is in special relativity. We consider
Eq.(6.13) for the case of a Minkowskian metric such that

0 = F0v
0 + F1v

1 + F2v
2 + F3v

3 = −F 0v0 + F 1v1 + F 2v2 + F 3v3

From this equation we see that

∂p0

∂τ
v0 = F 0v0 =

3∑
j=1

∂pj

∂τ
vj (6.21)

Further using
∂pk

∂τ
=
∂pk

∂t

∂t

∂τ
= γ

∂pk

∂t

on both sides of the equation, as well as Eq.(6.17), we see that

c
∂p0

∂t
=

3∑
j=1

uj
∂pj

∂t
= u · ∂p

∂t
= F · u (6.22)

We therefore find that

c
∂p0

∂t
=
∂E

∂t

and hence
E = p0c+K

where K is an integration constant. If we put K = 0 we recover Eq.(6.20). In case that u� c
we find from Eq.(6.20)

E = mc2 +
1

2
mu2 +

3

8
m
u4

c2
+ . . .

The second term in this equation presents the familiar kinetic energy from Newtonian mechanics.
The first term describes the energy content of a particle at zero velocity

E(u = 0) = mc2

This is not just a constant since mass is not conserved in relativistic particle collisions, unlike
in Newtonian mechanics. Mass is therefore proportional to energy content and not a separate
physical quantity. In particular, we conclude that any type of energy is a source of gravity.
Since the four-momentum is a vector, i.e. more precisely

p(τ) =

3∑
j=0

pj(τ)
∂

∂xj
=

3∑
j=0

pj(τ)
∂

∂xj
=

3∑
j,k=0

pj(τ)
∂yk

∂xj
∂

∂yk
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we have

p′k(τ) =

3∑
j=0

∂yk

∂xj
pj(τ)

In case yk are coordinates in a Lorentz frame O’ moving with respect to our original frame O
with constant speed v along the x1 axis we have

∂yk

∂xj
=


γ −γ v/c 0 0

−γ v/c γ 0 0
0 0 1 0
0 0 0 1

 γ =
1√

1− v2

c2

(6.23)

and therefore

p′0 =
p0 − v

c p
1√

1− v2

c2

, p′1 =
p1 − v

c p
0√

1− v2

c2

(6.24)

and p′2 = p2, p′3 = p3. We can write this equivalently as

E′ =
E − vp1√

1− v2

c2

, p′1 =
p1 − vE

c2√
1− v2

c2

(6.25)

From Eq.(6.6) and the definition (6.10) we further obtain the useful relation

−m2c2 = −
(
E

c

)2

+ p2

or
E = c

√
m2c2 + p2 (6.26)

where p is the three-momentum. This relation is often used in the study of particle collisions. For
instance, when we have two incoming particles with four-momenta (E1/c,p1) and (E2/c,p2)
and outgoing four-momenta (E3/c,p3) and (E4/c,p4) then the conservation of four-momentum
tells us that √

m2
1c

2 + p2
1 +

√
m2

2c
2 + p2

2 =
√
m2

3c
2 + p2

3 +
√
m2

4c
2 + p2

4

p1 + p2 = p3 + p4

Using these equations we could now study a large number of different collision processes. We
will not do this here but instead continue to discuss the force law Eq.(6.3) in the electromagnetic
case.

6.3 Lorentz force

To predict the motion of a particle under the influence of a force F k we have to solve Eq.(6.3).
However, we first need to describe how the force looks like at any space-time point. One of
the simplest force laws that one could write down is that the change in four-velocity is simply
proportional to the four-velocity. In terms of an equation

m

(
Dv

dt

)k
= q̃Fk(v) (6.27)
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where q̃ is a proportionality constant to be determined later and where F is a linear transformation
that maps a four-vector to a four-vector, i.e.

F(αv1 + βv2) = αF(v1) + β F(v2)

If we write out F in components we can write Eq.(6.27) as

m

(
Dv

dt

)k
= q̃

3∑
l=0

Fkl vl (6.28)

We see that the coefficients Fkl must be the components of a mixed tensor of type (1, 1), i.e.

F =

3∑
k=0

Fkl dxl ⊗
∂

∂xk

If we act with F on a vector v and a covector w we have

F(v, w) =

3∑
k,l=0

Fkl vlwk =

3∑
k=0

(F(v))kwk = (F(v))(w)

where F(v) is the vector

F(v) =

3∑
j=0

(F(v))k
∂

∂xk
, (F(v))k =

3∑
l=0

Fkl vl (6.29)

Given F we can define the second order covariant tensor F acting on vectors u and v by

F (u, v) = g(u,F(v)) (6.30)

where g is the metric tensor. In components we have

F (u, v) =

3∑
i,j=0

giju
i(F(v))j =

3∑
i,j,k=0

giju
iF jkv

k =

3∑
i,k=0

Fiku
ivk

where

Fik =

3∑
j=0

gijF jk (6.31)

is obtained from F by lowering the upper index. The tensor F has the property

F (v, v) = g(v,F(v)) =
m

q̃
g(v,

Dv

dτ
) = 0 (6.32)

where in the last step we used the property (6.12). If we assume that any (time-like) four-vector
can be the four-velocity of a particle in field F then we have for four-vectors u and v that

F (u, v) + F (v, u) =
1

2
[F (u+ v, u+ v)− F (u− v, u− v)] = 0

and therefore
F (u, v) = −F (v, u)

It therefore follows that F is an anti-symmetric tensor, or in components

Fik = −Fki (6.33)
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Now using Eq.(6.31)
3∑
l=0

gliFik = F lk

we can write Eq.(6.28) as

m

(
Dv

dt

)l
= q̃

3∑
k=0

F lk vk = q̃

3∑
i,k=0

gliFik v
k (6.34)

or equivalently

m

(
Dv

dt

)
i

= q̃

3∑
k=0

Fik v
k (6.35)

Therefore from Eq.(6.27) we conclude that a linear relation between the four-velocity and its
covariant derivative implies that the four-velocity and the covariant derivative of its covector
are related by a rank two anti-symmetric covariant tensor. Since Fik is anti-symmetric we can
always write it in components as

F =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (6.36)

From the way that we derived the form of this expression we can not deduce the physical meaning
of the six non-vanishing components (E1, E2, E3, B1, B2, B3). We can just note that they may
a different role since the coefficients (E1, E2, E3) involve the mixed space-time components F0j

of the tensor whereas the coefficients (B1, B2, B3) involve the purely spatial Fij , i, j = 1, 2, 3
components of the tensor. The components (E1, E2, E3) will be called the components of the
electric field whereas the components (B1, B2, B3) will be called the components of the magnetic
field. With the form Eq.(6.36) we can write out Eq.(6.35) as

m


(
Dv
dτ

)
0(

Dv
dτ

)
1(

Dv
dτ

)
2(

Dv
dτ

)
3

 = q̃


−E1v

1 − E2v
2 − E3v

3

E1v
0 + v2B3 − v3B2

E2v
0 − v1B3 + v3B1

E3v
0 + v1B2 − v2B1


and we therefore obtain the equations

m

(
Dv

dτ

)
0

= −q̃(E1v
1 + E2v

2 + E3v
3) (6.37)

m


(
Dv
dτ

)
1(

Dv
dτ

)
2(

Dv
dτ

)
3

 = q̃v0

 E1

E2

E3

+ q̃

 v2B3 − v3B2

v3B1 − v1B3

v1B2 − v2B1

 (6.38)

To write these equations in a familiar form we take Cartesian coordinates in a Lorentz frame
with Minkoskian metric. We then have(

Dv

dτ

)
i

=

3∑
j=0

gij

(
Dv

dτ

)j
=

3∑
j=0

gij
∂vj

∂t

∂t

∂τ
=

3∑
j=0

γ gij
∂vj

∂t

= γ(−∂v
0

∂t
,
∂v1

∂t
,
∂v2

∂t
,
∂v3

∂t
) (6.39)
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We then have from Eq.(6.17) that v(τ) = γ(c,u) and therefore we can write Eqs.(6.37) and
(6.38) as

m
∂

∂t
(c γ) = q̃(E1u

1 + E2u
2 + E3u

3)

m
∂

∂t
(γ u) = q̃c

 E1

E2

E3

+ q̃

 u1

u2

u3

×
 B1

B2

B3


If we now choose q̃ = q/c where q is the electric charge of the particle we recover the familiar
equations

∂E

∂t
=

∂

∂t
(γ mc2) = qE · u (6.40)

∂p

∂t
=

∂

∂t
(γ mu) = q(E +

1

c
u×B) (6.41)

Eq.(6.41) is the famous Lorentz force law (we use Gaussian units) and Eq.(6.40) describes the
change in energy of the particle when it is being accelerated or de-accelerated in the electric
field E by a force F = qE.

6.4 Transformation of electric and magnetic fields

Another useful consequence of our derivation is that, since we know that F is a rank two
covariant tensor, we can easily calculate ist components in a different coordinate frame and
in this way determine the transformation law of the electric and magnetic fields under Lorentz
transformations. We have

F =

3∑
k,l=0

F ′kl dy
k ⊗ dyl =

3∑
i,j=0

Fij dx
i ⊗ dxj =

3∑
i,j,k,l=0

Fij
∂xi

∂yk
∂xj

∂yl
dyk ⊗ dyl

and therefore

F ′kl =

3∑
i,j=0

Fij
∂xi

∂yk
∂xj

∂yl
(6.42)

In the case of a Lorentz transformation from a system O with coordinates x to a system O′ with
coordinates y which moving with velocity v along the positive x1-axis of O we have

Λij =
∂xi

∂yk
=


γ β 0 0
β γ 0 0
0 0 1 0
0 0 0 1

 (6.43)

where β = vγ/c. Then Eq.(6.42) becomes

F ′kl =

3∑
j=0

(ΛT )ki Fij Λjl
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Inserting the matrix (6.43) into this expression the yields

F ′kl =


γ β 0 0
β γ 0 0
0 0 1 0
0 0 0 1




0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0




γ β 0 0
β γ 0 0
0 0 1 0
0 0 0 1



=


γ β 0 0
β γ 0 0
0 0 1 0
0 0 0 1




−βE1 −γE1 −E2 −E3

γE1 βE1 B3 −B2

γE2 − βB3 βE2 − γB3 0 B1

γE3 + βB2 βE3 + γB2 −B1 0



=


0 −E1 −γE2 + βB3 −γE3 − βB2

E1 0 −βE2 + γB3 −βE3 − γB2

γE2 − βB3 βE2 − γB3 0 B1

γE3 + βB2 βE3 + γB2 −B1 0

 (6.44)

We therefore see that

E′1 = E1 B′1 = B1

E′2 = γ(E2 −
v

c
B3) B′2 = γ(B2 +

v

c
E3)

E′3 = γ(E3 +
v

c
B2) B′3 = γ(B3 −

v

c
E2)

We see that the electric and magnetic field componenst get transformed among each other. We
can rewrite these equations as

E′‖ = E′1 = E1

B′‖ = B′1 = B1

E′⊥ =

 0
E′2
E′3

 = γ

 0
E2

E3

+
γ

c

 v
0
0

×
 0

B2

B3


B′⊥ =

 0
B′2
B′3

 = γ

 0
B2

B3

− γ

c

 v
0
0

×
 0

E2

E3


where we split the electric and magnetic field into components parallel and perpendicular to the
the direction of motion of O′ with respect to O. Since we can always, for an arbitrary direction
of velocity v of O′ with respect to O define the x1-axis along the direction of motion, we have
in general

E′‖ = E‖ B′‖ = B‖ (6.45)

E′⊥ = γ(E⊥ +
1

c
v ×B⊥) B′⊥ = γ(B⊥ −

1

c
v ×E⊥) (6.46)

These are the general transformation laws for the electric and magnetic fields under a Lorentz
transformation. There are further two useful invariants that one can construct. These are

α =

3∑
i,j=0

FijF
ij β =

3∑
i,j=0

(?F )ijF
ij (6.47)
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We have (see Eqs.(3.103) and (3.104)) that

F ij =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 (?F )ij =


0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E2 0 E1

−B3 E2 −E1 0


which together with Eq.(6.36) gives

α = 2 (B2 −E2) , β = 4E ·B (6.48)

This implies that the statement |E| > |B| or |B| > |E| is a Lorentz invariant. Moreover if E = 0
or B = 0 in one Lorentz frame then E ⊥ B in another Lorentz frame. So if non-zero electric
and magnetic fields are not perpendicular then no Lorentz frame can be found in which either
the E-field or the B-field vanishes.
All these examples show that electromagnetism is not described by two independent vector
fields E and B. Instead they are described by an anti-symmetric field tensor F with simple
transformation properties.

6.5 Particle motion in static fields

6.5.1 The constant electric field

Let us now look at the solution of the Lorentz force Eq.(6.41) for two illustrative cases.
Let a charged particle move in a homogeneous electric field E = E1e1 = (E1, 0, 0). The particle
has an initial momentum p = p0e2 at t = 0 in the x2-direction.

Figure 6.1: Initial momentum p0 is perpendicular to the direction of the E-field.

According to Eq.(6.41) the equations of motion are

∂

∂t

(
m√

1− u2/c2
∂x1

∂t

)
= q E1

∂

∂t

(
m√

1− u2/c2
∂x2

∂t

)
= 0

∂

∂t

(
m√

1− u2/c2
∂x3

∂t

)
= 0

Because u2 = (u1)2+(u2)2+(u3)2 appears in every equation the equations are not independent.
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Integrating the equations and using the initial condition gives

m√
1− u2/c2

∂x1

∂t
= q E1 t (6.49)

m√
1− u2/c2

∂x2

∂t
= p0 (6.50)

m√
1− u2/c2

∂x3

∂t
= 0

The last eqation gives that u3 is constant, but since u3(0) = 0 we have u3(t) = 0 and hence
u2 = (u1)2 + (u2)2. The Eqs.(6.49) and (6.50) are still coupled. From these two equations we
see that

∂x1

∂t
=
qE1t

p0

∂x2

∂t
(6.51)

Squaring Eq.(6.50) gives(
∂x2

∂t

)2

=
(p0

m

)2
(

1− 1

c2

(
∂x1

∂t

)2

− 1

c2

(
∂x2

∂t

)2
)

and inserting Eq.(6.51) into this equation then gives(
∂x2

∂t

)2

=
(p0

m

)2

−
( p0

mc

)2
(
∂x2

∂t

)2
[

1 +

(
qE1t

p0

)2
]

which yields (
∂x2

∂t

)2

=
(p0c

2)2

m2c4 + p2
0c

2 + (qcE1t)2

We therefore find

u2(t) =
∂x2

∂t
=

p0c
2√

E2
0 + (qcE1t)2

(6.52)

where we defined E0 =
√
m2c4 + p2

0c
2 to be the initial energy of the particle. From Eq.(6.51)

we then also find that

u1(t) =
∂x1

∂t
=

qE1c
2t√

E2
0 + (qcE1t)2

(6.53)

Both Eq.(6.52) and Eq.(6.53) can now be integrated. If we take x1(0) = 0 and x2(0) = 0 we
find

x1(t) =
1

qE1

[√
E2

0 + (qcE1t)2 − E0

]
(6.54)

x2(t) =
p0c

qE1
sinh−1 qcE1t

E0
(6.55)

From these results we can see a number of interesting things.First of all, unlike in the Newtonian
case, the velocity does not grow linearly with time and does not become arbitrarily large but
remains always less than c. Only for times t� E0/qE1c and p0 � mc we have

u1 ≈ qE1c
2t

E0
=

qE1c
2t√

m2c4 + p2
0c

2
≈ qE1

m
t

u2 ≈ p0c
2

E0
≈ p0

m
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If we denote α = qE1c/E0 then

u1 =
cαt√

1 + (αt)2
, u2 =

p0c
2

E0

1√
1 + (αt)2

so as a function of αt we have

Figure 6.2: The velocities u1 and u2 as a function of αt.

We therefore see that, unlike the Newtonian case, that also the velocity u2 changes with time.
Let us further calculate the energy of the particle. Since

E =
mc2√

1− u2/c2

we need to calculate

1− u2

c2
= 1−

[
(αt)2

1 + (αt)2
+

(
p0c

2

E0

)2
1

1 + (αt)2

]
=

1

E2
0

m2c4

1 + (αt)2
(6.56)

and therefore
E = E0

√
1 + (αt)2

So for large times the energy grows linearly with time

E ≈ αE0t = qE1c t (t→∞)

We can further calculate the relation between the proper time τ and the time t in the Lorentz
frame O. According to Eq.(1.65) and Eq.(6.56) we have

τ(t) =

∫ t

0

dt′
√

1− u2

c2
=
mc2

E0

∫ t

0

dt′
1√

1 + (αt′)2
=

mc

qE1
sinh−1(αt)

or equivalently

t(τ) =
E0

qE1c
sinh(

qE1τ

mc
) (6.57)

Inserting this expression into Eqs.(6.54) and (6.55) then gives

x1(τ) =
E0

qE1

[√
1 + (αt)2 − 1

]
=

E0

qE1

[
cosh(

qE1

mc
τ)− 1

]
x2(τ) =

p0

m
τ
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In this way we completely determined the world line of the particle as parametrized by the proper
time τ (we take x0(τ) = c t(τ) and can take x3(τ) = 0). We can then directly calculate the
four-velocity

v0(τ) =
∂x0

∂τ
= c

∂t

∂τ
=
E0

mc
cosh

(
qE1

mc
τ

)
v1(τ) =

∂x1

∂τ
=
E0

mc
sinh

(
qE1

mc
τ

)
v2(τ) =

∂x1

∂τ
=
p0

m

v3(τ) = 0

As a check on our results we can verify that the length of the four-velocity is indeed −c2. We
have

g(v, v) = −(v0)2 + (v1)2 + (v2)2 =

(
E0

mc

)2 [
− cosh2

(
qE1

mc
τ

)
+ sinh2

(
qE1

mc
τ

)]
+

p2
0

m2

=
p2

0

m2
− E2

0

m2c2
=

1

m2c2
(p2

0c
2 − E2

0) = −c2

We can further check that

g(v,
Dv

dτ
) = −v0 ∂v

0

∂τ
+ v1 ∂v

1

∂τ
+ v2 ∂v

2

∂τ
= 0

We can finally calculate that

∂v0

∂τ
=
qE1

mc

E0

mc
sinh

(
qE1

mc
τ

)
=
qE1

mc
v1(τ)

∂v1

∂τ
=
qE1

mc

E0

mc
cosh

(
qE1

mc
τ

)
=
qE1

mc
v0(τ)

∂v2

∂τ
= 0

∂v3

∂τ
= 0

These equations are exactly the equations of motion (6.37) and (6.38) of our problem. We could,
of course, also have started by solving these equations and then work out how the equations
look in terms of the time-variable t of our Lorentz frame. Let us finally draw the world line on
the basis of our equations. We have

x0(τ) =
E0

qE1
sinh(

qE1τ

mc
)

x1(τ) =
E0

qE1

[
cosh(

qE1

mc
τ)− 1

]
x2(τ) =

p0

m
τ

and x3(τ) = 0. This gives the following figure
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Figure 6.3: The word line of a charged particle accelerated in a static electric field.

6.5.2 The constant magnetic field

The obvious next example is that of a constant magnetic field. Let this field be pointed in the
x3-direction. We therefore take (B1, B2, B3) = (0, 0, B) and E = 0. Let us this time directly
solve the equations (6.37) and (6.38) in terms of the proper time. These equations take the
form

m
∂v0

∂τ
= 0 m

∂v1

∂τ
=
qB

c
v2(τ)

m
∂v2

∂τ
= −qB

c
v1(τ) m

∂v3

∂τ
= 0

From these equations we immediately find that v0 and v3 must be constant. If we call these
constants α and ν then we have

v0 =
∂x0

∂τ
= α , v3 =

∂x3

∂τ
= ν

and consequently
x0(τ) = ατ , x3(τ) = ντ (6.58)

where we used the initial conditions x0(0) = x3(0) = 0. If we define ω = qB/mc then the
equations of motion for v1 and v2 can be rewritten as

∂v1

∂τ
= ω v2(τ)

∂v2

∂τ
= −ω v1(τ)

Since
∂2v1

∂τ2
= ω

∂v2

∂τ
= −ω2 v1

we find the general solution

v1(τ) = a cos(ωτ) + b sin(ωτ)

and

v2(τ) =
1

ω

∂v1

∂τ
= −a sin(ωτ) + b cos(ωτ)
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These equations can be integrated to give

x1(τ) =
a

ω
sin(ωτ)− b

ω
cos(ωτ) + C

x2(τ) =
a

ω
cos(ωτ)− b

ω
sin(ωτ) +D

where C and D are integration constants. No generality is lost by letting the particle start in
the origin of our coordinate system. Then x1(0) = x2(0) = 0 gives

x1(0) = C − b

ω
= 0 , x2(0) = D +

a

ω
= 0

Further no generality is lost by requiring v2(0) is zero, as we can always choose the coordinate
system in such a way that the initial velocity vector lies in the x1 − x3 plane. This gives b = 0.
Collecting our results we then find that

x1(τ) =
a

ω
sin(ωτ)

x2(τ) =
a

ω
[cos(ωτ)− 1]

where a = v1(0). Together with Eq.(6.58) we therefore have

x0(τ) = α τ

x1(τ) =
v1(0)

ω
sin(ωτ)

x2(τ) =
v1(0)

ω
[cos(ωτ)− 1]

x3(τ) = v3(0) τ

This determines the world line of the particle in terms of the initial conditions. The constant α
can be determined from Eq.(6.6) which gives

−c2 = −α2 + (v1(0))2 + (v3(0))2

or equivalently
α =

√
c2 + (v1(0))2 + (v3(0))2 (6.59)

Now that we completely determined the world line we can draw the motion of the particle in
three dimensions. This is given in the figure

Figure 6.4: Motion of a charged particle in a constant magnetic field.

The particle is spiraling in the positive or negative x3-direction depending on the sign of v3(0).
Whether the spiraling goes clockwise or counter clockwise depends on the sign of ω or qB.
We can change this orientation by either changing the charge of the particle or reverting the
direction of the magnetic field.



Chapter 7

Maxwell’s equations

We discuss charge conservation and the transformation law of currents and charges under Lorentz
transformations. Then we discuss how the Maxwell equations can be written in terms of the co-
variant derivative of the electromagnetic field tensor. We further show that Maxwell’s equations
can also be derived from exterior calculus and show the connection between the two formulations.
Finally we discuss the form of Maxwell’s equations in general orthogonal coordinate systems.

7.1 Currents and conservation of charge

In the previous Chapter we saw how electric and magnetic fields are transformed under Lorentz
transformations.Let us now see how charge and current densities are transformed. We start
by deriving the charge conservation law in differential form. The basic assumption is the well-
verified experimental fact that in any process charge is conserved. Another fact that we will use
is that the total charge of an object is independent of its state of motion, i.e. the same for any
observer.
Consider, in a given Lorentz frame, a continuous charge distribution ρ(x, t) moving with a three-
dimensional velocity field v(x, t). Consider further a given volume V at rest with respect to our
reference frame and we measure the charge that flows into this volume.

Figure 7.1: Flow of charge through a volume

The amount of charge ∆Q flowing in a time ∆t through a surface element ∆S is given by

∆Q = n · v(x, t)ρ(x, t)∆t∆S

Therefore the total charge per unit time flowing through the surface S of V is given by the
surface integral

∂Q

∂t
=

∫
S

dS n · v(x, t)ρ(x, t)

157
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If charge is conserved then the charge flowing out is equal to the change in volume charge which
is given by

∂Q

∂t
= − ∂

∂t

∫
V

dx ρ(x, t)

From these two equations we find that

0 =

∫
V

dx
∂

∂t
ρ(x, t) +

∫
S

dS n · v(x, t)ρ(x, t) =

∫
V

dx

(
∂

∂t
ρ(x, t) +∇ · (ρ(x, t)v(x, t))

)
where in the last step we used Gauss’ law to convert a surface integral to a volume integral.
Since this relation is true for any volume V we must have

0 =
∂

∂t
ρ(x, t) +∇ · (ρ(x, t)v(x, t)) (7.1)

This is the equation for the conservation of charge in differential form. The quantity

j(x, t) = ρ(x, t)v(x, t) (7.2)

is called the current density. Let us now see charge and current densities look in different
reference frames. Let us, for simplicity, take a homogeneous charge distribution ρ0 in a wire of
length L0 at rest in reference frame O.

Figure 7.2: Charge in a wire

In a system O′ moving at parallel velocity v w.r.t. the wire the length of the wire is found
Lorentz contracted to

L′ = L0

√
1− v2

c2

Since we assumed that the total charge of an object is independent of its state of motion (an
experimental fact) then we must have that the charge density ρ in the moving frame satisfies

ρ0L0 = ρL′ = ρL0

√
1− v2

c2

and therefore that
ρ =

ρ0√
1− v2

c2

= γ ρ0

So if ρ0 is the charge density of an object at rest then Eq.(7.3) gives the charge density of the
object at velocity v. In that frame the current density is then given by

j = ρv =
ρ0v√
1− v2

c2

= γ ρ0v
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From this analysis we see that it is natural define a current four-vector j in terms of the four-
velocity v = γ(c,v) by

j = ρ0 v = ρ0γ(c,v) = (c ρ, j) (7.3)

In the example we used uniform charge densities and currents but it is clear that this can be
readily generalized to non-uniform ones. We define the four-vector

j(x) = (cρ(x, t), j(x, t)) = (j0(x), j1(x), j2(x), j3(x)) (7.4)

where x = (x0, x1, x2, x3) and x0 = ct. This vector satisfies the condition

3∑
k=0

∂jk

∂xk
=
∂ρ

∂t
+∇ · j = 0 (7.5)

which is just the condition for conservation of charge of Eq.(7.1). Under a coordinate to a new
coordinate system y transformation j transforms as a vector, i.e.

j′k(y) =

3∑
l=0

∂yk

∂xl
jl(x) (7.6)

In case yk are coordinates in a Lorentz frame O’ moving with respect to our original frame O
with constant speed v along the x1 axis the transformation matrix is given by Eq.(6.23). Using
explicitly the components of j of Eq.(7.4) then gives the transformation law of charge densities
and three-dimensional currents. We find

j′1(y) =
j1(x)− v ρ(x)√

1− v2

c2

(7.7)

ρ′(y) =
ρ(x)− v j1(x)/c2√

1− v2

c2

(7.8)

j′2(y) = j2(x) , j′3(y) = j3(x) (7.9)

where the left hand sides are regarded as functions of y by regarding x(y) as a function of y in
the arguments on the right hand sides. We can check that this equation is consistent with the
formula for addition of velocities of Eqs.(1.47)-(1.49). Let j′(y)/ρ′(y) = u′(y) be the velocity
field of the charged fluid in system O′ and j(x)/ρ(x) = u(x) be the velocity field of the charged
fluid in system O. Then from Eqs.(7.7) and (7.8) it follows that

u′1(y) =
j′1(y)

ρ′(y)
=

j1(x)− v ρ(x)

ρ(x)− v j1(x)/c2
=

j1(x)/ρ(x)− v
1− v (j1(x)/ρ(x))/c2

=
u1(x)− v

1− v u1(x)/c2

which is consistent with Eq.(1.47). Similarly for the component u′2 we find

u′2(y) =
j′2(y)

ρ′(y)
=

j2(x)

ρ(x)− v j1(x)/c2

√
1− v2

c2

=
j2(x)/ρ(x)

1− v (j1(x)/ρ(x))/c2

√
1− v2

c2
=
u2(x)

√
1− v2

c2

1− v u2(x)/c2

which is consistent with Eq.(1.48). The equation for u′3(y) is clearly identical.
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7.2 The Maxwell equations
Charges and currents are the sources of the electromagnetic fields. We therefore want to make
a connection between the four-current j and the electromagnetic field tensor F . It is known
experimentally that this relation is linear. The fields produced are proportional to the strengths
of the currents and field produced by a superposition of currents is equal to the superposition
of the fields produced by each current separately. If we denote mapping j 7→ F by F [j], then
we have

F [α j1 + β j2] = αF [j1] + β F [j2] (7.10)

where α, β are some real numbers. We therefore want a linear relation between the rank two
tensor Fµν and the four-current jµ. One of the simplest ways to produce a vector out of
a second order covariant tensor is to raise the indices and to perform a contraction on the
covariant derivative. So we try

3∑
ν=0

Fµν;ν = α jµ (7.11)

where α is a constant to be determined. Let us see what we get. The contravariant form of F
was in Eq.(3.103) to be

Fµν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 (7.12)

Let us further take the case that we use standard Minkowskian coordinates, such that

Fµν;ν =
∂Fµν

∂xν

then our guess Eq.(7.11) implies that

∂E1

∂x1
+
∂E2

∂x2
+
∂E3

∂x3
= αj0

−∂E1

∂x0
+
∂B3

∂x2
− ∂B2

∂x3
= αj1

−∂E2

∂x0
− ∂B3

∂x1
+
∂B1

∂x3
= αj2

−∂E3

∂x0
+
∂B2

∂x1
− ∂B1

∂x2
= αj3

We see that these equations can be rewritten as

∂E1

∂x1
+
∂E2

∂x2
+
∂E3

∂x3
= αj0 = αcρ

−1

c

∂

∂t

 E1

E2

E3

+


∂
∂x1

∂
∂x2

∂
∂x3

×
 B1

B2

B3

 = α

 j1

j2

j3


or equivalently as

∇ ·E = αc ρ

−1

c

∂E

∂t
+∇×B = α j
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We recognize these equations as two of Maxwell’s equations when we put α = 4π/c (in Gaussian
units). Then we obtain

∇ ·E = 4π ρ (7.13)

−1

c

∂E

∂t
+∇×B =

4π

c
j (7.14)

We therefore discover two of Maxwell’s equations from the relation

3∑
ν=0

Fµν;ν =
4π

c
jµ (7.15)

Equations (7.13) and (7.14) do not determine E and B uniquely. It is, for instance, readily seen
that they determine B up to a gradient of a scalar function since the curl of gradient is zero.
This non-uniqueness can be resolved if we have another equations where E appears as a curl
and B as a divergence. A simple guess is simply to interchange E and B in Eqs.(7.13) and
(7.14) which would give the required equations. However, since (as far as experimental evidence
goes) there are no magnetic charges and currents we should put j = 0 in such an equation. The
question therefore is if we can manipulate F in such a way that the roles of the electric and
magnetic fields are interchanged. But, as we learned from Eq.(3.104), it is exactly the Hodge
dual of F that achieves this. If we raise the indices on ?F we have

(?F )µν =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 (7.16)

and we then require
3∑

ν=0

(?F )µν;ν = 0 (7.17)

This then yields the equations

−∂B1

∂x1
− ∂B2

∂x2
− ∂B3

∂x3
= 0

∂B1

∂x0
+
∂E3

∂x2
− ∂E2

∂x3
= 0

∂B2

∂x0
− ∂E3

∂x1
+
∂E1

∂x3
= 0

∂B3

∂x0
+
∂E2

∂x1
− ∂E1

∂x2
= 0

or equivalently

∇ ·B = 0 (7.18)
1

c

∂B

∂t
+∇×E = 0 (7.19)

These are the remaining two Maxwell equations needed to obtain a unique solution for the E
and B fields from the current. Together with the result of Chapter 6 for the Lorentz force we
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thus arrived at the Maxwell and Lorentz laws which we summarize together as

∇ ·E = 4π ρ (7.20)

− 1

c

∂E

∂t
+∇×B =

4π

c
j (7.21)

∇ ·B = 0 (7.22)
1

c

∂B

∂t
+∇×E = 0 (7.23)

∂

∂t
(

mv√
1− v2

c2

) = q(E +
1

c
v ×B) (7.24)

These equations summarize everything there is to know about classical electromagnetism and
what was known about classical electromagnetism after Einstein published his paper on special
relativity. In terms of the electromagnetic field tensor these equations can be summarized in a
much more symmetric way as

3∑
ν=0

Fµν;ν =
4π

c
jµ (7.25)

3∑
ν=0

(?F )µν;ν = 0 (7.26)

m

(
Dv

dt

)
µ

=
q

c

3∑
ν=0

Fµν v
ν (7.27)

What remains is to get a deeper understanding of these equations and to work them out in various
circumstances. As these stand, Eqs.(7.25)-(7.27) are already quite beautiful as a physical theory.
However, with a little extra work we can get even more compact equations, and some additional
geometric insight. Towards the end of these Lectures we will finally see that F appears as the
curvature of a so-called gauge connection.

7.3 Charge conservation revisited

We have seen that Maxwell’s equations can be written as a covariant divergence. The same is
true for the charge conservation law of Eq.(7.5). We wrote it in terms of standard Minkowskian
coordinates, but it is clear that in general coordinates we have

0 =

3∑
µ=0

jµ;µ (7.28)

This, in fact, follows directly from Eq.(7.25), since

0 =

3∑
ν,µ

(Fµν;ν );µ (7.29)

We may expect this to follow from the anti-symmetry of F together with the commutativity of
differentiation. However, in general covariant derivatives do not commute except when we are
dealing with a flat space as will be discussed in the next Chapter, so we have to be a bit careful.
However, we can avoid using with Christoffel symbols when are dealing with divergences. Let
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us analyze this a bit further. The covariant divergence of a vector j is given by (in principle we
could now consider again the case of arbitrary number of dimensions n )∑

µ

jµ;µ =
∑
µ

∂jµ

∂xµ
+
∑
µ,ρ

jρΓµµρ (7.30)

The last term in this equation involves a Christoffel symbol with two indices contracted. From
the definitions (4.12) and (4.15) of the Christoffel symbols we have

∑
k

Γkkl =
∑
k,m

gkm

2

(
∂gmk
∂xl

+
∂gml
∂xk

− ∂gkl
∂xm

)
=
∑
k,m

gkm

2

∂gmk
∂xl

(7.31)

We can derive a useful expression for the last term in this equation using the determinant of the
metric. Let us take the n-dimensional case again. The determinant of the metric is given by

g = det(gik) =

n∑
i1...in

εi1...in g1i1 . . . gnin

and we have
∂g

∂xl
=

n∑
k=1

n∑
i1...in

εi1...in g1i1 . . .
∂gkik
∂xl

. . . gnin (7.32)

If we insert
∂gkik
∂xl

=

n∑
m

∂gkm
∂xl

δmik =

n∑
m,r

∂gkm
∂xl

gmrgrik

into Eq.(7.32), then if r 6= k the product in Eq.(7.32) contacts the term grikgrir which is
symmetric in ik and ir. Due to the anti-symmetry of ε such a term does not contribute to the
total sum. Therefore only the term with r = k survives, which gives

∂g

∂xl
=

n∑
m,k

∂gkm
∂xl

gmk g

and hence
n∑
m,k

∂gkm
∂xl

gmk =
1

g

∂g

∂xl

From Eq.(7.31) we then see that

n∑
k

Γkkl =
1

2g

∂g

∂xl
=

1√
|g|

∂

∂xl

√
|g|

Consequently the covariant divergence in Eq.(7.30) becomes∑
µ

jµ;µ =
∑
µ

∂jµ

∂xµ
+
∑
ρ

jρ
1√
|g|

∂

∂xρ

√
|g| = 1√

|g|

∑
µ

∂

∂xµ

(√
|g| jµ

)
It is clear that for the case of a Minkowskian metric |g| = 1 and we recover Eq.(7.5). Let us
now see what we get for the contravariant electromagnetic field tensor Fµν . We have

Fµν;ρ =
∂Fµν

∂xρ
+
∑
σ

FσνΓµρσ +
∑
σ

FµσΓνρσ
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and therefore∑
ν

Fµν;ν =
∑
ν

∂Fµν

∂xν
+
∑
σ,ν

FσνΓµνσ +
∑
σ,ν

FµσΓννσ

=
∑
ν

∂Fµν

∂xν
+
∑
σ

Fµσ
1√
|g|

∂

∂xσ

√
|g| = 1√

|g|

∑
ν

∂

∂xν

(√
|g|Fµν

)
where we used that the second term of the equal sign in the first line vanishes due to the anti-
symmetry of F and the symmetry of the Christoffel symbol. From this expression we see that
Eq.(7.25) can be rewritten as

4π

c
jµ =

1√
|g|

3∑
ν=0

∂

∂xν

(√
|g|Fµν

)
(7.33)

But this implies that

4π

c

3∑
µ=0

jµ;µ =
4π

c

1√
|g|

∑
µ

∂

∂xµ

(√
|g| jµ

)
=

1√
|g|

3∑
µ,ν=0

∂

∂xµ∂xν

(√
|g|Fµν

)
= 0

as a consequence of the anti-symmetry of F . Therefore Eq.(7.25) automatically implies that the
covariant divergence of the current vanishes and therefore that charge is conserved.
We saw that the expression for the covariant divergence is simplified due to the anti-symmetry
of F . This happens for anti-symmetric tensors in general. Let F i1...ip be such a tensor then
from Eq.(5.49) we find that∑

k

F
i1...ip−1k
;k =

∑
k

∂F i1...ip−1k

∂xk
+
∑
k,l

F li2...ip−1kΓi1kl + . . .+
∑
k,l

F i1...ip−2lkΓ
ip−1

kl

+
∑
k,l

F i1...ip−1lΓkkl

=
∑
k

∂F i1...ip−1k

∂xk
+
∑
l

F i1...ip−1l
1√
|g|

∂

∂xl

√
|g|

=
1√
|g|

∑
k

∂

∂xk

(√
|g|F i1...ip−1k

)
(7.34)

where all, except the first and the last, terms after the first equal sign vanish due to the anti-
symmetry of F and the symmetry of the Christoffel symbols.

7.4 The exterior derivative
We have seen that in electromagnetism the electromagnetic field tensor F plays a central role.
A key property of this tensor is its anti-symmetry Fµν = −Fνµ. It turns out that anti-symmetric
tensors have special properties that allow for the development of an elegant calculus which not
only gives insight into the origin of the standard vector operations such as div, curl and the
Laplacian, but also allows us to write Maxwell’s equations in an even more compact way. The
notation will be very useful later when we discuss the derivation of Maxwell’s equations from an
action principle.
Let us start with an example. Consider a second order covariant tensor F

F =

n∑
i,j

Fij dx
i ⊗ dxj
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In Chapter 5 we saw that we can assign a third order tensor ∇F to F by the operation

∇F =

n∑
i,j,k

Fij;k dx
k ⊗ dxi ⊗ dxj

where

Fij;k =
∂Fij
∂xk

−
n∑
l

FljΓ
l
ki −

n∑
l

FilΓ
l
kj (7.35)

The last two terms with the Christoffel symbols are very important for making ∇F transform
as a tensor. However, if F is anti-symmetric a description can be given for a new type of
derivative called dF that maps F to a new anti-symmetric tensor dF which does not require
the introduction of Christoffel symbols or a metric. Let us see what happens if we forget about
the Christoffel symbols and simply define

∇̃F =

n∑
i,j,k

∂Fij
∂xk

dxk ⊗ dxi ⊗ dxj

If we go to a new coordinate system y then this equation becomes

∇̃F =

n∑
i,j,k,p,q,r

∂Fij
∂xk

∂xk

∂yp
∂xi

∂yq
∂xi

∂yr
dyp ⊗ dyq ⊗ dyr (7.36)

We could also first have carried out the coordinate transformation and then apply ∇̃. We then
have

F =

n∑
i,j,q,r

Fij
∂xi

∂yq
∂xj

∂yr
dyq ⊗ dyr

and

∇̃F =

n∑
i,j,p,q,r

∂

∂yp

(
Fij

∂xi

∂yq
∂xj

∂yr

)
dyp ⊗ dyq ⊗ dyr

=
∑

i,j,k,p,q,r

∂Fij
∂xk

∂xk

∂yp
∂xi

∂yq
∂xi

∂yr
dyp ⊗ dyq ⊗ dyr

+

n∑
i,j,p,q,r

Fij

(
∂2xi

∂yp∂yq
∂xj

∂yr
+
∂xi

∂yq
∂2xj

∂yp∂yr

)
dyp ⊗ dyq ⊗ dyr

When we compare this expression to Eq.(7.36) we see that ∇̃F has no invariant meaning since
the last two terms prevent ∇̃F from transforming as a tensor. This is exactly why we needed
the Christoffel symbols in the first place. We note, however, that the two unwanted terms are
symmetric in p and q and in p and r respectively. The undesirable terms therefore disappear
when we make the replacement

dyp ⊗ dyq ⊗ dyr → dyp ∧ dyq ∧ dyr

as the latter term is anti-symmetric. Therefore, for an anti-symmetric tensor F given by

F =

n∑
i,j

Fij dx
i ∧ dxj
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we can define

dF =

n∑
i,j,k

∂Fij
∂xk

dxk ∧ dxi ∧ dxj

and find that it this expression does have an invariant meaning. It is clear that this works for
general anti-symmetric covariant tensors (also known as p-forms). For a general anti-symmetric
F

F =

n∑
i1...ip

Fi1...ip dx
i1 ∧ . . . ∧ dxip

we define

dF =

n∑
i1...ip,k

∂Fi1...ip
∂xk

dxk ∧ dxi1 ∧ . . . ∧ dxip (7.37)

We therefore see that the operation d, which is called the exterior derivative, is a mapping

d : Ωp 7→ Ωp+1

from p-forms to (p + 1)-forms. If we define an ordinary function as a 0-form then we see that
Eq.(7.37) generalizes Eq.(3.122), i.e.

df =

n∑
j

∂f

∂xj
dxj

which is mapping from 0-forms to 1-forms. Let us derive some useful properties of the exterior
derivative. First of all, it is clear that the operation is linear

d(ω + µ) = dω + dµ ω, µ ∈ Ωp (7.38)
d(cω) = c dω c ∈ R (7.39)

Then if ω ∈ Ωp and µ ∈ Ωq then

d(ω ∧ µ) =d

 n∑
i1...ip,j1...jq

ωi1...ipµj1...jq dx
i1 ∧ . . . ∧ dxip ∧ dxj1 ∧ . . . ∧ dxjq


=

n∑
i1...ip,j1...jq,k

(
∂ωi1...ip
∂xk

µj1...jq + ωi1...ip
∂µj1...jq
∂xk

)
dxk ∧ dxi1 ∧ . . . dxjq

=

n∑
i1...ip,j1...jq,k

∂ωi1...ip
∂xk

µj1...jq dx
k ∧ dxi1 ∧ . . . ∧ dxjq

+

n∑
i1...ip,j1...jq,k

(−1)p ωi1...ip
∂µj1...jq
∂xk

dxi1 ∧ . . . dxip ∧ dxk ∧ dxj1 ∧ . . . ∧ dxjq

= dω ∧ µ+ (−1)p ω ∧ dµ

where a factor (−1)p appeared in the last term as we moved dxk over p positions. So we find

d(ω ∧ µ) = dω ∧ µ+ (−1)p ω ∧ dµ (7.40)
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Finally we have that

d(dω) = d

 n∑
i1...ip,k

∂ωi1...ip
∂xk

dxk ∧ dxi1 ∧ . . . ∧ dxip


=

n∑
i1...ip,k,l

∂2ωi1...ip
∂xk∂xl

dxl ∧ dxk ∧ dxi1 ∧ . . . ∧ dxip = 0

as a consequence of the symmetry in k and l of the second derivative. We thus find that

d2ω = 0 (7.41)

for all ω ∈ Ωp. The exterior derivative incorporates all well-known operations of vector analysis
as special cases. Let us give a few examples.

Gradient. If f ∈ Ω0 we have

df =

n∑
j

∂f

∂xj
dxj =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
(7.42)

which gives the standard gradient vector.

Curl. If ω ∈ Ω1 then

ω =

n∑
j

ωj dx
j = (ω1, . . . , ωn)

and

dω =

n∑
j,k

∂ωj
∂xk

dxk ∧ dxj =

n∑
k<j

(
∂ωj
∂xk
− ∂ωk
∂xj

)
dxk ∧ dxj

In three dimensions this gives

dω =

(
∂ω2

∂x1
− ∂ω1

∂x2

)
dx1 ∧ dx2 +

(
∂ω3

∂x1
− ∂ω1

∂x3

)
dx1 ∧ dx3 +

(
∂ω3

∂x2
− ∂ω2

∂x3

)
dx2 ∧ dx3

If xi are Cartesian coordinates and we have a standard Euclidean metric of the form

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3

then it follows from Eq.(3.94) that

? dx1 ∧ dx2 = dx3 ? dx1 ∧ dx3 = −dx2 ? dx2 ∧ dx3 = dx1

and therefore

? dω =

(
∂ω3

∂x2
− ∂ω2

∂x3

)
dx1 +

(
∂ω1

∂x3
− ∂ω3

∂x1

)
dx2 +

(
∂ω2

∂x1
− ∂ω1

∂x2

)
dx3

=

(
∂ω3

∂x2
− ∂ω2

∂x3
,
∂ω1

∂x3
− ∂ω3

∂x1
,
∂ω2

∂x1
− ∂ω1

∂x2

)
=


∂
∂x1

∂
∂x2

∂
∂x3

×
 ω1

ω2

ω3


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which is the familiar curl of a vector field.

Divergence. Let ω be a 1-form in a three-dimensional Euclidean space.

ω = ω1dx
1 + ω2dx

2 + ω3dx
3

Then
?ω = ω1 dx

2 ∧ dx3 − ω2 dx
1 ∧ dx3 + ω3 dx

1 ∧ dx2

and hence

d ? ω =
∂ω1

∂x1
dx1 ∧ dx2 ∧ dx3 − ∂ω2

∂x2
dx2 ∧ dx1 ∧ dx3 +

∂ω3

∂x3
dx3 ∧ dx1 ∧ dx2

=

(
∂ω1

∂x1
+
∂ω2

∂x2
+
∂ω3

∂x3

)
dx1 ∧ dx2 ∧ dx3 = (divω) dx1 ∧ dx2 ∧ dx3 (7.43)

We get a scalar out of this if we take the ? operator again and if we use

? dx1 ∧ dx2 ∧ dx3 = 1

To justify this expression we define the Hodge star of a 0-form (a function) f to be its multipli-
cation with the volume form Ω, i.e. we define

?f = f Ω ? f Ω = f

With this definition we find

? d ? ω =
∂ω1

∂x1
+
∂ω2

∂x2
+
∂ω3

∂x3
= divω

which gives the divergence of the vector (ω1, ω2, ω3).

From these examples we see that the standard div, grad, curl operators correspond to

Gradient ↔ d

Curl ↔ ? d (7.44)
Divergence ↔ ? d ?

With this realization we express these vector operations in an elegant way in general coordinates,
for general metrics and dimensions.
We can use the properties of the operators in Eq.(7.44) to find the forms of div, grad and curl
in general orthogonal coordinates systems in three dimensions, i.e. coordinate systems for which
the metric is of the form

g = λ2
1 dx

1 ⊗ dx1 + λ2
2 dx

2 ⊗ dx2 + λ2
3 dx

3 ⊗ dx3

For instance, in spherical coordinates (r, θ, φ) we have

g = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin θdφ⊗ dφ

and hence
(λ1, λ2, λ3) = (1, r, sin θ)

We can then define an orthonormal dual basis

ej = λj dx
j (7.45)
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such that
g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

The basis in Eq. (7.45) is dual to the vector basis

ej =
1

λj

∂

∂xj

such that g(ei, ej) = δij . In the case of spherical coordinates we have

e1 =
∂

∂r
, e2 =

1

r

∂

∂θ
, e3 =

1

r sin θ

∂

∂φ

The gradient of a function in an orthonormal basis is given by

df =

3∑
j=1

∂f

∂xj
dxj =

3∑
j=1

1

λj

∂f

∂xj
ej

or

∇f =

(
1

λ1

∂f

∂x1
,

1

λ2

∂f

∂x2
,

1

λ3

∂f

∂x3

)
(7.46)

In the case of spherical coordinates we have

∇f =

(
∂f

∂r
,

1

r

∂f

∂θ
,

1

r sin θ

∂f

∂φ

)
Let us continue with the curl for which we need to calculate ?d. We have for the covector ω in
an orthonormal basis

ω = ω1 e
1 + ω2 e

2 + ω3 e
3 = λ1ω1 dx

1 + λ2ω2 dx
2 + λ3ω3 dx

3 (7.47)

Then

dω =

(
∂(λ2ω2)

∂x1
− ∂(λ1ω1)

∂x2

)
dx1 ∧ dx2 +

(
∂(λ3ω3)

∂x1
− ∂(λ1ω1)

∂x3

)
dx1 ∧ dx3

+

(
∂(λ3ω3)

∂x2
− ∂(λ2ω2)

∂x3

)
dx2 ∧ dx3

=
1

λ1λ2

(
∂(λ2ω2)

∂x1
− ∂(λ1ω1)

∂x2

)
e1 ∧ e2 +

1

λ1λ3

(
∂(λ3ω3)

∂x1
− ∂(λ1ω1)

∂x3

)
e1 ∧ e3

+
1

λ2λ3

(
∂(λ3ω3)

∂x2
− ∂(λ2ω2)

∂x3

)
e2 ∧ e3

We now only need to take the ? operator of this expression which gives

? dω = (∇× ω)1 e
1 + (∇× ω)2 e

2 + (∇× ω)3 e
3

where

∇× ω =


1

λ2λ3

(
∂(λ3ω3)
∂x2 − ∂(λ2ω2)

∂x3

)
1

λ1λ3

(
∂(λ1ω1)
∂x3 − ∂(λ3ω3)

∂x1

)
1

λ1λ2

(
∂(λ2ω2)
∂x1 − ∂(λ1ω1)

∂x2

)
 (7.48)
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In the case of spherical coordinates this gives

∇× ω =


1

r2 sin θ

(
∂(r sin θω3)

∂θ − ∂(rω2)
∂φ

)
1

r sin θ

(
∂(ω1)
∂φ −

∂(r sin θω3)
∂r

)
1
r

(
∂(rω2)
∂r − ∂(ω1)

∂θ

)
 =


1

r sin θ

(
∂(sin θω3)

∂θ − ∂ω2

∂φ

)
1

r sin θ
∂ω1

∂φ −
1
r
∂(rω3)
∂r

1
r

(
∂(rω2)
∂r − ∂ω1

∂θ

)


Finally we consider the divergence. Let take again a covector of the form of Eq.(7.47). Then

?ω = ω1 e
2 ∧ e3 + ω2 e

3 ∧ e1 + ω3 e
1 ∧ e2

= ω1λ2λ3 dx
2 ∧ dx3 + ω2λ1λ3 dx

3 ∧ dx1 + ω3λ1λ2 dx
1 ∧ dx2

Then

d ? ω =

[
∂

∂x1
(ω1λ2λ3) +

∂

∂x2
(ω2λ1λ3) +

∂

∂x3
(ω3λ1λ2)

]
dx1 ∧ dx2 ∧ dx3

=
1

λ1λ2λ3

[
∂

∂x1
(ω1λ2λ3) +

∂

∂x2
(ω2λ1λ3) +

∂

∂x3
(ω3λ1λ2)

]
e1 ∧ e2 ∧ e3

and therefore

? d ? ω =
1

λ1λ2λ3

[
∂

∂x1
(ω1λ2λ3) +

∂

∂x2
(ω2λ1λ3) +

∂

∂x3
(ω3λ1λ2)

]
= divω (7.49)

In the case of spherical coordinates this becomes

divω =
1

r2 sin θ

[
∂

∂r
(r2 sin θω1) +

∂

∂θ
(r sin θω2) +

∂

∂φ
(rω3)

]
=

1

r2

∂

∂r
(r2ω1) +

1

r sin θ

∂

∂θ
(sin θω2) +

1

r sin θ

∂

∂φ
ω3

We have covered most familiar vector operations. The one that we are missing is the Laplacian.
But since

∇2f = div(grad f) = ? d ? df (7.50)

we only need to insert the components of Eq.(7.46) for ωi into Eq.(7.49) which yields

∇2f =
1

λ1λ2λ3

[
∂

∂x1
(
λ2λ3

λ1

∂f

∂x1
) +

∂

∂x1
(
λ1λ3

λ2

∂f

∂x2
) +

∂

∂x1
(
λ1λ2

λ3

∂f

∂x3
)

]
Again for the spherical coordinates this gives

∇2f =
1

r2 sin θ

[
∂

∂r

(
r2 sin θ

∂f

∂r

)
+

∂

∂θ

(
sin θ

∂f

∂θ

)
+

∂

∂φ

(
1

sin θ

∂f

∂φ

)]
=

1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

7.5 Maxwell’s equations from exterior calculus
From the examples of the previous section we may expect that Maxwell’s equations can de
derived by taking the exterior derivative of the electromagnetic field tensor. This is indeed the
case. More precisely the four Maxwell equations are given by

dF = 0 (7.51)

? d ? F =
4π

c
J (7.52)
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where J is the current one-form

J =

3∑
µ=0

Jµdx
µ (7.53)

obtained from the current four-vector

j =

3∑
µ=0

jµ
∂

∂xµ

by lowering the indices,

Jµ =

3∑
ν=0

gµνj
ν (7.54)

Let us check Eqs.(7.51) and (7.52). We write

F =

3∑
µ,ν=0

Fµν dx
µ ⊗ dxν =

3∑
µ<ν=0

Fµν dx
µ ∧ dxν

=− E1 dx
0 ∧ dx1 − E2 dx

0 ∧ dx2 − E3 dx
0 ∧ dx3

+B3 dx
1 ∧ dx2 −B2 dx

1 ∧ dx3 +B1 dx
2 ∧ dx3 (7.55)

We have

dF =− ∂E1

∂x2
dx2 ∧ dx0 ∧ dx1 − ∂E1

∂x3
dx3 ∧ dx0 ∧ dx1 − ∂E2

∂x1
dx1 ∧ dx0 ∧ dx2

− ∂E2

∂x3
dx3 ∧ dx0 ∧ dx2 − ∂E3

∂x1
dx1 ∧ dx0 ∧ dx3 − ∂E3

∂x2
dx2 ∧ dx0 ∧ dx3

+
∂B3

∂x0
dx0 ∧ dx1 ∧ dx2 +

∂B3

∂x3
dx3 ∧ dx1 ∧ dx2 − ∂B2

∂x0
dx0 ∧ dx1 ∧ dx3

− ∂B2

∂x2
dx2 ∧ dx1 ∧ dx3 +

∂B1

∂x0
dx0 ∧ dx2 ∧ dx3 +

∂B1

∂x1
dx1 ∧ dx2 ∧ dx3

=

[
∂E2

∂x1
− ∂E1

∂x2
+
∂B3

∂x0

]
dx0 ∧ dx1 ∧ dx2 +

[
∂E1

∂x3
− ∂E3

∂x1
+
∂B2

∂x0

]
dx0 ∧ dx3 ∧ dx1

+

[
∂E3

∂x2
− ∂E2

∂x3
+
∂B1

∂x0

]
dx0 ∧ dx2 ∧ dx3 +

[
∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3

]
dx1 ∧ dx2 ∧ dx3

We therefore see that if we require dF = 0 we have

dF = 0 ↔ ∇ ·B = 0 , ∇×E +
1

c

∂B

∂t
= 0 (7.56)

which is equivalent to the Maxwell equations (7.22) and (7.23). Let us now evaluate ? d ? F .
We assume that we have a standard Minkowskian metric. We then have (see Eq.(3.104))

?F =B1 dx
0 ∧ dx1 +B2 dx

0 ∧ dx2 +B3 dx
0 ∧ dx3

+ E3 dx
1 ∧ dx2 − E2 dx

1 ∧ dx3 + E1 dx
2 ∧ dx3

This expression is obtained simply by the replacement E → −B and E → B in F . By making
a similar replacement in dF we find therefore immediately that

d ? F =

[
−∂B2

∂x1
+
∂B1

∂x2
+
∂E3

∂x0

]
dx0 ∧ dx1 ∧ dx2 +

[
−∂B1

∂x3
+
∂B3

∂x1
+
∂E2

∂x0

]
dx0 ∧ dx3 ∧ dx1

+

[
−∂B3

∂x2
+
∂B2

∂x3
+
∂E1

∂x0

]
dx0 ∧ dx2 ∧ dx3 +

[
∂E1

∂x1
+
∂E2

∂x2
+
∂E3

∂x3

]
dx1 ∧ dx2 ∧ dx3
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We finally need to act with the ? operator on this expression. We have using Eq.(3.95) that

? dx0 ∧ dx1 ∧ dx2 = ε0123 g
00g11g22 dx3 = −dx3

? dx0 ∧ dx3 ∧ dx1 = ε0312 g
00g11g33 dx2 = −dx2

? dx0 ∧ dx2 ∧ dx3 = ε0231 g
00g22g33 dx1 = −dx1

? dx1 ∧ dx2 ∧ dx3 = ε1230 g
11g22g33 dx0 = −dx0

and find that

? d ? F =

[
−∂E1

∂x1
− ∂E2

∂x2
− ∂E3

∂x3

]
dx0 +

[
∂B3

∂x2
− ∂B2

∂x3
− ∂E1

∂x0

]
dx1

+

[
∂B1

∂x3
− ∂B3

∂x1
− ∂E2

∂x0

]
dx2 +

[
∂B2

∂x1
− ∂B1

∂x2
− ∂E3

∂x0

]
dx3 (7.57)

Furthermore the current one-form J is given by

J = J0 dx
0 + J1 dx

1 + J2 dx
2 + J3 dx

3 = −cρ dx0 + j1 dx1 + j2 dx2 + j3 dx3

where we used Eq.(7.54) and j = (cρ, j). Equating this equation with (7.57) we see that

? d ? F =
4π

c
J ↔ ∇ ·E = 4πρ , ∇×B− 1

c

∂E

∂t
=

4π

c
j (7.58)

We therefore recover the Maxwell equations (7.20) and (7.21). Our analysis therefore shows
that Eqs.(7.51) and (7.52) indeed comprise the full set of the four Maxwell equations.

7.6 Comparing two formulations

We have thus found two ways to express Maxwell’s equations. First of all we have Eqs.(7.25)
and (7.26) in terms of the covariant derivative, and secondly we have Eqs.(7.51) and (7.52) in
terms of the exterior derivative. These formulations are clearly related, so let us now establish
this final link. We may expect that there is such a link since we have seen that ?d? is related to
a divergence and Eqs. (7.25) and (7.26) are given as a divergence. However, we only checked
this relation for vectors. So what we need to do is to check it for tensors as well. If ω is an
anti-symmetric tensor of order p (a p-form) on an n-dimensional space i.e.

ω =

n∑
i1<...<ip

ωi1...ipdx
i1 ∧ . . . ∧ dxip (7.59)

then ?d ? ω is a (p− 1)-form

? d ? ω =

n∑
m1<...<mp−1

(? d ? ω)m1...mp−1 dx
m1 ∧ . . . ∧ dxmp−1 (7.60)

with coefficients given by

(? d ? ω)m1...mp−1
=

sign(g)√
|g|

(−1)np+n
n∑

k,r1...rp−1

∂

∂xk
(
√
|g|ωkr1...rp−1)gr1m1

. . . grp−1mp−1
(7.61)
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The proof of this expression is a straightforward, albeit tedious, derivation using the definitions
of the d and the ? operators. In order to no interrupt the presentation too much this derivation
is given in Appendix B. This expression looks somewhat simpler if we raise the indices on ? d?ω.
We have

(? d ? ω)r1...rp−1 = sign(g)(−1)np+n
(−1)p−1√
|g|

n∑
k

∂

∂xk
(
√
|g|ωr1...rp−1k)

where we also moved the index k over (p − 1) positions to the end which gives an additional
pre-factor (−1)p−1 due to the anti-symmetry of ω. If we compare now to Eq.(7.34) we recognize
the divergence of the tensor ω. We can therefore write

(? d ? ω)r1...rp−1 = sign(g)(−1)np+n+p+1
n∑
k

ω
r1...rp−1k
;k (7.62)

This is the equation that we need. We take now ω = F to be the electromagnetic field tensor.
Then we have n = 4, p = 2 and sign(g) = −1. Then Eq.(7.62) gives

(? d ? F )µ =

3∑
ν=0

Fµν;ν (7.63)

This provides the desired connection between Eqs.(7.25) and (7.52). In other words, Eq.(7.25)
could also have been written as

(? d ? F )] =
4π

c
j

which by lowering the index leads to Eq.(7.52). What about the other two Maxwell equations?
Let us again consider Eq.(7.62) but now choose ω = ?F . Then since according to Eq.(3.108)
we have ? ? F = −F it follows that

−(? dF )µ = (? d ? ?F )µ =

3∑
ν=0

(?F )µν;ν (7.64)

Therefore Eq.(7.26) is equivalent to ?dF = 0 which is equivalent to dF = 0 and gives back
Eq.(7.51). This completely establishes the link between the two formulations.

7.7 Maxwell’s equations in general orthogonal curvilinear
coordinates

Many of the cases in which we can solve the Maxwell equations analytically involve a special
symmetry. The equations simplify if we use a symmetry-adapted coordinate system, such as
cylindrical or spherical coordinates. It is therefore worthwhile to investigate the form of the
Maxwell equations in such coordinate systems. Let the original metric be

g = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3

corresponding to a standrad Minkowskian metric. We now assume that the problem has a
certain spatial symmetry and we therefore want to transform the spatial coordinates. We then
have xi(y1, y2, y3) for i = 1, 2, 3 and x0 = y0 = ct. If we define

∂x

∂yi
=

(
∂x1

∂yi
,
∂x2

∂yi
,
∂x3

∂yi

)
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then we say that the new coordinate system is orthogonal when

gij = 〈 ∂x
∂yi

,
∂x

∂yj
〉 = λ2

i δij (7.65)

This means that the metric in coordinate system (y0, y1, y2, y3) attains the form

g = −dy0 ⊗ dy0 + λ2
1 dy

1 ⊗ dy1 + λ2
2 dy

2 ⊗ dy2 + λ2
3 dy

3 ⊗ dy3

Let us now see how the electromagnetic field tensor transforms to this coordinate system. We
define the electric field one-form

E = E1 dx
1 + E2 dx

2 + E3 dx
3 (7.66)

and the magnetic field two-form

B = B1 dx
2 ∧ dx3 +B2 dx

3 ∧ dx1 +B3 dx
1 ∧ dx2 (7.67)

in terms of the original coordinate system. From Eq.(7.55) we then see that the electromagnetic
field tensor can be written as

F = B + E ∧ dx0

Now the transformation law for the electric field is quite straightforward. We have

E =

3∑
j=1

Ej dx
j =

3∑
j,k=1

Ej
∂xj

∂yk
dyk =

3∑
k=1

E′k dy
k

So we have

E′ =

(
∂x

∂y1
,
∂x

∂y2
,
∂x

∂y3

)T
E = LE (7.68)

where L is a matrix with as rows the vectors ∂x/∂yi. For the magnetic field two-form we have

B =

3∑
j,k=1

[
B1

∂x2

∂yj
∂x3

∂yk
+B2

∂x3

∂yj
∂x1

∂yk
+B3

∂x1

∂yj
∂x2

∂yk

]
dyj ∧ dyk

=

3∑
j<k

[
B1

(
∂x2

∂yj
∂x3

∂yk
− ∂x3

∂yj
∂x2

∂yk

)
+B2

(
∂x3

∂yj
∂x1

∂yk
− ∂x1

∂yj
∂x3

∂yk

)

+B3

(
∂x1

∂yj
∂x2

∂yk
− ∂x2

∂yj
∂x1

∂yk

)]
dyj ∧ dyk

= B′1 dy
2 ∧ dy3 +B′2 dy

3 ∧ dy1 +B′3 dy
1 ∧ dy2

from which we see that

B′ =

(
∂x

∂y2
× ∂x

∂y3
,
∂x

∂y3
× ∂x

∂y1
,
∂x

∂y1
× ∂x

∂y2

)T
B = M B (7.69)

where M is a matrix that contains as rows the outer products of the vectors ∂x/∂yj . So far our
derivations apply to general spatial coordinate transformations. However, if we use an orthogonal
coordinate system for which Eq.(7.65) holds then the outer product of ∂x/∂yi and ∂x/∂yj is
proportional to ∂x/∂yk for i 6= j 6= k. For instance

∂x

∂y2
× ∂x

∂y3
= α

∂x

∂y1
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where α is a factor to be determined. Since these three vectors are orthogonal we have

λ2λ3 =

∣∣∣∣ ∂x∂y2
× ∂x

∂y3

∣∣∣∣ = |α|
∣∣∣∣ ∂x∂y1

∣∣∣∣ = λ1 |α|

and hence

|α| = λ2λ3

λ1

This determines the value of α up to a sign. If we, however, impose that our coordinate
transformation is orientation preserving, meaning that the Jacobian of the transformation is
positive

J = det(
∂x

∂y1
,
∂x

∂y2
,
∂x

∂y3
) > 0 (7.70)

then it follows from

det(abc) = a · (b× c) = b · (c× a) = c · (a× b)

that α > for all the three outer products in Eq.(7.69). It then follows that the transformation is
given by

B′ =

(
λ2λ3

λ1

∂x

∂y1
,
λ1λ3

λ2

∂x

∂y2
,
λ1λ2

λ3

∂x

∂y3

)T
B (7.71)

From this expression we see that it will be advantageous to work in an orthonormal basis. If we
define

ei = λi dy
i (7.72)

as well as e0 = dy0 then the metric g attains the form

g = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

We can now wrtite the electric field one-form and the magnetic field two-form in this basis as

E = E′′1 e
1 + E′′2 e

2 + E′′3 e
3

B = B′′1 e
2 ∧ e3 +B′′2 e

3 ∧ e1 +B′′3 e
1 ∧ e2

where

E′′j =
E′j
λj

and

B′′1 =
B′1
λ2λ3

, B′′2 =
B′2
λ1λ3

, B′′3 =
B′3
λ1λ2

In this new orthonormal basis the transformation laws (7.68) and (7.69) become

E′′ =

(
1

λ1

∂x

∂y1
,

1

λ2

∂x

∂y2
,

1

λ3

∂x

∂y3

)T
E = NE

B′′ =

(
1

λ1

∂x

∂y1
,

1

λ2

∂x

∂y2
,

1

λ3

∂x

∂y3

)T
B = NB

where now the row vectors (1/λj)∂x/∂y
j of the matrix N form an orthonormal set. So with

this orthonormal basis it appears that the electric and magnetic fields transform in a similar way
under spatial transformations. This, however, only appearance. If we do not use orthogonal
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coordinates, or use transformations that change the orientation then they transform differently.
For instance, if we perform a space inversion

xi → −xi = yi

in Eqs.(7.66) and (7.67) then we see that

E′i = −Ei , B′i = Bi

such that the electric field transforms to minus itself but the magnetic field remains the same. For
this reason it is sometimes said that the B-field is a pseudo-vector. This is, however, somewhat
confusing. The most precise things to say is that the B-field is a two-form.
As a nice application of the Hodge ? operator let us show that the transformation law for the
magnetic field could have been derived differently as well. From Eq.(7.67) it follows that

?B = B1 dx
1 +B2dx

2 +B3dx
3

Transforming this to coordinate system y gives

?B =

3∑
i,j=1

Bi
∂xi

∂yj
dyj (7.73)

If we, however, first write B in new coordinates we have

B = B′1 dy
2 ∧ dy3 +B′2 dy

3 ∧ dy1 +B′3 dy
1 ∧ dy2

We can now take the star operation on this expression using Eq.(3.97). This gives

? dy2 ∧ dy3 = ε231

√
|g|
∣∣∣∣ g22 g23

g32 g33

∣∣∣∣ dy1 = λ1λ2λ2

∣∣∣∣∣
1
λ2
2

0

0 1
λ2
3

∣∣∣∣∣ dy1 =
λ1

λ2λ3
dy1

and similarly

? dy3 ∧ dy1 =
λ2

λ1λ3
dy2 , ? dy1 ∧ dy2 =

λ3

λ1λ2
dy3

We therefore find that

?B =
λ1B

′
1

λ2λ3
dy1 +

λ2B
′
2

λ1λ3
dy2 +

λ3B
′
3

λ1λ2
dy3

Comparing this expression to Eq.(7.73) then gives

λ1B
′
1

λ2λ3
=

3∑
i=1

Bi
∂xi

∂y1

λ2B
′
2

λ1λ3
=

3∑
i=1

Bi
∂xi

∂y2

λ3B
′
3

λ1λ2
=

3∑
i=1

Bi
∂xi

∂y3

We see that we recovered exactly the transformation law of Eq.(7.71).
Let us now look at Maxwell’s equations again. We saw that it is convenient to work in an
orthonormal basis. The basis ej dual to the basis in Eq.(7.72) is given by

ej =
1

λj

∂

∂yj
j = 1, 2, 3

and e0 = ∂/∂y0. The current four-vector in this basis is given by

j = j0e0 + j1e1 + j2e2 + j3e3 = cρ
∂

∂y0
+
j1

λ1

∂

∂y1
+
j1

λ2

∂

∂y2
+
j1

λ3

∂

∂y3
(7.74)
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In terms of the dual vectors ej the electromagnetic field tensor is given by

F = −E1 e
0 ∧ e1 − E2 e

0 ∧ e2 − E3 e
0 ∧ e3 +B1 e

1 ∧ e2 +B2 e
3 ∧ e1 +B3 e

1 ∧ e2 (7.75)

whereas is contravariant version with components Fµν , which we will denote by F ] is given by

F ] = E1 e0 ∧ e1 + E2 e0 ∧ e2 + E3 e0 ∧ e3 +B1 e1 ∧ e2 +B2 e3 ∧ e1 +B3 e1 ∧ e2

Let us now see what equations we obtain from the Maxwell Eqs.(7.25) or equivalently Eq.(7.33).
To apply Eq.(7.33) we first write F ] in coordinate basis as

F ] =
E1

λ1

∂

∂y0
∧ ∂

∂y1
+
E2

λ2

∂

∂y0
∧ ∂

∂y2
+
E3

λ3

∂

∂y0
∧ ∂

∂y3

+
B1

λ2λ3

∂

∂y2
∧ ∂

∂y3
+

B2

λ1λ3

∂

∂y3
∧ ∂

∂y1
+

B3

λ1λ2

∂

∂y1
∧ ∂

∂y2

and hence

Fµν =


0 E1

λ1

E2

λ2

E3

λ3

−E1

λ1
0 B3

λ1λ2
− B2

λ1λ3

−E2

λ2
− B3

λ1λ2
0 B1

λ2λ3

−E3

λ3

B2

λ1λ3
− B1

λ2λ3
0


We further have √

|g| =
√
|g00g11g22g33| = λ1λ2λ3

Then from Eq.(7.33) and Eq.(7.74) it follows that

4πρ =
1

λ1λ2λ3

[
∂

∂y1
(λ2λ3E1) +

∂

∂y2
(λ1λ3E2) +

∂

∂y3
(λ1λ2E3)

]
4π

c

j1

λ1
=

1

λ1λ2λ3

[
− ∂

∂y0
(λ2λ3E1) +

∂

∂y2
(λ3B3)− ∂

∂y3
(λ2B2)

]
4π

c

j2

λ2
=

1

λ1λ2λ3

[
− ∂

∂y0
(λ1λ3E2) +

∂

∂y3
(λ1B1)− ∂

∂y1
(λ3B3)

]
(7.76)

4π

c

j1

λ1
=

1

λ1λ2λ3

[
− ∂

∂y0
(λ1λ2E3) +

∂

∂y1
(λ2B2)− ∂

∂y2
(λ1B1)

]
On the right hand side of the first equation we recognize the divergence of Eq.(7.49) in general
orthogonal coordinates, whereas in the remaining three equations we recognize the formula of
the curl of Eq.(7.48). Further more since the λi are time-independent (we only transformed the
spatial coordinates) they can be taken out of the terms involving ∂/∂y0. Let us now check if
we get the same from Eq.(7.52). We have

?F =B1 e
0 ∧ e1 +B2 e

0 ∧ e2 +B3 e
0 ∧ e3 + E1 e

2 ∧ e3 + E2 e
3 ∧ e1 + E3 e

1 ∧ e2

=B1λ1 dy
0 ∧ dy1 +B1λ1 dy

0 ∧ dy1 +B1λ1 dy
0 ∧ dy1

+ E1λ2λ3 dy
2 ∧ dy3 + E2λ3λ1 dy

3 ∧ dy1 + E3λ1λ2 dy
1 ∧ dy2

The current covector is obtained by lowering the indices on j and given by

J = −ρc e0 + j1 e1 + j2 e2 + j3 e3 = −cρ dy0 + j1λ1 dy
1 + j2λ2 dy

2 + j3λ3 dy
3 (7.77)
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We can now take the exterior derivative of ?F to obtain

d ? F =
1

λ1λ2

[
∂

∂y0
(λ1λ2E3)− ∂

∂y1
(λ2B2) +

∂

∂y2
(λ1B1)

]
e0 ∧ e1 ∧ e2

+
1

λ1λ3

[
∂

∂y0
(λ1λ3E2)− ∂

∂y3
(λ1B1) +

∂

∂y1
(λ3B3)

]
e0 ∧ e1 ∧ e3

+
1

λ2λ3

[
∂

∂y0
(λ2λ3E1)− ∂

∂y2
(λ3B3) +

∂

∂y3
(λ2B2)

]
e0 ∧ e2 ∧ e3

+
1

λ1λ2λ3

[
∂

∂y1
(λ2λ3E1) +

∂

∂y2
(λ1λ3E2) +

∂

∂y3
(λ1λ2E3)

]
e1 ∧ e2 ∧ e3

Then using

? e0 ∧ e1 ∧ e2 = −e3 ? e0 ∧ e3 ∧ e1 = −e2

? e0 ∧ e2 ∧ e2 = −e1 ? e1 ∧ e2 ∧ e3 = −e0

we find that

? d ? F =− 1

λ1λ2λ3

[
∂

∂y1
(λ2λ3E1) +

∂

∂y2
(λ1λ3E2) +

∂

∂y3
(λ1λ2E3)

]
e0

+
1

λ2λ3

[
∂

−∂y0
(λ2λ3E1) +

∂

∂y2
(λ3B3)− ∂

∂y3
(λ2B2)

]
e1

+
1

λ1λ3

[
− ∂

∂y0
(λ1λ3E2) +

∂

∂y3
(λ1B1)− ∂

∂y1
(λ3B3)

]
e2

+
1

λ1λ2

[
− ∂

∂y0
(λ1λ2E3) +

∂

∂y1
(λ2B2)− ∂

∂y2
(λ1B1)

]
e3

If we compare this expression to the current covector J in Eq.(7.77) we see that the relation

? d ? F =
4π

c
J (7.78)

is indeed equivalent to the four equations (7.76). As an exercise you can yourself work out the
set of equations

0 =
1√
|g|

3∑
ν=0

∂

∂xν

(√
|g| (?F )µν

)
0 = dF

in the same coordinates and see that they yield the same equations.
Let us finally give the equation for the Lorentz force in the general orthogonal coordinate system.
If we write out Eq.(7.75) for F in terms of a coordinate basis we have

F = −E1λ1 dy
0 ∧ dy1 − E2λ2 dy

0 ∧ dy2 − E3λ3 dy
0 ∧ dy3

+B1λ2λ3 dy
1 ∧ dy2 +B2λ1λ3 dy

3 ∧ dy1 +B3λ1λ2 dy
1 ∧ dy2

and therefore

Fµν =


0 −λ1E1 −λ2E2 −λ3E3

λ1E1 0 λ1λ2B3 −λ1λ3B2

λ2E2 −λ1λ2B3 0 λ2λ3B1

λ3E3 λ1λ3B2 −λ2λ3B10


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Then the Lorentz force law (7.27) becomes
(
Dv
dτ

)
0(

Dv
dτ

)
1(

Dv
dτ

)
2(

Dv
dτ

)
3

 =
q

mc


0 −λ1E1 −λ2E2 −λ3E3

λ1E1 0 λ1λ2B3 −λ1λ3B2

λ2E2 −λ1λ2B3 0 λ2λ3B1

λ3E3 λ1λ3B2 −λ2λ3B1 0




ẏ0

ẏ1

ẏ2

ẏ3


where ẏi = ∂yi/∂τ . Further we have that(

Dv

dτ

)
k

=

3∑
j=0

gkj ÿ
j +

3∑
i,j=0

[ij, k] ẏiẏj

where

[ij, k] =
1

2

(
∂

∂yj
(λ2
i )δik +

∂

∂yi
(λ2
j )δjk −

∂

∂yk
(λ2
i )δij

)
where we defined λ0 = 1. As an example we can take cylindrical coordinates y = (ct, r, θ, z) =
(y0, y1, y2, y3) relted to the Cartesian coordinates by

x1 = r cos θ

x2 = r sin θ

x3 = z

(7.79)

We then have
g = −dy0 ⊗ dy0 + dr ⊗ dr + r2dθ ⊗ dθ + dz ⊗ dz

So λ0 = λ1 = λ3 = 1 and λ2 = r. Denoting

(E1, E2, E3) = (Er, Eθ, Ez) , (B1, B2, B3) = (Br, Bθ, Bz)

and using the only non-vanishing Christoffel symbols

[rθ, θ] = [θr, θ] = r , [θθ, r] = −r

we have 
−ÿ0

r̈ − rθ̇2

r2θ̈ + 2rṙθ̇
z̈

 =
q

mc


0 −Er −rEθ −Ez
Er 0 rBz −Bθ
rEθ −rBz 0 rBr
Ez Bθ −rBr 0




ẏ0

ṙ

θ̇
ż


Using y0 = ct this yields the equations

ẗ =
q

mc2
(ṙEr + rθ̇Eθ + żEz)

r̈ − rθ̇2 =
q

m
Er ṫ+

q

mc
(rBz θ̇ −Bθ ż)

r2θ̈ + 2rṙθ̇ =
q

m
rEθ ṫ+

q

mc
(rBr ż − rBz ṙ)

z̈ =
q

m
Ez ṫ+

q

mc
(Bθ ṙ − rBr θ̇)
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Chapter 8

The general solution of
Maxwell’s equations

We show that the electromagnetic field tensor can be written as the exterior derivative of a
four-potential. This four potential is not unique but determined up to a gauge transformation.
The equation of motion of the four-potential is given by a second order differential equations and
we therefore give a discussion of the d’Alembert operator in general coordinates. We discuss the
free space solutions of Maxwell’s equations that are given by electromagnetic waves and finally
give the general solution of the Maxwell equations in terms of given charges and currents.

8.1 Gauge invariance and vector potential
We have seen that the electromagnetic field satisfies the condition dF = 0. Given the fact that
for any p-form ω we have that d2ω = 0 it is natural to ask whether there is a one-form A such
that

F = dA (8.1)

and hence dF = d2A = 0. Differential forms ω with the property that dω = 0 are called closed,
and the ones with the property that there is a β such that ω = dβ are called exact. We know
that F is closed, but the question is whether it also is exact. This question is answered by so-
called Poincaré’s lemma, which states that if a p-form vanishes in a so-called star-shaped region
then there is a (p − 1)-form β such that dβ = ω. In order not to interrupt the discussion this
lemma is proven in Appendix C. Now since dF vanishes everywhere it follows from this lemma
that there is a one-form

A = A0 dx
0 +A1 dx

1 +A2 dx
2 +A3 dx

3 (8.2)

with the property (8.1). Insering this expression into F = dA we find that

F =

3∑
µ<ν

Fµν dx
µ ∧ dxν = d

(
3∑

ν=0

Aνdx
ν

)
=

3∑
µ,ν=0

∂Aν
∂xµ

dxµ ∧ dxν

=

3∑
µ<ν

(
∂Aν
∂xµ

− ∂Aµ
∂xν

)
dxµ ∧ dxν

and therefore we find that
Fµν =

∂Aν
∂xµ

− ∂Aµ
∂xν

(8.3)
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Since
F0ν = −Eν =

∂Aν
∂x0

− ∂A0

∂xν
(ν = 1, 2, 3)

it follows that the electric field is given by

E = ∇A0 −
1

c

∂A

∂t

where we defined A = (A1, A2, A3). Further since

B1 = F23 =
∂A3

∂x2
− ∂A2

∂x3
, B2 = −F13 =

∂A1

∂x3
− ∂A3

∂x1
, B3 = F12 =

∂A2

∂x1
− ∂A1

∂x2

it follows that
B = ∇×A

The quantity A0 is usually denoted A0 = −φ (the minus sign is explained by the fact that raising
the indices makes it vanish) such that Eq.(8.2) is written

A = −φdx0 +A1 dx
1 +A2 dx

2 +A3 dx
3 = (−φ,A)

where A is called the four-potential and A is called the vector potential. In terms of these
quantities the electric and magnetic fields are then given by

E = −∇φ− 1

c

∂A

∂t
(8.4)

B = ∇×A (8.5)

If we write F = dA the equation dF = 0 is automatically satisfied. The remaining Maxwell
equations are then given by

4π

c
J = ? d ? F = ? d ? dA (8.6)

This gives an equation for the four-potential A. We can not expect a unique solution to this
equation, even when we specify initial conditions. This is because if A is a solution to this
equation then also A′ = A + dΛ is a solution where Λ is an arbitrary function. This follows
simply from

dA′ = d(A+ dΛ) = dA+ d2Λ = dA

since d2Λ = 0 for any function Λ. It then follows that

F ′ = dA′ = dA = F

This means that the electric and magnetic fields are invariant under the transformation A →
A + dΛ. Such a transformation is called a gauge transformation and we therefore see that
the electromagnetic field tensor is gauge invariant. In component notation the transformation
A′ = A+ dΛ is written as

φ′ = φ− 1

c

∂Λ

∂t
A′ = A +∇Λ

It is readily seen that these transformations indeed leave Eqs.(8.4 ) and (8.5) invariant. We will
now investigate Eq.(8.6) a bit further. We see that is involves two d operators and therefore
two derivatives. We will now rewrite in a form that involves second covariant derivatives. Let us
therefore briefly discuss the topic of taking second derivatives of tensors. We start by pointing
out an issue which can lead to confusion when we use an improper notation. Recall that if we
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have a tensor A of type (p, q) then the covariant derivative ∇ produces a new tensor ∇A of
type (p + 1, q). Applying the operator twice leads to the tensor ∇∇A of type (p + 2, q). For
example, if A is a vector of the form

A =
∑
i

Ai
∂

∂xj

then

∇A =
∑
i,j

Ai;j dx
j ⊗ ∂

∂xi
(8.7)

where

Ai;j =
∂Ai

∂xj
+
∑
l

AlΓijl

are the components of a tensor of type (1, 1). Taking the covariant derivative again we obtain

∇∇A =
∑
i,j,k

(Ai;j);k dx
k ⊗ dxj ⊗ ∂

∂xi
=
∑
i,j,k

(∇∇A)ikj dx
k ⊗ dxj ⊗ ∂

∂xi
(8.8)

where

(∇∇A)ikj = (Ai;j);k =
∂Ai;j
∂xk

−
∑
l

Ai;lΓ
l
kj +

∑
l

Al;jΓ
i
kl (8.9)

where we simply used Eq.(5.49) for the differentiation of a tensor of type (1, 1). Let us now do a
similar but relating thing. We take again the vector A but consider is derivative in the direction
of the vector v. This gives a new vector B given by

B = ∇vA =
∑
i,j

Ai;jv
j ∂

∂xi
=
∑
i

Bi
∂

∂xi

where
Bi =

∑
j

Ai;jv
j

We can continue to differentiate B in the direction of another vector field w. This gives a new
vector C given by

C = ∇wB =
∑
i,k

Bi;kw
k ∂

∂xi
=
∑
i

Ci
∂

∂xi

where
(∇w∇vA)i = Ci =

∑
k

Bi;kw
k =

∑
j,k

(Ai;jv
j);kw

k (8.10)

where

Bi;k =
∂Bi

∂xk
+
∑
l

BlΓikl =
∂

∂xk
(
∑
j

Ai;jv
j) +

∑
j,l

Al;jv
jΓikl (8.11)

If we now take v = ∂/∂xj and w = ∂/∂xk we find from Eq.(8.10) and (8.11) that

(∇k∇jA)i =
∂Ai;j
∂xk

+
∑
l

Al;jΓ
i
kl (8.12)
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The confusion thing is that the right hand side is not equal to the expression (8.9) as the last
term in Eq.(8.10) may suggest, since here we take the covariant derivative ∇k of the vector B
rather than a tensor of type (1, 1). The index j in the expression

(∇k∇jA)i = Bi;k = (Ai;j);k (8.13)

is not regarded as tensor index when taking the covariant derivative ∇k and therefore the right
hand side of this expression is not the same as (8.9) . We see from Eq.(8.9) and Eq.(8.12) that

(Ai;j);k = (∇k∇jA)i −
∑
l

Ai;lΓ
l
kj

where the left hand side now has the meaning of a tensor (and j is now regarded as a tensor
index.. We see from this example that it os not a good idea to use the notation on the right hand
side of Eq.(8.13) for the second covariant derivative as it may lead to confusion in calculations if
one does not keep track on the meaning of the indices. Therefore, we will introduce the notation
that for a given tensor of type (p, q) we will always regard(

A
j1...jq
i1...ip;l

)
;k

= A
j1...jq
i1...ip;l;k

as components of the tensor ∇∇A of type (p + 2, q), whereas the components of the tensor
∇k∇lA of type (p, q) will be denoted by

(∇k∇lA)
j1...jq
i1...ip

= ∇k∇lA
j1...jq
i1...ip

where we remove the brackets to make the notation less busy. We should however keep in mind
that we are not differentiating the components themselves, but always take the components
after differentiation. In the following we will often raise indices of variables with respect we
differentiate and we therefore define

∇lAj1...jqi1...ip
=
∑
m

glm∇mA
j1...jq
i1...ip

or more compactly
∇l =

∑
m

glm∇m

Using this definition we can derive useful relations such as∑
k

∇kAk =
∑
i,j,k

gki∇i(gkjAj) =
∑
i,j,k

gkigkj∇iAj =
∑
i,j

δij∇iAj =
∑
j

∇jAj

where we used that ∇igkj = 0. After this intermezzo we can now go back to the electromagnetic
tensor. We write this as

Fµν =
∂Aν
∂xµ

− ∂Aµ
∂xν

=

(
∂Aν
∂xµ

−
∑
ρ

AρΓ
ρ
µν

)
−

(
∂Aµ
∂xν

−
∑
ρ

AρΓ
ρ
νµ

)
= Aν;µ −Aµ;ν = ∇µAν −∇νAµ

where we used the symmetry of the Christoffel symbols. By raising the indices we then find that

Fµν = ∇µAν −∇νAµ (8.14)
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Then we can write Maxwell’s equations as

4π

c
jµ =

∑
ν

∇νFµν =
∑
ν

∇ν(∇µAν −∇νAµ)

By lowering the index µ we obtain∑
ν

∇ν∇µAν −∇ν∇νAµ =
4π

c
Jµ (8.15)

This is the more explicit version of Eq.(8.6). As we noted this equation does not have a unique
solution due to the gauge freedom that we have and we therefore need to fix a gauge. More
precisely we need to make a choice for the scalar function Λ. We make the so-called Lorenz
gauge and require that

3∑
ν=0

∇νAν =

3∑
ν=0

Aν;ν = 0 (8.16)

This is always possible. Suppose namely that we had a four-potential A′ with the property

3∑
ν=0

∇νA′ν = f

where f is some function. Then by choosing Λ such that it satisfies the differential equation

3∑
ν=0

∇ν(dΛ)ν =

3∑
µ,ν=0

1√
|g|

(√
|g|gνµ ∂Λ

∂xµ

)
= f (8.17)

we find that A = A′ − dΛ exactly satisfies the gauge of Eq.(8.16). This still does not fix all
gauge freedom as this equation as to any solution Λ of this equation we can add a homogeneous
solution Λ0 satisfying

∑
ν ∇ν(dΛ0)ν = 0 such that Λ0 + Λ also satisfies the equation above. If

we use the Lorenz gauge we can write Eq.(8.15) as

4π

c
Jµ =

3∑
ν=0

(−∇ν∇νAµ + (∇ν∇µ −∇µ∇ν)Aν +∇µ∇νAν)

=

3∑
ν=0

(−∇ν∇νAµ + [∇ν ,∇µ]Aν) (8.18)

where we defined the commutator

[∇ν ,∇µ] = ∇ν∇µ −∇µ∇ν

In general this commutator does not vanish since covariant derivatives do not commute due to
the presence of the Christoffel symbols. However, in the special case of a standard Minkowskian
metric we have simply

∇lA
j1...jq
i1...ip

=
∂A

j1...jq
i1...ip

∂xl
(8.19)

in which case we can identify ∇l with the simple differential operator ∂l = ∂/∂xl, for which

[∂ν , ∂µ] = 0
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In that case Eq.(8.18) attains the form

4π

c
Jµ =

3∑
ν=0

−∂ν∂νAµ =

3∑
ν,ρ=0

gνρ
∂2Aµ
∂xν∂xρ

= −
[
− ∂2

∂x02 +
∂2

∂x12 +
∂2

∂x22 +
∂2

∂x32

]
Aµ = −�Aµ (8.20)

where we defined the d’Alembertian � by

� = − 1

c2
∂2

∂t2
+

∂2

∂x12 +
∂2

∂x22 +
∂2

∂x32

We will in detail investigate the solution to Eq.(8.20) but before we do this we will first investigate
what happens if we do not assume that the commutator in Eq.(8.18) vanishes. Let us simply
calculate how the commutator looks in given coordinates when we act on a vector. We have

[∇k,∇j ]Ai = ∇k∇jAi −∇j∇kAi

=

(
∂Ai;j
∂xk

+

n∑
l

Al;jΓ
i
kl

)
−

(
∂Ai;k
∂xj

+

n∑
l

Al;kΓijl

)

=
∂

∂xk

(
∂Ai

∂xj
+

n∑
m

AmΓijm

)
+

n∑
l

(
∂Al

∂xj
+

n∑
m

AmΓljm

)
Γikl

− ∂

∂xj

(
∂Ai

∂xk
+

n∑
m

AmΓikm

)
−

n∑
l

(
∂Al

∂xk
+

n∑
m

AmΓlkm

)
Γijl

= −
n∑
m

AmRimjk (8.21)

where we defined (using the symmetry Γijk = Γikj of the Christoffel symbols)

Rimjk =
∂Γimk
∂xj

−
∂Γimj
∂xk

+

n∑
l

(ΓlmkΓilj − ΓlmjΓ
i
lk)

which we recognize as the Riemann curvature tensor of Eq.(4.56). Eq.(8.21) is a special case of
the following general relation that can be proven by a similar straightforward calculation

[∇k,∇l]A
j1...jq
i1...ip

=

p∑
r=1

n∑
ν=1

A
j1...jq
i1...ir−1νir+1...ip

Rνirkl −
q∑
s=1

n∑
ν=1

A
j1...js−1νjs+1...jq
i1...ip

Rjsνkl (8.22)

Using Eq.(8.21) we find that Eq.(8.18) becomes

4π

c
Jµ =

3∑
ν=0

(−∇ν∇νAµ + [∇ν ,∇µ]Aν)

=

3∑
ν=0

(−∇ν∇νAµ −
∑
ρ

AρRνρµν) = −
3∑

ν=0

∇ν∇νAµ +
∑
ρ

AρRρµ (8.23)

where we defined
Rρµ = −

∑
ν

Rνρµν
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which from Eq.(4.63) we recognize as the Ricci tensor. As discussed in Chapter 4 the significance
of the Riemann curvature tensor is that it vanishes only when there exist a coordinate trans-
formation which makes the metric diagonal. In our case this implies that there is a coordinate
transformation which makes the metric of the form

g = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3

This still includes a wide variety of physical situations such as the rotating disc of Chapter 2
or any other non-inertial frame in flat space-time. However, in general gravity fields the use of
Eq.(8.23) becomes necessary although the vanishing of the Ricci tensor is a weaker constraint
than the vanishing of the Riemann tensor. For instance, in the Schwarzschild solution for the
black hole the Ricci tensor vanishes. We conclude that if we can neglect the curvature of space
due to mass-energy distributions then we can put Rρµ = 0 and then Eq.(8.23) becomes

4π

c
Jµ = −

3∑
ν=0

∇ν∇νAµ (8.24)

This equation is still valid in general coordinate systems but only within the class of metrics
gµν that can be obtained from the Minkowski metric by a coordinate transformation. If we are
interested in electromagnetic fields in curved space-time we can always add the last term in
Eq.(8.23).

8.2 The Laplacian and d’Alembertian
What we will show now is that we can find an elegant expression for both the d’Alembertian
and the gauge-fixing condition using differential forms. In Eq.(7.50) we saw that the Laplacian
operator ∆ on a function f is given by

∆f = ∇2f = ? d ? df

If we, however, want to generalize this definition to vectors rather than scalar functions the
expression in terms of differential forms changes. For instance, in three dimensions we have the
well-known identity

−∆A = −∇2A = ∇× (∇×A)−∇(∇ ·A) (8.25)

as can be readily seen by a short calculation

∇× (∇×A)i −∇(∇ ·A)i =
∑
j,k

εijk∂j(∇×A)k − ∂i
∑
j

∂jAj

=
∑
j,k,l,m

εijkεklm∂j∂lAm −
∑
j

∂i∂jAj =
∑
j,l,m

(δilδjm − δimδjl)∂j∂lAm −
∑
j

∂i∂jAj

=
∑
j

∂j∂iAj − ∂j∂jAi −
∑
j

∂i∂jAj = −
∑
j

∂2
jAi = −∆Ai

If A is a one-form then we saw that curl is given by the operator ? d and therefore

∇× (∇×A) = ? d ? dA

we further noted that d represents the gradient when acting on a scalar function and ? d?
represents the divergence when acting on a one-form. We therefore find

∇(∇ ·A) = d ? d ? A
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Therefore from Eq.(8.25) we find that form a one-form A in three dimensions with standard
metric we have

−∆A = (? d ? d− d ? d ?)A (8.26)

This representation of the Laplacian ∆ also seems to work for scalar functions apart from a sign
since

d ? f = d(Ωf) = 0

since the differential of the volume form Ω vanishes. It therefore appears that Eq.(8.26 ) could
be generalization of the Laplacian for general p-forms, but we need to fix the signs appropriately.
Moreover it turns out that the relative minus sign between the two terms is dependent on the
number of dimensions. In Minkowski space it must become a plus sign in order to reproduce
the d’Alembertian. To find the right sign we must apply the operators ? d ? d and d ? d ? on a
general p-form and compare the results. Let us start by considering the operator ? d? acting on
a general p-form ω. Let us go back to Eq.(7.61) and write it in the form

(? d ? ω)m1...mp−1 =
sign(g)√
|g|

(−1)np+n
n∑

k,r1...rp−1

∂

∂xk
(
√
|g|ωkm1...mp−1

)

= sign(g)(−1)np+n
n∑
k

ωkm1...mp−1;k (8.27)

where we again used that lowering of indices commutes with covariant differentiation. We can
also turn the equation around and write

−
n∑
k

ωkm1...mp−1;k = (d†ω)m1...mp−1
(8.28)

where we define the so-called co-differential operator d† as

d† = sign(g)(−1)np+n+1 ? d ? (8.29)

It turns out that d† is the adjoint of d in a suitably chosen inner product but we will not need
this feature here. We will define it more precisely later when we will look at the action principle
for the Maxwell equations. Just like the d operator the operator d† has the property (d†)2 = 0,
as follows immediately from

(?d?)2 = ?d ? ?d? = ± ? d2? = 0

The generalization of the Laplacian ∆ or the d’Alembertian (which is usually written as �
instead) on general p-forms is then given by

−∆ = d d† + d†d

Before we show this we will first check that we get back Eq.(8.26) for one-forms in three
dimensions with an Euclidean metric. If A is a one-form then dA is a two-form and we find

(d d† + d†d)A = (−1)3·1+3+1d ? d ? A+ (−1)3·2+3+1 ? d ? dA

= (? d ? d− d ? d ?)A

which agrees with Eq.(8.26). You can check yourself that we also get the right result for the
Laplacian when we act on a function. Let us now act with d d† and d†d on general p-forms. We
start with d†d. For a p-form

ω =
1

p!

n∑
i1...ip

ωi1...ipdx
i1 ∧ . . . ∧ dxip



8.2. THE LAPLACIAN AND D’ALEMBERTIAN 189

we have

dω =
1

p!

n∑
i1...ip

∂ωi1...ip
∂xk

dxk ∧ dxi1 ∧ . . . ∧ dxip

Due to the symmetry of the Christoffel symbols we can replace ∂kωi1...ip by ωi1...ip;k. We can
therefore write

dω =
1

p!

n∑
i1...ip

∇k ωi1...ip dxk ∧ dxi1 ∧ . . . ∧ dxip

=
1

p!(p+ 1)!

n∑
i1...ip,k
j1...jp+1

δ
k i1...ip
j1...jp+1

∇k ωi1...ip dxj1 ∧ . . . ∧ dxjp+1

=
1

(p+ 1)!

n∑
j1...jp+1

(dω)j1...jp+1
dxj1 ∧ . . . ∧ dxjp+1

where we defined

(dω)j1...jp+1 =
1

p!

n∑
k,i1...ip

δ
k i1...ip
j1...jp+1

∇k ωi1...ip (8.30)

From Eq.(8.28 ) we then have

(d†dω)r1...rp = −
n∑
k

∇k(dω)k r1...rp

= − 1

p!

n∑
k,l,i1...ip

δ
l i1...ip
k r1...rp

∇k∇l ωi1...ip

= − 1

p!

n∑
k,i1...ip

δ
k i1...ip
k r1...rp

∇k∇k ωi1...ip −
1

p!

n∑
k 6=l

n∑
i1...ip

δ
l i1...ip
k r1...rp

∇k∇l ωi1...ip

= −
n∑
k

∇k∇k ωr1...rp +
1

(p− 1)!

n∑
l

n∑
i1,...,ip

δl i2...ipr1...rp ∇
i1∇l ωi1...ip (8.31)

where in the evaluation of the last term we used that the index k must be equal to one of the
indices (i1 . . . ip) but each of the p possible choices k = im leads to the same sum since both δ
and ω are anti-symmetric. We therefore simply made the choice k = i1 and multiplied with p.
We further used that

δ
l i1 i2...ip
i1 r1...rp

= −δi1 l i2...ipi1 r1...rp
= −δl i2...ipr1...rp

and the fact that l 6= i1. We now proceed to calculate d d†. Since d†ω is a (p − 1)-form we
have from Eq.(8.30) that

(d d†ω)r1...rp =
1

(p− 1)!

n∑
k i1...ip−1

δk i1...ip−1
r1...rp ∇k(d†ω)i1...ip−1

= − 1

(p− 1)!

n∑
l,k,i1...ip−1

δk i1...ip−1
r1...rp ∇k∇l ωl i1...ip−1
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If we add this equation to Eq.(8.31) we then obtain that

([d†d+ d d†]ω)r1...rp = −
n∑
k

∇k∇k ωr1...rp +
1

(p− 1)!

n∑
k,l

n∑
i2,...,ip

δl i2...ipr1...rp [∇k,∇l]ωk i2...ip

= −
n∑
k

∇k∇k ωr1...rp +
1

(p− 1)!

n∑
k,l

n∑
i2,...,ip

δl i2...ipr1...rp [∇k,∇l]ωki2...ip (8.32)

This is our final result. If ω is equal to the one-form A this equation gives

[d†d+ d d†]Aµ = −
∑
ν

∇ν∇νAµ +
∑
ν

[∇ν ,∇µ]Aν

On the right hand side we have obtained exactly the same as in Eq.(8.18). We can therefore
equivalently write

(d†d+ d d†)A =
4π

c
J (8.33)

Using Eq.(8.22) we could have written out Eq.(8.32) further in terms of the Riemann curvature
tensor. If we are working in the absence of gravitational fields we can forget about these terms
since in that case they are identically zero. In that case Eq.(8.32) simply gives

([d†d+ d d†]ω)r1...rp = −
n∑
k

∇k∇k ωr1...rp

We then indeed see that d†d+d d† gives the required generalization of the Laplacian. If we now
go back to four space-time dimensions and use standard Minkowskian coordinates then we see
that

n∑
k

∇k∇k ωr1...rp =

[
− ∂2

∂x02 +
∂2

∂x12 +
∂2

∂x22 +
∂2

∂x32

]
ωr1...rp

We therefore define the generalization of the d’Alembertian as

� = −(d†d+ d d†) (8.34)

In four-dimensional space-time we see from the definition in Eq.(8.29) that

d† = sign(g)(−1)4p+4+1 ? d ? = ? d ?

for any p-form and therefore
−� = ? d ? d+ d ? d ? (8.35)

Let us now go back to our starting equation (8.6). We can now write this as

4π

c
J = ? d ? dA = −�A− d ? d ? A (8.36)

We can now use the gauge condition

? d ? A = d†A = 0

This gauge condition gives
d†A = ? d ? A = −

∑
ν

Aν;ν = 0

which is precisely the Lorenz gauge condition. Then Eq. (8.36) yields

�A = −4π

c
J (8.37)

With � defined as in Eqs.(8.34) or (8.35) this equation is valid in general space-times. What
remains is to study the solutions of this equation.
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8.3 The four-potential and Lorentz transformations
Before we study Eq.(8.37) in its generality it will be useful to give some examples of the use
of four-potentials. Let us first write the four-potential A in a four-vector form by raising the
indices. If we assume standard Minkowskian coordinates then this gives

A] = φ
∂

∂x0
+A1

∂

∂x1
+A2

∂

∂x2
+A3

∂

∂x3
(8.38)

By similarly raising the indices in Eq.(8.37) we see that the components of this vector satisfy

�Aµ = −4π

c
jµ

where j = (cρ, j) is the current four-vector. If we write this out in terms of the components of
A] = (φ,A) we have

�φ = −4πρ (8.39)
�A = −4πj (8.40)

Since the d’Alembertian operator −� =
∑
ν ∇ν∇ν is a Lorentz invariant these equations are

valid in any Lorentz frame. We can check this explicitly. Since A] is a four-vector we have, for
instance, under a Lorentz boost in the x1-direction that

φ′ =
φ− v

cA
1√

1− v2

c2

(8.41)

A′1 =
A1 − v

cφ√
1− v2

c2

(8.42)

A′2 = A2 A′3 = A3

Then with γ = (1− v2/c2)−1/2 we have

�φ′ = γ(�φ− v

c
�A1) = γ(−4πρ+

v

c

4π

c
j1) = −4π

c
(cρ− v

c
j1) = −4π

c
cρ′ = −4πρ′

�A′1 = γ(�A1 − v

c
�φ) = γ(−4π

c
j1 +

v

c
4πρ) = −4π

c
γ(j1 − vρ) = −4π

c
j′1

where we used the transformation laws for the charge and the current of Eqs.(7.7) and (7.8).
Let us now give a useful application of these transformations. We consider a static charge
distribution ρ′(x′) at rest with respect to a Lorentz frame O′. Let this frame move with velocity
v along the x1-axis of another system O. We want to find the electric and magnetic fields with
respect to O. Since in O′ we have that j′ = 0 we can take A′ = 0. The equation for φ′ is then
given by (8.39) as

−4πρ′ =

[
− 1

c2
∂2

∂t′2
+

∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2

]
φ′

where we denote the coordinates in O′ by (ct′, x′, y′, z′) and similarly in O by (ct, x, y, z). Since
the charge distribution is static in O′ we can take the potential φ′ to be time-independent and
our equation reduces to

∇′2φ′ = −4πρ′

which is simply Poisson’s equation from electrostatics. The solution to this equation is well-
known to be given by

φ′(r′) =

∫
dr′′

ρ′(r′′)

|r′ − r′′|
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where |r| = (x2 + y2 + z2)1/2 is the three-dimensional length of r = (x, y, z) and were we used
the boundary condition that φ′ → 0 for |r′| → ∞. To check that this expression indeed satisfies
Poisson’s equation we simply need the identity

∇2 1

|r|
= −4πδ(r) (8.43)

where δ(r) is the usual three-dimensional delta distribution. Let us now take the simple case
that

ρ′(r′) = q δ(r′)

is a point charge in the origin of system O′. In that case we have that

φ′(r′) =
q

|r′|
(8.44)

is simply the Coulomb potential of point charge q. By the reciprocal of the Lorentz transfor-
mations (i.e. interchanging the primed and unprimed and replacing v by −v) of Eq.(8.41) and
(8.42) we then find

φ =
φ′(r′)√
1− v2

c2

=
q√

1− v2

c2

1√
x′2 + y′2 + z′2

=
q√

1− v2

c2


 x− vt√

1− v2

c2

2

+ y2 + z2


− 1

2

(8.45)

Ax =
v

c

φ′(r′)√
1− v2

c2

=
v

c
φ (8.46)

Ay = Az = 0

Now we can calculate the electric and magnetic fields from Eqs.(8.4) and (8.5). This gives using
Eq.(8.4)

E =
qγ

(γ2(x− vt)2 + y2 + z2)3/2

 x− vt
y
z

 (8.47)

whereas Eq.(8.5) gives

B =

 ∂
∂x
∂
∂y
∂
∂z

×
 v

cφ
0
0

 =

 0
v
c
∂φ
∂z

−vc
∂φ
∂y

 =
v

c

 0
−Ez
Ey


=
v

c

 v
0
0

×
 Ex

Ey
Ez

 =
1

c
v ×E (8.48)

We therefore have the following situation
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Figure 8.1: Electric and magnetic fields from a uniformly moving charge.

The electric field at x = vt is given by

E =
qγ

(y2 + z2)3/2

 0
y
z


and is therefore increased by a factor of γ compared to the field in the rest frame. The electric
field component Ex along the x-axis (y = z = 0) is given by

Ex = q

(
1− v2

c2

)
1

(x− vt)2
(8.49)

is reduced by a factor γ2. We will see that for non-uniform motion the particle will start to
radiate.

8.4 Solution of Maxwell’s equation in free space: elec-
tromagnetic waves

Let us now go back to Eq.(8.37) and study it for the case of free space, or the absence of charge
or current distributions, jµ = 0. We will consider a standard Lorentz frame. In that case we
have

�Aµ = 0

If we write this out in terms of components we have

�φ = 0 , �A = 0

together with the gauge condition∑
ν

∇νAν =
1

c

∂φ

∂t
+∇ ·A = 0

We make use of the fact that this gauge condition still leaves some gauge freedom. If Λ is a
function such that

−
∑
ν

∇ν∇νΛ = �Λ = 0

then the potentials

φ′ = φ− 1

c

∂Λ

∂t
A′ = A +∇Λ
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also satisfy the Lorenz gauge condition since

1

c

∂φ′

∂t
+∇ ·A′ = − 1

c2
∂2Λ

∂t2
+∇2Λ +

1

c

∂φ

∂t
+∇ ·A =

1

c

∂φ

∂t
+∇ ·A = 0

In particular, if φ satisfies �φ = 0 then we can choose Λ such that

φ =
1

c

∂Λ

∂t

such that φ′ = 0 and the Lorenz gauge condition simply attains the form ∇ · A′ = 0. The
electric field is then simply given by

E = −∇φ′ − 1

c

∂A′

∂t
= −1

c

∂A′

∂t

If we drop the primes again, we conclude that the equations to be solved are therefore given by

�A = 0 , ∇ ·A = 0

from which the electric and magnetic fields can be calculated as

E = −1

c

∂A

∂t
, B = ∇×A

Let us now write �A = 0 more explicitly as(
∇2 − 1

c2
∂2

∂t2

)
A = 0 (8.50)

The general solution of this equation is an, in general infinite, superposition of plane waves of
the form

A = ε ei(k·r−ωt) (8.51)

where r = (x1, x2, x3) and ε is a constant vector and k is a real vector. Inserting this expression
into Eq.(8.50 ) gives

(−|k|2 +
ω2

c2
)A = 0

which yields the relation ω = ±|k|c. The solutions with + or − simply gives waves moving in
opposite directions. We take ω = ±|k|c. From the gauge condition ∇ ·A we further find that

k · ε = 0

which implies that A is a transverse wave. If we split ε = ε1 + iε2 into a real and an imaginary
part this implies that k · ε1 = 0 as well as k · ε2 = 0. Our solution is a complex function but
since Eq.(8.50) is linear we can find a real solution by taking the real and the imaginary part.
To obtain a real solution Ar we take

Ar =
1

2
(A + A∗) = ε1 cos(k · r− ωt)− ε2 sin(k · r− ωt)

The electric and magnetic fields are then given by

E = −1

c

∂Ar

∂t
= −ω

c
[ε1 sin(k · r− ωt) + ε2 cos(k · r− ωt)]

B = ∇×Ar = −(k× ε1) sin(k · r− ωt)− (k× ε2) cos(k · r− ωt) =
c

ω
k×E
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We can readily check that
E ·B = 0 , E2 −B2 = 0

which are Lorentz invariants. If we chosen k along the x-axis then the vectors ε1 and ε2 lie in
the y − z-plane. Let us, for simplicity, take ε1 and ε2 to be orthogonal such that ε1 · ε2 = 0.
Then we can choose the z-axis along ε1 and the y-axis along ε2. Then we can write the electric
field as

E =

 0
a cos(kx− ωt)
b sin(kx− ωt)


where k = |k| = ω/c and

B = k̂×E =

 0
−b sin(kx− ωt)
a cos(kx− ωt)


where we used that ωk/c = k̂ where k̂ is a unit vector in the k-direction. If we take a fixed
value of x then in time the electric field rotates in the y − z plane such that

E2
y

a2
+
E2
z

b2
= 1

This figure describes an ellipse in the y−z plane with semi-major and minor axes given by a and b
(or b and a if b > a) as displayed in Fig. 8.2a. We say that the electromagnetic wave is elliptically
polarized. The wave propagates along the x-axis with velocity c since kx − ωt = k(x − ct).
The wave-length is λ = 2π/k and its frequency ω = kc. If we take the special case a = 0
in the equations above then we obtain linearly polarized light with the following non-vanishing
components of the electric and magnetic field

Ez = b sin(kx− ωt)
By = −b sin(kx− ωt)

This wave is displayed in Fig.8.2b.

Figure 8.2: An eliptically polarized electromagnetic wave (a) and a linearly polarized wave (b).

If we had not assumed that ε1 and ε2 were orthogonal we would still have found that the light
was in general elliptically polarized. The ellipse would simple be rotated in the yz and a phase
shift would appear. We leave it for the reader to show this.
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Sofar we considered wave-packets. For any smooth function ε(k) satisfying k · ε(k) = 0 (such
as ε(k) = k×C(k) with C(k) any smooth vector) one finds readily that

A(r, t) =

∫
dk ε(k) ei(k·r−|k|ct)

is a solution to the wave equation. As above we can split into real and imaginary parts to find
real solutions. Now, depending on which boundary conditions we impose, we can find a large
variety of solutions. Apart from the plane wave solutions we have found, in particular spherical
wave solutions are of common interest as they describe radiation from localized sources.

8.5 The general solution of Maxwell’s equations
Let us now see whether we can find a general solution to the equation

�Aµ = −4π

c
jµ (8.52)

The general solution consists of a homogeneous solution Aµh satisfying �Aµh = 0 and a specific
solution satisfying �Aµs = −(4π/c)jµ. The most general solution is then Aµ = Aµh +Aµs where
a unique solution is provided by specifying initial conditions on the fields. We will assume that
charges and currents are localized in space such that jµ → 0 when |x| → ∞ and we will therefore
look for solutions Aµ that vanish at spatial infinity. If we denote x = (x, y, z) then Eq.(8.52)
has the explicit form (

− 1

c2
∂2

∂t2
+∇2

)
Aµ(x, t) = −4π

c
jµ(x, t) (8.53)

Let us now first write A(x, t) as a Fourier transform in the time variable as

Aµ(x, t) =

∫ +∞

−∞
dω Aµ(x, ω) e−iωt

then by Fourier transforming Eq.(8.53) we find(
ω2

c2
+∇2

)
Aµ(x, ω) = −4π

c
jµ(x, ω) (8.54)

If we can now find a function D(x− x′, ω) which satisfies(
ω2

c2
+∇2

)
D(x− x′, ω) = −4πδ(x− x′) (8.55)

then a solution to Eq.(8.54) is

Aµ(x, ω) =
1

c

∫
dx′D(x− x′, ω) jµ(x′, ω)

as follows directly by applying the operator ω2/c2 +∇2 to both sides of the equation. Since we
know that

∇2 1

|x− x′|
= −4πδ(x− x′)

we can try a function of the form

D(r) =
f(r)

r
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where r = |x− x′|. A short calculation then shows that

∇2

(
f(r)

r

)
=

1

r

∂2f

∂r2
− 4π(x− x′)f(0) (8.56)

and we thus find that
f(r) = α ei

ω
c r + β e−i

ω
c r

where α+ β = 1. This gives

D(x− x′, ω) = αDR(x− x′, ω) + β DA(x− x′, ω)

where

DR,A(x− x′, ω) =
e±i

ω
c |x−x

′|

|x− x′|
which are called the retarded and advanced propagators. With this expression the solution for
Aµ is therefore given by

Aµ(x, ω) =
α

c

∫
dx′

ei
ω
c |x−x

′|

|x− x′|
jµ(x′, ω) +

β

c

∫
dx′

e−i
ω
c |x−x

′|

|x− x′|
jµ(x′, ω)

Fourier transforming back to the time domain then gives

Aµ(x, t) =

∫ +∞

−∞
dω Aµ(x, ω) e−iωt

=
α

ω

∫
dx′
∫
dω
jµ(x′, ω)

|x− x′|
e−iω(t−|x−x′|/c) +

β

ω

∫
dx′
∫
dω
jµ(x′, ω)

|x− x′|
e−iω(t+|x−x′|/c)

=
α

c

∫
dx′

jµ(x′, t− |x− x′|/c)
|x− x′|

+
β

c

∫
dx′

jµ(x′, t+ |x− x′|/c)
|x− x′|

This is the solution that we were seeking for. We now only need to determine α and β. This
is readily done on physical grounds. The first term in the equation depends of the retarded
time t − |x − x′|/c. The contribution to Aµ(x, t) comes the current at a point x′ which is a
light distance ct = |x − x′| in the past. The second term, on the other hand, depends on the
advanced time t + |x − x′|/c in the future. This contradictions our experience. We therefore
need to take β = 0 and α = 1. We therefore find

Aµ(x, t) =
1

c

∫
dx′

jµ(x′, t− |x− x′|/c)
|x− x′|

(8.57)

This is our final result. We can rewrite this solution a bit in a more Lorentz invariant form. First
of all, we can write

Aµ(x, t) =
1

c

∫
dx′dt′

δ(t− t′ − |x− x′|/c)
|x− x′|

jµ(x′, t′) (8.58)

Furthermore, since for a function f(x) we have the identity

δ(f(x)) =
∑
j

1

| dfdx (xj)|
δ(x− xj) (8.59)

where xj are the zeros of f , i.e. f(xj) = 0, it follows that

δ(−c2(t− t′)2 + (x− x′)2) =
1

2c

1

|x− x′|
(δ(t− t′ − |x− x′|/c) + δ(t− t′ + |x− x′|/c))
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where we used the function f(t′) = −c2(t− t′)2 + (x− x′)2 and

df

dt′
= 2c2(t− t′) = ±2c|x− x′| (8.60)

If we use the Heaviside function θ(x) = 1 for x > 0 and zero otherwise, then we can write

θ(t− t′)δ(−c2(t− t′)2 + (x− x′)2) =
1

2c

1

|x− x′|
δ(t− t′ − |x− x′|/c)

If we then define DR(x− x′) as

DR(x− x′) = 2θ(t− t′)δ(−c2(t− t′)2 + (x− x′)2) = 2θ(t− t′) δ((x− x′)2) (8.61)

where x = (ct, x, y, z) = (x0, x1, x2, x3) and we defined

(x− x′)2 = −c2(t− t′)2 + (x− x′)2

then we can write Eq.(8.58) as

Aµ(x, t) =
1

c

∫
d4xDR(x− x′) jµ(x′) (8.62)

where d4x is now a four-dimensional volume element. The function DR is called a retarded
propagator and has only contributions from the surface of the past light cone to space-time
point x.

Figure 8.3: The propagator has only values on the past light cone.

This gives a nice description on how the four-potential is determined from initial data.

Figure 8.4: Cauchy surface
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A Cauchy surface in four-dimensional Minkowski space is a surface with a normal vector that
is time-like. If we know the four-current on a Cauchy surface C and know how the charge and
current distributions change in time then we can always find the four-potential in space time
point to the future of surface C.
We found the general solution Eq.(8.57). However, we did not check that it satisfies the Lorenz
gauge condition. This can be seen to be a consequence of charge conservation. Since the
integral in Eq.(8.57) goes over all space we can make the substitution x′ = x + y and we get

Aµ(x, t) =
1

c

∫
dy

jµ(x + y, t− |y|/c)
|y|

(8.63)

Denoting z = x + y and z0 = ct− |y| we then have

1

c

∂A0

∂t
+∇ ·A =

1

c

∫
dy

1

|y|

(
1

c

∂j0

∂t
+∇ · j

)
(x + y, t− |y|/c)

=
1

c

∫
dy

1

|y|

(
∂j0

∂z0
+∇z · j

)
(z, z0)|z=x+y,z0=t−|y|/c = 0

as a consequence of the fact that
∑
ν ∂j

ν/∂zν = 0. So we see that the solution of Eq.(8.57)
indeed satisfies the gauge condition.
To the general solution of Eq.(8.57) we can still add arbitrary homogeneous solutions describing
the propagation of electromagnetic waves in free space. Such waves are in practice always
generated by moving charges (such as antennas far away) and therefore Eq.(8.57) is the more
fundamental solution. If we split this solution into a charge and a current part we have

φ(x, t) =

∫
dx′

ρ(x′, t− |x− x′|/c)
|x− x′|

A(x, t) =
1

c

∫
dx′

j(x′, t− |x− x′|/c)
|x− x′|

We have therefore arrived at the following highlight of this course.

Maxwell’s equations:

∇ ·E = 4π ρ

− 1

c

∂E

∂t
+∇×B =

4π

c
j

∇ ·B = 0

1

c

∂B

∂t
+∇×E = 0

Their solutions:

E = −∇φ− 1

c

∂A

∂t
B = ∇×A

φ(x, t) =

∫
dx′

ρ(x′, t− |x− x′|/c)
|x− x′|

A(x, t) =
1

c

∫
dx′

j(x′, t− |x− x′|/c)
|x− x′|
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Chapter 9

Fields from arbitrarily moving
point charges

We calculate the four-potential at any space-time point for a a charge in arbitrary motion.
The resulting expressions are known as the Liénard-Wiechert potentials which depend on the
position and velocities of the particle at the retarded time. From these we calculate the electric
and magnetic fields and find that the electric field has a long range component dependent on the
acceleration of the particle. Finally we derive Feynman’s formula for the field of an accelerated
particle and use it to study distant radiation fields.

9.1 The Liénard-Wiechert potentials
In Eq.(8.57) we derived an equation for the four-potential in terms of the four-current. We will
rewrite this equation a bit as

Aµ(x, t) =
1

c

∫
dx′dt′

δ(t− t′ − |x− x′|/c)
|x− x′|

jµ(x′, t′) (9.1)

We will apply this formula to derive the fields of arbitrarily moving point charges. where we
consider standard Lorentz frames. Then the current jµ describes the motion of a point charge
with charge q and we have

j0(x, t) = cρ(x, t) = c q δ(x− z(t))

j(x, t) = q
dz

dt
(t) δ(x− z(t))

where (ct, z(t)) describes the world line of the particle in some Lorentz frame. More compactly
we can write this in four-vector notation as

jµ(x, t) = q
dzµ

dt
δ(x− z(t)) (9.2)

where we defined z0 = ct. If we insert this expression into Eq.(8.57) we obtain

Aµ(x, t) =
q

c

∫
dx′dt′

δ(t− t′ − |x− x′|/c)
|x− x′|

dzµ

dt′
δ(x′ − z(t′))

=
q

c

∫
dt′

dzµ

dt′
δ(t− t′ − |x− z(t′)|/c)

|x− z(t′)|
(9.3)

201
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We see that the variable t′ appears twice inside the delta function. To deal with this situation
we use the formula

δ(f(t′)) =
∑
i

δ(t′ − ti)
1

| dfdt′ (ti)|
, f(ti) = 0 (9.4)

Then with

f(t′) = t− t′ − |x− z(t′)|
c

we have
df

dt′
= −1 +

1

c

dz

dt′
· x− z(t′)

|x− z(t′)|
< 0

since |dz/dt′| < 0. We these equations we then find from Eq.(9.3) that

Aµ(x, t) =
q

c

1

|x− z(t′)|
1

1− 1

c

dz

dt′
· x− z(t′)

|x− z(t′)|

dzµ

dt′

=
q

c

1

|x− z(t′)| − 1

c

dz

dt′
· (x− z(t′))

dzµ

dt′
(9.5)

where the variable t′ in this equation must be determined from

c(t− t′) = |x− z(t′)| (9.6)

for a given x and t. The time-variable t′ determined in this way will be called the retarded time.
More explicitly, we have from Eq.(9.5) that

φ(x, t) =
q

|x− z(t′)| − 1

c

dz

dt′
· (x− z(t′))

(9.7)

A(x, t) =
q

c

dz

dt′
(t′)

1

|x− z(t′)| − 1

c

dz

dt′
· (x− z(t′))

(9.8)

The potentials in these two equations are called the Liénard-Wiechert potentials. They describe
the fact that potentials at space-time point (x, t) depend on the position z(t′) and the velocity
dz′/dt′ at an earlier retarded time t′ since the fields produced by the moving charge need a time
t− t′ = |x− z(t′)|/c to reach the point x at time t. This is displayed graphically in the figure

Figure 9.1: Fields at x at time t originate from the retarded position z(t′) at time t′ = t− |x−
z(t′)|/c.
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As a nice illustration of the Liénard-Wiechert potentials we will show how we can recover
Eqs.(8.45) and (8.46) for the uniformly moving charge. Let the charge move with uniform
velocity along the x-axis of our Lorentz frame (we use coordinates (ct, x, y, z). Then

z(t′) = (vt′, 0, 0)

From Eqs.(9.7) and (9.8) as well as relation (9.6) we then find

φ(x, t) =
q

c(t− t′)− v
c (x− vt′)

(9.9)

A(x, t) =
q

c

q

c(t− t′)− v
c (x− vt′)

 v
0
0

 (9.10)

It now only remains to solve Eq.(9.6) as a function of t and x. Squaring this equation gives

c2(t− t′)2 = (x− z(t′))2 = (x− vt′)2 + y2 + z2 =⇒
c2t2 − 2c2tt′ + c2t′2 = x2 + y2 + z2 − 2xvt′ + v2t′2 =⇒
(v2 − c2)t′2 − 2(xv − c2t)t′ + x2 + y2 + z2 − c2t2 = 0

When we solve this quadratic equation for t′ (using t′ < t) we find

(1− v2

c2
) t′ = t− vx

c2
− 1

c

√
(x− vt)2 + (1− v2

c2
)(y2 + z2)

This gives the following expression for the denominators in Eqs.(9.9) and (9.10).

c(t− t′)− v

c
(x− vt′) = c

[
t− vx

c2
− (1− v2

c2
)t′
]

=

√
(x− vt)2 + (1− v2

c2
)(y2 + z2)

We therefore find that Eqs. (9.9) and (9.10) become

φ(x, t) =
qγ√

γ2(x− vt)2 + y2 + z2

A(x, t) =
v

c

qγ√
γ2(x− vt)2 + y2 + z2

 1
0
0


which are exactly Eqs.(8.45) and (8.46) which we found earlier. We will now proceed to write
the Liénart-Wiechert potentials in a more Lorentz covariant form. From Eq.(9.5) and (9.6) we
find that

Aµ(x, t) =
q

c

1

c(t− t′)− 1

c

dz

dt′
· (x− z(t′))

dzµ

dt′

= − q

−dz
0

dt′
(x0 − z0) +

dz

dt′
· (x− z(t′))

dzµ

dt′

= −q dz
µ

dt′

(∑
ν,ρ

gνρ
dzν

dt′
(xρ − zρ(t′))

)−1

(9.11)
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where we used x0 = ct and z0 = ct′ and gνρ is the metric tensor for the Minkowski metric. If
we define

xν =
∑
ρ

gνρx
ρ (9.12)

then we can write the four-potential as

Aµ(x) = −q dz
µ

dt′

(∑
ν

dzν

dt′
(xν − zν(t′))

)−1

(9.13)

with x = (x0, x1, x2, x3). We note that in Eq.(9.12) something very strange happens, since the
coordinates themselves are regarded as components of a vector. This is only possible since the
standard Minkowskian coordinate system has the properties of a vector space. For instance the
sum of two coordinates is a another coordinate in the Lorentz frame and we can also multiply
with a scalar to obtain another coordinate. This is possible with Cartesian coordinates but, for
instance, not for spherical coordinates. The procedure is therefore only well-defined when we
restrict ourselves to the standard Minkowskian metric and to Lorentz transformations. This is
exactly what we will do in this Chapter.
The four-potential looks much more like a four-vector. However, the presence of the time
coordinate t′ is still the retarded time in a specific Lorentz frame. Since t′ is in one-to-one
correspondence with the proper time τ ′ of the particle at the retarded position we can write

Aµ(x) = −q dz
µ

dτ ′
dτ ′

dt′

(∑
ν

dzν

dτ ′
dτ ′

dt′
(xν − zν(t′(τ ′)))

)−1

= −q dz
µ

dτ ′
1∑

ν

dzν

dτ ′
(xν − zν(τ ′))

(9.14)

where with some abuse of notation we denoted zν(τ ′) = zν(t′(τ ′)). The retarded proper time
is then determined from

(x0 − z0(τ ′)) = |x− z(τ ′)| (9.15)

Figure 9.2: Fields at x at time t originate from the retarded position z(τ ′) at proper time τ ′.

From Eq.(9.14) it is now obvious that the four-potential transforms as a four-vector since its
numerator is a four-vector and its denominator is a Lorentz invariant. We could also have started
directly by directly writing the four-current in terms of the proper time of the particle. We define
the four-dimensional delta function

δ(4)(x− z(τ)) = δ(x− z(τ)) δ(x0 − z0(τ))

where we now parametrized the world line z(τ) of the particle in terms of its proper time. Then
we can write the current as

jµ(x) = c q

∫
dτ

dzµ

dτ
δ(4)(x− z(τ)) (9.16)
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This is readily shown using Eq.(9.4). We have

jµ(x) = c q

∫
dτ

dzµ

dτ
δ(x− z(τ)) δ(x0 − z0(τ))

= c q

∫
dτ

dzµ

dτ
δ(x− z(τ))

1

|dz0dτ ′ |
δ(τ − τ ′) = c q

dzµ

dτ

1

|dz0dτ |
δ(x− z(τ))

Now since z0(τ) = c t(τ) we can write

jµ(x) = q
dzµ

dt

dt

dτ

1
dt
dτ

δ(x− z(τ)) = q
dzµ

dt
δ(x− z(t))

where we again wrote z(t) = z(t(τ)). We see that we exactly recovered Eq. (9.2). We can now
insert Eq.(9.16) directly into Eq.(8.62) to give

Aµ(x) =
1

c

∫
d4xDR(x− x′) jµ(x′)

=
2

c

∫
d4x θ(x0 − x0′) δ(

∑
ν

(x− x′)ν(x− x′)ν) jµ(x′)

= 2q

∫
dτ

∫
d4x θ(x0 − x0′) δ(

∑
ν

(x− x′)ν(x− x′)ν)
dzµ

dτ
δ(4)(x− z(τ))

= 2q

∫
dτ θ(x0 − z0(τ)) δ(

∑
ν

(x− z(τ))ν(x− z(τ))ν)
dzµ

dτ

If we now again use relation (9.4) for the delta function we can write this as

Aµ(x) = 2q
dzµ

dτ ′
−1

2
∑
ν

dzν

dτ ′
(xν − zν(τ ′))

= −q dz
µ

dτ ′
1∑

ν

dzν

dτ ′
(xν − zν(τ ′))

where the retarded proper time τ ′ must be determined from the condition

0 =
∑
ν

(xν − zν(τ ′))(xν − zν(τ ′)) (9.17)

where x0 > z0. This condition is equivalent to Eq.(9.2). We therefore have once again obtained
the Liénard-Wiechert potentials.

9.2 The electric and magnetic fields

Having obtained the Liénard-Wiechert potentials it remains to calculate the corresponding elec-
tric and magnetic fields. Since we have an explicit formula for Aµ it turns out to be most
convenient to calculate the electromagnetic field tensor directly from

Fµν =
∂Aν
∂xµ

− ∂Aµ
∂xν

where by lowering the index in Aµ we can write

Aν = − q
w

dzν
dτ ′

(9.18)
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where for compactness of notation we further defined

w =
∑
ν

dzν

dτ ′
(xν − zν(τ ′))

Let us first calculate ∂Aν/∂xµ. We have

∂Aν
∂xµ

= −q
[
d2zν
dτ ′2

∂τ ′

∂xµ
1

w
− dzν
dτ ′

∂w

∂xµ
1

w2

]
(9.19)

The calculation is somewhat complicated due to the implicit dependence of τ ′ on xµ through the
condition (9.17). The derivative ∂τ ′/∂xµ can, however, be obtained by differentiating Eq.(9.17)
with respect to xµ. This gives

0 =
∂

∂xµ

[∑
ν,ρ

gνρ(x
ν − zν(τ ′))(xρ − zρ(τ ′))

]
= 2

∑
ν

(xν − zν(τ ′))
∂

∂xµ
(xν − zν(τ ′))

= 2
∑
ν

(xν − zν(τ ′))

[
δµν −

dzν

dτ ′
∂τ ′

∂xµ

]
= 2(xµ − zµ(τ ′))− 2

∂τ ′

∂xµ

∑
ν

(xν − zν(τ ′))
dzν

dτ ′

= 2(xµ − zµ(τ ′))− 2w
∂τ ′

∂xµ

We therefore find that
∂τ ′

∂xµ
=

1

w
(xµ − zµ(τ ′)) =

yµ
w

(9.20)

where we further defined yµ = xµ − zµ(τ ′). We further see that we need to evaluate ∂w/∂xµ

in Eq.(9.19). We find

∂w

∂xµ
=

∂

∂xµ

(∑
ν

dzν

dτ ′
(xν − zν(τ ′))

)

=
∑
ν

[
d2zν
dτ ′

∂τ ′

∂xµ
(xν − zν) +

dzν
dτ ′

(
δµν −

dzν

dτ ′
∂τ ′

∂xµ

)]
=
dzµ
dτ ′

+
∂τ ′

∂xµ

∑
ν

(
d2zν
dτ ′

(xν − zν)− dzν

dτ ′
dzν
dτ ′

)
=
dzµ
dτ ′

+
∂τ ′

∂xµ
dw

dτ ′

If we insert this result into Eq.(9.19) we find

∂Aν
∂xµ

= −q
[
d2zν
dτ ′2

∂τ ′

∂xµ
1

w
− dzν
dτ ′

1

w2

(
dzµ
dτ ′

+
∂τ ′

∂xµ
dw

dτ ′

)]
= − q

w2

[(
w
d2zν
dτ ′2

− dw

dτ ′
dzν
dτ ′

)
∂τ ′

∂xµ
− dzν
dτ ′

dzµ
dτ ′

]
We can now insert expression (9.20) and use dzµ/dτ ′ = −dyµ/dτ ′ to obtain

∂Aν
∂xµ

= − q

w2

[(
w
d2zν
dτ ′2

− dw

dτ ′
dzν
dτ ′

)
yµ
w

+
dzν
dτ ′

dyµ
dτ ′

]
= − q

w

[
1

w

d2zν
dτ ′2

− 1

w2

dw

dτ ′
dzν
dτ ′

yµ +
1

w

dzν
dτ ′

dyµ
dτ ′

]
= − q

w

d

dτ ′

[
1

w

dzν
dτ ′

yµ

]
From this equation we therefore find the relatively compact formula

Fµν =
q

w

d

dτ ′

[
1

w

(
dzµ
dτ ′

yν −
dzν
dτ ′

yµ

)]
(9.21)
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We see that this expression correctly transforms as a tensor under Lorentz transformations since
τ ′ and w are Lorentz invariants. The form of this expression is invariant under re-parametrization
of the path of the particle. If we have a new path parameter s(τ ′) then

w =
∑
ν

dzν

dτ ′
(xν − zν(τ ′)) =

∑
ν

dzν

ds

ds

dτ ′
(xν − zν(τ ′)) = u

ds

dτ ′

where
u =

∑
ν

dzν

ds
(xν − zν(s)) (9.22)

and we denote zν(s(τ)) = zν(τ ′). Since d/dτ ′ = ds/dτ ′d/ds it then follows that

Fµν =
q

u

d

ds

[
1

u

(
dzµ
ds

yν −
dzν
ds

yµ

)]
(9.23)

where the right hand side is evaluated at value of s which satisfies the condition

0 =
∑
ν

(xν − zν(s))(xν − zν(s)) (9.24)

Let us work our Eq.(9.25) a bit further. If we denote the first and second derivative of zν with
respect to s as żν and z̈ν we have

Fµν =
q

u

[
− u̇

u2
(żµyν − żνyµ) +

1

u
(z̈µyν − z̈νyµ + żµẏν − żν ẏµ)

]
=

q

u3
[u (z̈µyν − z̈νyµ)− u̇ (żµyν − żνyµ) ] (9.25)

where in the second step we used that żν = −ẏν . We are now quite close to the end of our
calculation. We parametrize the path of the particle in a given Lorentz frame as

zµ(t′) = (ct′, z(t′))

i.e. we choose s = t′ and hence żν = dzν/dt
′ etc.. Then by lowering the index we have

zµ(t′) = (−ct′, z(t′))

The electric field is given by Ej = −F0j for j = 1, 2, 3 and therefore

Ej = − q

u3
[u (z̈0yj − z̈jy0)− u̇ (ż0yj − żjy0) ]

= − q

u3
[u(c(t− t′))z̈j − u̇(−c(xj − zj)− żj(−c(t− t′)))] (9.26)

Let us write this in vector notation. If we further use that c(t− t′) = |x− z(t′)| we can write

E = − q

u3
[u̇ (−ż |x− z|+ c (x− z)) + u z̈ |x− z|] (9.27)

It only remains to evaluate u and u̇. We have

u =
∑
ν

dzν

dt′
(xν − zν(t′)) = −c2(t− t′) +

dz

dt′
· (x− z)

= −c|x− z|+ dz

dt′
· (x− z) = −c |x− z|

(
1− 1

c
n · ż

)
(9.28)
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where we defined the normal vector
n =

x− z

|x− z|
Further

u̇ =
∑
ν

[
d2zν

dt′2
(xν − zν(t′))− dzν

dt′
dzν
dt′

]
(9.29)

where
ż = (c, ż) , z̈ = (0, z̈)

This gives
u̇ = z̈ · (x− z)− |ż|2 + c2

Collecting our results we then find from Eq.(9.27) that

E =
q

c3|x− z|3
(
1− 1

c n · ż
)3

×
{
−c|x− z|2z̈

(
1− 1

c
n · ż

)
+ [z̈ · (x− z) + c2 − |ż|2][−ż |x− z|+ c (x− z)]

}
=

q

|x− z|
(
1− 1

c n · ż
)3

×
{
− z̈

c2

(
1− 1

c
n · ż

)
+

1

c2
z̈ · n

(
n− ż

c

)
+

(
1− |ż|

2

c2

)
1

|x− z|

(
n− ż

c

)}
(9.30)

Below we will show how to write this expression in a more convenient form. Let us, however,
first calculate the magnetic field. We have

B = (F23,−F13, F12)

We then have from Eq.(9.25), for instance, that

B1 = F23 =
q

u3
(u (z̈2y3 − z̈3y2)− u̇ (ż2y3 − ż3y2))

and similarly for the other components for the B field. We can write this in vector notation as

B =
q

u3
(u z̈× (x− z)− u̇ ż× (x− z))

=
q

u3
(u z̈ |x− z| − u̇ ż |x− z|)× x− z

|x− z|

Comparison with Eq.(9.27) then gives

B = −E× x− z

|x− z|
= n×E (9.31)

The magnetic field can therefore be simply calculated when the electric field is known. Equations
(9.30) and (9.31) are the main results of our derivation. We will now proceed to simplify
expression (9.30). Let us start by defining the quantities

R = |x− z(t′)|

κ = 1− 1

c
n(t′) · ż(t′)

β =
1

c
ż(t′)
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Then we can write (9.30) as

E =
q

κ3R

{
−1

c
β̇ κ+

1

c
β̇ · n (n− β) + (1− |β|2)

1

R
(n− β)

}
(9.32)

If we use that a× (b× c) = b (a · c)− c (a · b) then we see that

n× [(n− β)× β̇] = (n− β) β̇ · n− β̇ n · (n− β) = (n− β) β̇ · n− κ β̇

and we therefore see that we can write

E =
q

κ3R

{
1

c
n× [(n− β)× β̇] + (1− |β|2)

1

R
(n− β)

}
=

q

κ3R2
(1− |β|2)(n− β) +

q

c κ3R
n× [(n− β)× β̇] (9.33)

We remind the reader that all the quantities on the right hand side depend on the retarded time
t′ that must be obtained by solved Eq.(9.6). The electric field therefore consists of a term that
decays as 1/R2 which depends on the velocity β and term that decays as 1/R which depends
both on the velocity and the acceleration. The important point to stress here is that accelerated
charges are a source of fields that fall off slowly. It is therefore exactly the second term in
Eq.(9.33) that makes long range communications using light or radio signals possible.

9.3 Feynman’s formula

The main results of the previous Section were Eqs.(9.33) and (9.31). They allow us to calculate
the electric and magnetic fields from an arbitrarily moving charge provided we can solve Eq.(9.6)
for the retarded time t′. Instead of using derivatives with respect to the retarded time we can
rewrite Eq.(9.33) in a different form by using derivatives with respect to t instead. In that case
it attains the form

E = q

[
n

R2
+
R

c

d

dt

( n

R2

)
+

1

c2
d2

dt2
n

]
(9.34)

Since the retarded time t′ is a function the space-time point (x, t) the quantities n(t′) and
R = |x − z(t′)| appearing on the right hand side can be equivalently regarded as functions
of (x, t). Feynman discusses this formula at some length in his famous Feynman Lectures on
Physics, so we will simply call it Feynman’s formula. Let us now proceed by showing that
Eq.(9.34) is equivalent to Eq.(9.33). We start by writing Eqs.(9.7) and (9.8) as

φ(x, t) =
q

κR
(9.35)

A(x, t) =
q

cκR

dz

dt′
= − q

cκR

d

dt′
(x− z(t′)) = − q

cκR

d

dt′
R (9.36)

where we defined R = x − z(t′). Let us further derive a few useful relations. First of all, by
taking the derivative of the condition Eq.(9.6) with respect to t we find

c(1− ∂t′

∂t
) = − x− z

|x− z|
· dz
dt′

∂t′

∂t

and therefore
∂t′

∂t
=

1

1− 1
cn · ż

=
1

κ
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where ż = dz/dt′. We can therefore write

∂

∂t
=
∂t′

∂t

∂

∂t′
=

1

κ

∂

∂t′
(9.37)

We further have
dR

dt
=

d

dt
|x− z(t′)| = − x− z

|x− z|
· dz
dt′

∂t′

∂t
= − 1

κ
n · ż

and hence
1− 1

c

dR

dt
= 1 +

1

κc
n · ż =

1

κ
(κ+

1

c
n · ż) =

1

κ

Using this relation and Eq.(9.37) we can rewrite Eqs.(9.35) and (9.36) as

φ(x, t) =
q

R

(
1− 1

c

dR

dt

)
(9.38)

A(x, t) = − q

cR

d

dt
R = − q

cR

d

dt
(nR) (9.39)

These equations are the starting point of our derivation as in terms of these potentials the
electric field is given by

E = −∇φ− 1

c

∂A

∂t

Let us start with the first term. From Eq.(9.38) we have

−∇φ =
q

R2
∇R− q

c

∇R
R2

dR

dt
+
q

c

1

R

d

dt
∇R (9.40)

It remains to calculate ∇R. We have

∇R = ∇|x− z(t′)| = x− z

|x− z|
+∇t′ d

dt′
|x− z(t′)| = n +

dR

dt′
∇t′

where we must not forget that t′ depends on x through condition (9.6). If we take the gradient
of this condition we find

−c∇t′ = n− x− z

|x− z|
· dz
dt′
∇t′ =⇒ ∇t′ = −1

c
n +

1

c
n · dz

dt′
∇t′

=⇒ ∇t′ = − n

κc

and therefore

∇R = n− n

κc

dR

dt′
= n

(
1− 1

c

dR

dt

)
If we insert this result into Eq.(9.40) we obtain

−∇φ =
q

R2
n

(
1− 1

c

dR

dt

)
− q

c

n

R2

(
1− 1

c

dR

dt

)
dR

dt
+

q

cR

d

dt

[
n

(
1− 1

c

dR

dt

)]
We obtain the electric field if we add to this expression the term −(1/c)∂A/∂ using Eq.(9.39).
This gives

1

q
E =

n

R2
− 1

c

2n

R2

dR

dt
+

n

R2c2

(
dR

dt

)2

+
1

Rc

dn

dt
− 1

c2R

d

dt

(
n
dR

dt

)
+

1

c2
d

dt

(
1

R

d

dt
[Rn]

)
=

n

R2
+
R

c

d

dt

( n

R2

)
+

1

c2
d2

dt2
n
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This gives exactly the equation (9.34) that we wanted to prove. Eqs.(9.33) or (9.34) together
with the corresponding magnetic field of Eq.(9.31) are fundamental equations in the theory of
electromagnetism. Both Eqs.(9.33) or (9.34) have their own advantages in doing calculations.
We will dicuss the Eq.(9.33) in more detail later when we discuss radiation of moving charges.
Let us therefore discuss Eq.(9.34). The first two terms in Eq.(9.34) look very much the first two
terms of a Taylor expansion of n(t)/R2(t) around the retarded time t−R/c, i.e.

n(t)

R2(t)
=

n(t−R/c)
R2(t−R/c)

+
R

c

d

dt

(
n(t−R/c)
R2(t−R/c)

)
+O((R/c)2)

Therefore, up to terms of order (R/c)2 the first two terms of Eq.(9.34) yield the same result
as that of an instantaneous electric field of a point charge at position x− z(t). The last term,
proportional to d2n/dt2 is the important one for emitted radiation as it decays slowly as 1/R as
we will see. Let us analyze this term in an example.

Figure 9.3: Fields at x due to a charge oscillation in the horizontal direction.

We imagine a charge q oscillating round the origin O and we look at the charge from a long
distance (point x in the figure). In the first case the charge is moving back and forth towards
us. In this case

n(t′) =
x− z(t′)

|x− z(t′)|
= 1

and hence d2n/dt2 = 0. We do not see any radiation in this case. In the next case we let the
charge move up and down.

Figure 9.4: Fields at x due to a charge oscillation in the vertical direction.

In this case, since |x− z(t′)| ≈ |x| we have

d2

dt2
n ≈ d2

dt2
x− z(t− |x|/c)

|x|
= − 1

|x|
d2

dt2
z(t− |x|

c
)

So in this case the electric field in x is approximately

E = − q

|x|c2
d2

dt2
z(t− |x|

c
)

whereas the corresponding magnetic field is given by Eq.(9.31) as

B = n×E = − q

|x|c2
n× d2

dt2
z(t− |x|

c
)
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We have now approximately determined the radiation field in two cases. The next thing to
do, obviously, would be to find the angular distribution of the radiation. We will approach this
problem a bit more systematically later.



Chapter 10

The energy-momentum tensor

We derive the energy and momentum conservation laws of the electromagnetic field in differential
and integral form and show that these can elegantly written as the divergence of a symmetric
energy-momentum tensor. We further derive a corresponding tensor for the charged particles and
describe the energy and momentum conservation laws in general coordinates for the complete
field and matter system.

10.1 Conservation of energy and momentum of fields and
particles

In the previous Chapter we saw that an oscillating charge produces radiation. This radiation, via
the Lorentz force, can set other charges in motion for away which is in fact the principle behind
the antenna. This implies that both energy and momentum is transported from one charge to
another charges. This in turn means that that energy and momentum must be transported by
the electromagnetic field. We have to figure out how this happens.
Imagine two particles interacting via each other’s electromagnetic field.

Figure 10.1: Energy and momentum transfer between two moving charges.

Since the energy and momentum of each particle can change there will be a transfer of energy
and momentum by the field. The total energy E and momentum P of the system must be

213
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constant, so we have

Efield + Eparticles = E = constant
Pfield + Pparticles = P = constant

We know that the energy and momentum of the particles is given by the Lorentz force law.
It then remains to find the energy and momentum of the field. Let us start by discussing the
energy. The change in energy Ep of a particle was given by Eq. (6.40) as

dEp

dt
=

d

dt
(γ mc2) = qE · v

where v is the velocity of the particle. To relate this expression to Maxwell’s equations we write
it as an integral over a current

dEp

dt
=

∫
dxE(x, t) · j(x, t) (10.1)

where
j(x, t) = q

dz(t)

dt
δ(x− z(t))

where z(t) is the path of the particle in the Lorentz frame that we are using. It is clear that we
can also do this if we have several particles. If we have N particles with charge qj and paths
zj(t) then we can write

j(x, t) =

N∑
j=1

qj
dzj(t)

dt
δ(x− zj(t)) (10.2)

and Eq.(10.1) is still valid. Let us imagine that these particles are moving around in some volume
V as in the figure

Figure 10.2: Charges moving around in a volume V

The particles interact with each other and radiate. Some of the radiation will pass through the
surface A of the volume. We therefore have an outgoing energy flux S passing the surface. The
energy conservation law then tells us that∫

A

S · dA = − d

dt
(Ep + Ef) (10.3)

where Ef is the energy of the field inside volume V . If we now write the field energy as an
integral of an energy density u(x, t) as

Ef =

∫
V

dxu(x, t)
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then with help of Eq.(10.1) we can write the energy conservation law (10.3) as∫
A

S · dA = −
∫
V

dxE(x, t) · j(x, t)−
∫
V

dx
∂u(x, t)

∂t

Then by further writing the flux integral as a divergence∫
A

S · dA =

∫
V

dx∇ · S

we find the relation

0 =

∫
V

dx

(
∂u

∂t
+∇ · S + E · j

)
Since this equation is true for any volume (provided the particles remain inside it) we have

∂u

∂t
+∇ · S + E · j = 0 (10.4)

which gives the continuity equation for energy. It remains to find explicit expressions for u and
S. This can be done by relating the current to Maxwell’s equation

−1

c

∂E

∂t
+∇×B =

4π

c
j

and therefore

j =
c

4π

(
∇×B− 1

c

∂E

∂t

)
(10.5)

If we insert this expression in Eq.(10.1) we find

dEp

dt
=

c

4π

∫
V

dxE ·
(
∇×B− 1

c

∂E

∂t

)
(10.6)

We further use the identity

∇ · (E×B) = B · ∇ ×E−E · ∇ ×B = −1

c
B · ∂B

∂t
−E · ∇ ×B

where in the last step we used the other Maxwell equation ∇× E = (−1/c)∂B/∂t. If we use
this expression in Eq.(10.6) we can write

dEp

dt
= − c

4π

∫
V

dx

{
1

2c

∂

∂t

(
E2 + B2

)
+∇ · (E×B)

}
= −

∫
V

dx

{
∂u

∂t
+∇ · S

}
(10.7)

where we defined

u =
1

8π
(E2 + B2) (10.8)

S =
c

4π
E×B (10.9)

The vector S is called the Poynting vector and describes the energy flux through a given surface.
We now see that the continuity equation (10.4) now attains the explicit form

1

8π

∂

∂t
(E2 + B2) +

c

4π
∇ · (E×B) + j ·E = 0 (10.10)

Our next task is to find similar expressions that describe the conservation of momentum. Since
the momentum is conserved for each of the three spatial directions we expect three equations
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of the type (10.10). It is then not difficult to guess that these equations, together with the
energy conservation law (10.10), will represent the divergence of a rank two tensor, which will
be denoted as the energy-momentum tensor. Let us start again with the Lorentz force equation
for the momentum of Eq.(6.41) which we repeat here for convenience a bit more explicitly

dp

dt
= q(E(z(t), t) +

1

c
v ×B(z(t), t))

in which we indicated in the arguments that the fields are evaluated at the position z(t) of the
particle. For N particles with charges qj at positions zj(t) we have

dPp

dt
=

N∑
j=1

dpj
dt

=

N∑
j=1

qjE(zj(t), t) +

N∑
j=1

1

c
v ×B(zj(t), t))

where we defined Pp = p1 + . . .+ pN to be the total momentum of the particles. If we define
the charge density of N particles as

ρ(x, t) =

N∑
j=1

qj δ(x− zj(t))

and use the expression for the current of Eq.(10.2) we can write that the change in total
momentum of N particles in a volume V is given by

dPp

dt
=

∫
V

dx

(
ρ(x, t)E(x, t) +

1

c
j(x, t)×B(x, t)

)
(10.11)

If we now again use the expression for the current (10.5) together the Maxwell equation

ρ(x, t) =
1

4π
∇ ·E

then we can rewrite Eq.(10.11) as

dPp

dt
=

1

4π

∫
V

dx (∇ ·E)E +
1

4π

∫
V

dx

(
∇×B− 1

c

∂E

∂t

)
×B (10.12)

We now use that

1

c

∂

∂t
(E×B) =

1

c

∂E

∂t
×B +

1

c
E× ∂B

∂t
=

1

c

∂E

∂t
×B−E× (∇×E)

to rewrite Eq.(10.12) as

dPp

dt
=

1

4π

∫
V

dx (∇ ·E)E− 1

4πc

∫
V

dx
∂

∂t
(E×B)

− 1

4π

∫
V

dx [E× (∇×E) + B× (∇×B)]

Using ∇ ·B = 0 this can be written more symmetrically as

dPp

dt
= − 1

4πc

∫
V

dx
∂

∂t
(E×B)

+
1

4π

∫
V

dx [E(∇ ·E)−E× (∇×E) + B(∇ ·B)−B× (∇×B)]
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Now the last term can be written as a divergence. We have

(E× (∇×E))i =
∑
j,k

εijkEj(∇×E)k =
∑
j,k,l,m

εijkεklmEj∂lEm

=
∑
j,k,l,m

(δilδjm − δimδjl)Ej∂lEm =
∑
j

Ej∂iEj − Ej∂jEi

and therefore

Ei(∇ ·E)− (E× (∇×E))i =
∑
j

Ei∂jEj + ∂iEj − Ej∂jEi =
∑
j

∂j(EiEj −
1

2
δijE

2)

Our equation for the momentum change therefore becomes

dPp

dt
= − 1

4πc

∫
V

dx
∂

∂t
(E×B)

+
1

4π

3∑
j=1

∫
V

dx
∂

∂xj

{
1

2
δij(E

2 + B2)− (EiEj +BiBj)

}
(10.13)

From Eq.(10.11) and the fact the this equation is valid for any volume V we find the expression

(ρE +
1

c
j×B) = − 1

4π

∂

∂t
(E×B)i

− 1

4π

3∑
j=1

∂

∂xj

{
1

2
δij(E

2 + B2)− (EiEj +BiBj)

}
(10.14)

The left hand side of this equation describes the change in momentum of the particle. Momentum
conservation then implies that the right hand side describes an opposite change in momentum
of the electromagnetic field. From the first term on the right hand side we see that the vector

u =
1

4πc
E×B (10.15)

represents the momentum density in volume V whereas the last term in Eq.(10.14) represents
the divergence of a momentum flow in the three separate directions. If we compare Eq.(10.15)
to Eq. (10.9) we see that

u =
1

c2
S (10.16)

So the Poynting vector yields both the energy flow and (divided by c2) the momentum density. It
is now clear that we could combine the lefthand sides of Eqs.(10.7) and (10.13) into a momentum
four-vector.

Pp = (
Ep

c
,P)

such that we can write Eq.(10.7) and (10.13) as

dPµp
dt

= −
∫
V

dx

3∑
ν=0

∂Tµνf
∂xν

(10.17)
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where we defined the energy momentum tensor Tµνf of the field as

Tµνf =
1

4π
× (10.18)


1
2 (E2 + B2) (E×B)1 (E×B)2 (E×B)3

(E×B)1
1
2 (E2 + B2)− E2

1 −B2
1 −E1E2 −B1B2 −E2E3 −B2B3

(E×B)2 −E1E2 −B1B2
1
2 (E2 + B2)− E2

2 −B2
2 −E1E3 −B1B3

(E×B)3 −E2E3 −B2B3 −E1E3 −B1B3
1
2 (E2 + B2)− E2

3 −B2
3


We write the indices in Tµνf as a superscript since we want to get a four-vector with an upper
index after taking a divergence. Of course, it is not clear that by writing out the components
that we are actually dealing with a tensor. It is not difficult to see that Tµνf must be closely
related to the electromagnetic field tensor. There are not so many options to relate the two.
Since the fields E and B occur quadratically in the energy-momentum tensor one may guess that
Tµνf should be written as a product of electromagnetic field tensors. Then we have essentially
one option

Tµνf = α

3∑
λ=0

FµλF
λν + β gµν

3∑
λ,τ=0

FλτF
λτ (10.19)

The last term in this equation was already evaluated in before in Eq.(6.47) and gives

3∑
λ,τ=0

FλτF
λτ = 2(E2 −B2)

It therefore remains to evaluate the first term in Eq.(10.19). The explicit form of Fλν has been
given directly after Eq.(6.47), whereas Fµλ is easily calculated from

Fµλ =

3∑
ν=0

gµνFνλ = gµµFµλ

since Minkowski metric is diagonal. Therefore

Fµλ =


0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


and therefore

3∑
λ=0

FµλF
λν =


0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0




0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0



=


−E2 −E2B3 + E3B2 E1B3 − E3B1 −E1B2 + E2B1

−E2B3 + E3B2 E2
1 −B2

2 −B3
3 E1E2 +B1B2 E1E3 +B1B3

E1B3 − E3B1 E1E2 +B1B2 E2
2 −B2

1 −B3
3 E2E3 +B2B3

−E1B2 + E2B1 E1E3 +B1B3 E2E3 +B2B3 E2
3 −B2

1 −B3
2


We see that we are getting very close to Eq.(10.18). All off-diagonal elements are the same
apart from the pre factor −1/4π. Let us therefore choose α = −1/4π. Let us then look at the
first diagonal element. Using Eq.(10.19) we have

T 00
f =

1

8π
(E2 + B2) =

1

4π
E2 + β g00 2(B2 −E2)
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Since g00 = −1 we see that we must have β = −1/16π. You can check yourself that this also
works out correctly for the other diagonal elements. We therefore find that

Tµνf = − 1

4π

3∑
λ=0

FµλF
λν − 1

16π
gµν

3∑
λ,τ=0

FλτF
λτ (10.20)

Now since F and g are tensors it follows that Tf is a tensor as well. It is called the energy-
momentum tensor of the electromagnetic field.

10.2 The energy-momentum tensor in general coordi-
nates

A nice feature of Eq.(10.20) is that it is valid in general space-times. In particular, we can derive
in general coordinates that

3∑
ν=0

Tµνf;ν = −1

c

3∑
ν=0

Fµν j
ν (10.21)

which is equivalent to Eqs. (10.1) and (10.11). To prove this equation directly from Eq.(10.20)
we need the following identity

Fµν;τ + Fντ ;µ + Fτµ;ν = 0 (10.22)

which is identical to the condition dF = 0. This is readily derived. If

F =
1

2

3∑
µ,ν=0

Fµνdx
µ ∧ dxν =

3∑
µ<ν=0

Fµνdx
µ ∧ dxν

then

0 = dF =

3∑
τ,µ<ν=0

∂Fµν
∂xτ

dxτ ∧ dxµ ∧ dxν =

3∑
τ,µ<ν=0

Fµν;τ dx
τ ∧ dxµ ∧ dxν

=

3∑
τ<µ<ν=0

Fµν;τ [dxτ ∧ dxµ ∧ dxν − dxµ ∧ dxτ ∧ dxν + dxµ ∧ dxν ∧ dxτ ]

=

3∑
τ<µ<ν=0

[Fµν;τ + Fτµ;ν + Fντ ;µ] dxτ ∧ dxµ ∧ dxν

which yields Eq.(10.22). Let us now calculate the divergence of the energy-momentum tensor.
We have∑

ν

Tµνf ;ν = − 1

4π

∑
λ,ν

Fµλ;νF
λν + FµλF

λν
;ν −

1

16π

∑
λ,τ,ν

gµν
(
Fλτ ;νF

λτ + FλτF
λτ

;ν

)
= − 1

4π

∑
λ,α,ν

gµαFαλ;νF
λν − 1

4π

∑
λ

Fµλ
4π

c
jλ − 1

8π

∑
λ,τ,ν

gµνFλτ ;νF
λτ (10.23)

where in the second term we used the Maxwell equations. We will now show that the first and
last term cancel. We will manipulate the first term a bit. We have using Eq.(10.22)

− 1

4π

∑
λ,α,ν

gµαFαλ;νF
λν = − 1

8π

∑
λ,α,ν

gµα
(
Fαλ;νF

λν + Fαν;λF
νλ
)

= − 1

8π

∑
λ,α,ν

gµα (Fαλ;ν + Fνα;λ)Fλν = − 1

8π

∑
λ,α,ν

gµα
(
−Fλν;αF

λν
)
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which exactly cancels the last term in Eq.(10.23). We have therefore shown that the divergence
of the energy-momentum tensor exactly produces minus the Lorentz force. The latter gives
exactly the change in momentum of the charged particles. We may therefore wonder whether
there would not be an energy-momentum tensor Tµνm for matter as well, such that∑

ν

Tµνf ;ν = −
∑
ν

Tµνm ;ν (10.24)

or, equivalently, if we define the total energy-momentum tensor for matter and field

Tµν = Tµνf + Tµνm

then ∑
ν

Tµν;ν = 0

which describes the conservation of energy and momentum of the matter and field system. This
is indeed the case since even when the particles were neutral the four-momentum would be
conserved and we therefore expect this four-momentum to be the divergence of a tensor. This
should be compared to charge conservation. Since charge is a scalar quantity its conservation
law is described as the divergence of a vector instead. Given the form of the current in Eq.(9.16)
it is not so difficult to guess what Tµνm could be. The simplest generalization of Eq.(9.16) for a
single particle will be

Tµνm = mc

∫
dτ

dzµ

dτ

dzν

dτ
δ(4)(x− z(τ)) (10.25)

whereas if we have several particles then

Tµνm =

N∑
j=1

mjc

∫
dτ

dzµj
dτ

dzνj
dτ

δ(4)(x− zj(τ))

Let us see if Eq.(10.25) gives us what we expect. We can write with x0 = ct(τ) that

Tµνm = mc

∫
dτ ′

dzµ

dτ ′
dzν

dτ ′
δ(3)(x− z(τ ′))δ(x0 − z0(τ ′))

= mc

∫
dτ ′

dzµ

dτ ′
dzν

dτ ′
δ(3)(x− z(τ ′))δ(τ − τ ′) 1

|dz0dτ ′ |

= m
dzµ

dt

dt

dτ

dzν

dt
δ(3)(x− z(t)) = γm

dzµ

dt

dzν

dt
δ(3)(x− z(t))

This means, for instance, that

Tµ0
m = γm

dzµ

dt

dz0

dt
δ(3)(x− z(t)) = γmc

dzµ

dt
δ(3)(x− z(t))

= (γmc2, γmc
dz

dt
) δ(3)(x− z(t))

So the first column of the energy-momentum tensor gives indeed the energy and momentum
density as expected, and we have∫

dxTµ0
m (x, t) = γmc

dzµ

dt
= (γmc2, γmc

dz

dt
)
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let us now check the divergence. We have

3∑
ν=0

∂Tµνm
∂xν

= mc

∫
dτ

dzµ

dτ

dzν

dτ

∂

∂xν
δ(4)(x− z(τ))

= −mc
∫
dτ

dzµ

dτ

d

dτ
δ(4)(x− z(τ)) = mc

∫
dτ
d2zµ

dτ2
δ(4)(x− z(τ))

= c

∫
dτ

dpµ

dτ
δ(4)(x− z(τ)) =

dpµ

dt
δ(3)(x− z(t)) (10.26)

where pµ is the four-momentum of the particle. For N particles it is clear that

3∑
ν=0

∂Tµνm
∂xν

=

N∑
j=1

dpµj
dt

δ(3)(x− zj(t))

The total momentum change Pp of the particles is then given by

dPp
dt

=

3∑
ν=0

∫
V

dx
∂Tµνm
∂xν

=

N∑
j=1

dpµj
dt

Inserting this expression into the left hand side of Eq.(10.17) then gives

0 =

3∑
ν=0

∂

∂xν
(Tµνf + Tµνm )

as expected. So far our discussion of the energy momentum tensor for the particles was entirely
Minkowskian. It turns out that to use general coordinates we only slightly have to modify
Eq.(10.25) to

Tµνm =
mc√
|g|

∫
dτ

dzµ

dτ

dzν

dτ
δ(4)(x− z(τ)) (10.27)

where g is the determinant of the metric tensor as before. In the case of Minkowskian coordinates
|g| = 1 and we get back Eq.(10.25). This is not so surprising since

√
|g| is just the Jacobian of

a coordinate transformation and the delta function transforms under coordinate transformations
as

δ(x− x′) =
1

|∂x∂y |
δ(y − y′)

where |∂x/∂y| =
√
|g| is the Jacobian. For instance, we have in spherical coordinates

δ(x− x′)δ(y − y′)δ(z − z′) =
1

r2 sin θ
δ(r − r′) δ(θ − θ′)δ(φ− φ′)

Similarly, the general expression for the current of Eq.(9.16) becomes

jµ(x) =
c q√
|g|

∫
dτ

dzµ

dτ
δ(4)(x− z(τ)) (10.28)

in general coordinates. We can check, for instance, that this current obeys

3∑
µ=0

jµ;µ =
1√
|g|

∂

∂xµ
(
√
|g| jµ) =

cq√
|g|

∫
dτ

dzµ

dτ

∂

∂xµ
δ(4)(x− z(τ))

= − cq√
|g|

∫
dτ

d

dτ
δ(4)(x− z(τ)) = 0
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which is the charge conservation law. Let us now calculate the covariant divergence of Tµνm . For
this it will be useful to use the formula∑

ν

Aµν;ν =
∑
ν

∂Aµν

∂xν
+
∑
νη

AηνΓµνη +
∑
νη

AνηΓννη

=
∑
ν

∂Aµν

∂xν
+
∑
νη

AηνΓµνη +
∑
η

Aµη
1√
|g|

∂

∂xη

√
|g|

=
1√
|g|

∑
ν

∂

∂xν
(
√
|g|Aµν) +

∑
νη

AηνΓµνη

which is just a modification of Eq.(7.34) for the case of a symmetric tensor. If we use this
equation then we find that the energy-momentum tensor of the particles satisfies∑
ν

∂Tµνm
∂xν

=
mc√
|g|

∑
ν

∫
dτ

dzµ

dτ

dzν

dτ

∂

∂xν
δ(4)(x− z(τ)) +

mc√
|g|

∑
νη

∫
dτ Γµνη

dzν

dτ

dzη

dτ
δ(4)(x− z(τ))

= − mc√
|g|

∫
dτ

dzµ

dτ

d

dτ
δ(4)(x− z(τ)) +

mc√
|g|

∑
νη

∫
dτ Γµνη

dzν

dτ

dzη

dτ
δ(4)(x− z(τ))

=
mc√
|g|

∫
dτ

{
d2zµ

dτ2
+
∑
νη

Γµνη
dzν

dτ

dzη

dτ

}
δ(4)(x− z(τ))

=
mc√
|g|

∫
dτ

Dpµ

dτ
δ(4)(x− z(τ))

(10.29)

which is the generalization of Eq.(10.26) to general coordinates. If we now use the Lorentz force
law

Dpµ

dτ
=
q

c

∑
ν

Fµν
dzν

dτ

then we find that∑
ν

∂Tµνm
∂xν

=
q√
|g|

∑
ν

∫
dτ Fµν

dzν

dτ
δ(4)(x− z(τ)) =

1

c

∑
ν

Fµν(x)jν(x)

where we used the general identity∫
dτf(z(τ)) δ(4)(x− z(τ)) = f(x)

∫
dτ δ(4)(x− z(τ))

and the definition of the current of Eq.(10.28). We therefore recovered minus the right hand
side of Eq.(10.21). We find that if we define the energy-momentum tensor of N particles to be

Tµνm =

N∑
j=1

mjc√
|g|

∫
dτ

dzµj
dτ

dzνj
dτ

δ(4)(x− zj(τ)) (10.30)

then Eq.(10.24) is satisfied and we have

0 =
∑
ν

Tµνf ;ν +
∑
ν

Tµνm ;ν (10.31)

which expresses the laws of energy and momentum conservation of the combined field-matter
system in general coordinates. In fact, as is clear form our derivation, Eq.(10.31) implies the
Lorentz force law if we specify Maxwell’s equations. So we can either use the Maxwell equations
and the Lorentz force law to derive Eq.(10.31) or assume Maxwell’s equations and the Eq.(10.31)
to derive the Lorentz force law.



Chapter 11

Radiation by moving charges

In this Chapter we derive the angular distribution of radiated power by accelerated charges. We
further derive how the total radiated power depends on the velocity and acceleration leading to
the famous Larmor formula. We further derive the spectral distribution of radiated power for a
charge in circular motion.

11.1 Radiated power

Let us summarize again the formulas of Chapter 9 for the electric and magnetic fields produced
by a charge q following a trajectory z(t′). The electric and magnetic fields are given by

E =
q

κ3R

{
1

c
n× [(n− β)× β̇] + (1− |β|2)

1

R
(n− β)

}
(11.1)

B = n×E (11.2)

where

R = |x− z(t′)| , n(t′) =
x− z(t′)

|x− z(t′)|

κ = 1− 1

c
n(t′) · ż(t′)

β =
1

c
ż(t′)

and t′ is the retarded time determined by the equation

c(t− t′) = |x− z(t′)| (11.3)

If the charge is accelerated it will loose energy. Let us see how we can calculate this energy loss.
In Eq.(10.9) we saw that the Poynting vector S describes the energy flux. Hence S · n is the
energy flux per unit area per unit time detected at a point x at time t of radiation emitted by
the charge q at retarded time t′.

223
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Figure 11.1: Poyting vector S projected on the direction n.

The energy radiated during a period of acceleration from t′1 to t′2 is measured in x between times
t1 and t2 where

ti = t′i +
|x− z(t′i)|

c

and i = 1, 2 is then given by

E =

∫ t2

t1

dt (S · n)(t) =

∫ t′2

t′1

dt′
dt

dt′
(S · n)(t′) =

∫ t′2

t′1

dt′ κ (S · n)(t′) (11.4)

where we with some abuse of notation wrote (S · n)(t(t′)) = (S · n)(t′), i.e. we can regard the
Poynting vector in x projected on n also as a function of the retarded time t′. We further used
from Eq.(11.3) that for fixed x

c(
dt

dt′
− 1) = − dz

dt′
· n(t′) =⇒ dt

dt′
= 1− 1

c

dz

dt′
· n(t′) = κ (11.5)

We therefore find that the quantity κ (S · n)(t′) is the instantaneously radiated power, i.e. the
rate of change of energy due to radiation that will pass through a unit area at position x.

Figure 11.2: Radiated power in a solid angle dΩ around direction n.

It will be useful to introduce another physical quantity. According to Eq.(11.4 ) the power dP (n)
radiated into a solid angle dΩ in the direction of n is given by

dP (n) = κ (S · n)(t′)R2 dΩ

and we therefore define the function

dP

dΩ
= κR2 (S · n)(t′) (11.6)
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to be the radiated power emitted at time t′ in direction n. The Poynting vector has the explicit
form

S =
c

4π
E×B (11.7)

and from Eqs.(11.1) and (11.2) we there can therefore write

S =
c

4π
E× (n×E) =

c

4π
((E ·E)n−E (E · n))

From Eq.(11.6) we can therefore write

dP

dΩ
= κR2

(
E2 − (E · n)2

)
(11.8)

Now we can use Eq.(11.1) which we will rewrite as

E =
a

R
+

b

R2

where

a =
q

κ3 c
n× ((n− β)× β̇)

b =
q

κ3
(1− |β|2) (n− β)

Then

E2 =
a2

R2
+

2a · b
R3

+
b2

R4

E · n =
b · n
R2

where we used that a · n = 0. We then have that

E2 − (E · n)2 =
a2

R2
+

2a · b
R3

+
1

R4
(b2 − (b · n)2)

When we insert this expression into Eq.(11.8) we see that the last two terms do not lead to a
net energy flux through a surface at large distances. Therefore only the first term contributes
to the radiation. Inserting this into Eq.(11.8) then gives

dP

dΩ
=
cκ

4π
a2 =

q2

4πc

|n× ((n− β)× β̇)|2

κ5
=

q2

4πc

|n× ((n− β)× β̇)|2

(1− n · β)5

If we expand the outer products in the numerator we have

|n× ((n− β)× β̇)|2 = |(n− β)(n · β̇)− β̇(1− β · n)|2

= (n · β̇)2 (1− 2n · β + β2)− 2(n · β̇ − β · β̇)(1− β · n)(n · β̇) + β̇
2
(1− β · n)2

= (n · β̇)2(β2 − 1) + 2(n · β̇)(β · β̇)(1− β · n) + β̇
2
(1− β · n)2

and we can therefore write

dP

dΩ
=

q2

4πc

{
β̇

2

(1− β · n)3
+

2(n · β̇)(β · β̇)

(1− β · n)4
− (1− β2)

(n · β̇)2

(1− β · n)5

}
(11.9)
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11.2 Angular distribution and Larmor’s formula
From expression (11.9) we can calculate the angular distribution of the instantaneously radiated
power.

Figure 11.3: Angles between the vectors β, β̇ and n.

We can always choose a coordinate system where the vector β is pointing along the z-axis and
the acceleration vector β̇ is lying in the x− z-plane. We observe radiation in a direction n given
by

n =

 cosφ sin θ
sinφ sin θ

cos θ


The vector β̇ is given by

β̇ = (̇β)

 sinχ
0

cosχ

 (11.10)

where β̇ = |β̇|. We see that

n · β = cos θ , β · β̇ = ββ̇ cosχ

where β = |β|. Further, if α is the angle between n and β̇ then we have

n · β̇ = β̇ cosα = β̇ (cosφ sin θ sinχ+ cos θ cosχ) (11.11)

In terms of these angles we can now rewrite Eq.(11.9) as

dP

dΩ
=
q2β̇2

4πc

{
1

(1− β cos θ)3
+

2β cosχ cosα

(1− β cos θ)4
− (1− β2)

(cosα)2

(1− β cos θ)5

}
(11.12)

Let us consider some special cases. One obvious special case is the linear acceleration for which
β ‖ β̇, i.e. χ = 0, π and cosα = ± cos θ. Then Eq.(11.12) gives

dP

dΩ
=
q2β̇2

4πc

sin2 θ

(1− β cos θ)5
(11.13)

The denominator never becomes zero since β < 1 but it can become small for β ≈ 1. It is then
clear that dP/dΩ is large for small angles θ and therefore the maximum of the power is radiated
in the forward direction. We thus have
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Figure 11.4: Angular distribution of radiation around a linearly accelerated charge.

in which the value of dP/dΩ for a given angle θ is plotted as the distance to the origin in a polar
plot. The angle θm of maximum intensity is found by differentiating Eq.(11.13) with respect to
x = cos θ. This gives

0 =
d

dx

(
1− x2

(1− βx)5

)
=⇒ x =

±
√

1 + 15β2 − 1

3β
=⇒ θm = arccos

√
1 + 15β2 − 1

3β

(the other zero leads to x < −1). We have

Figure 11.5: Angular distribution of radiation.

In the limit β → 1 we have θm → 0. The other special case is when β ⊥ β̇, i.e χ = π/2. In
that case we have from Eq.(11.11) that

cosα = cosφ sin θ (11.14)

The case β ⊥ β̇ represents physically the case of instantaneous circular motion

Figure 11.6: Instanteneous circular motion.
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Inserting χ = π/2 and Eq.(11.14) into Eq.(11.12) then yields

dP

dΩ
=
q2β̇2

4πc

{
1

(1− β cos θ)3
− (1− β2)

cos2 φ sin2 θ

(1− β cos θ)5

}
(11.15)

In this case the function dP/dΩ is maximal for θ = 0. In the x− z-plane (φ = 0) the function
is zero whenever

1 = (1− β2)
sin2 θ

(1− β cos θ)2
=⇒ cos θ = β =⇒ θ0 = arccosβ

The angle θ0 → 0 for β → 1 so the radiated power is sharply peaked in the forward direction in
this limit.

Figure 11.7: Radiation from circular motion.

Let us now calculate the total radiated power P in all directions. In that case we must integrate
Eq.(11.12) over the angles φ and θ.

P =

∫
dΩ

dP

dΩ
=

∫ π

0

dθ

∫ 2π

0

dφ sin θ
dP

dΩ
(11.16)

Let us first integrate over φ. Since only cosα depends on φ we need to calculate∫ 2π

0

dφ cosα =

∫ 2π

0

dφ (cosφ sin θ sinχ+ cos θ cosχ) = 2π cos θ cosχ∫ 2π

0

dφ cos2 α =

∫ 2π

0

dφ (cosφ sin θ sinχ+ cos θ cosχ)2 = π(sin2 θ sin2 χ+ 2 cos2 θ cos2 χ)

Using these expressions we have

P =

∫ π

0

dθ sin θ
q2β̇2

4πc

{
2π

(1− β cos θ)3
+

4πβ cos2 χ cos θ

(1− β cos θ)4

+ (β2 − 1)
π(sin2 θ sin2 χ+ 2 cos2 θ cos2 χ)

(1− β cos θ)5

}
With the substitution x = 1− β cos θ this integral can be carried out in a straightforward way.
We find

P =
2q2β̇2

3c

1− β2 sin2 χ

(1− β2)3
(11.17)

This formula can be written in a different form if we use

|β × β̇|2 = β2β̇2 sin2 χ
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and write

P =
2q2

3c

1

(1− β2)3

[
β̇2 − |β × β̇|2

]
(11.18)

This is the relativistic generalization of the so-called Larmor formula. It is often given in the
non-relativistic limit β � 1 when it attains the form

P =
2q2β̇2

3c
=

2q2a2

3c3

where a is the acceleration of the particle. We can compare Eq.(11.17) for the case that the
acceleration is parallel (χ = 0) or perpendicular (χ = π/2) to the velocity. We have

P‖ = P (χ = 0) =
2q2β̇2

3c

1

(1− β2)3
(11.19)

P⊥ = P (χ = π/2) =
2q2β̇2

3c

1

(1− β2)2
(11.20)

We see that, for a given acceleration β̇ a factor γ2 = 1/(1 − β2) more radiation is produced
when the acceleration is parallel to the velocity as compared to the case when it perpendicular.
A different picture, however, arises when we consider the forces responsible for the acceleration.
We have

F =
dp

dt
=

d

dt
mγv = mγ

dv

dt
+mvγ3 v

c2
· dv
dt

where in the last term we differentiated γ = (1 − v2/c2)−1/2. In the case that v ⊥ dv/dt we
see that

F = mγ
dv

dt

However, if v ‖ dv/dt then

F = mγ
dv

dt
+mvγ3 v

c2
dv

dt
= mγ(1 +

v2

c2
γ2)

dv

dt
= mγ3 dv

dt

We therefore see that

dv

dt
=

1

mγ

dp

dt
v ⊥ dv

dt

dv

dt
=

1

mγ3

dp

dt
v ‖ dv

dt

Inserting these expression into Eqs.(11.19) and (11.20 ) then gives

P‖ =
2q2v̇2

3m2c3

(
dp

dt

)2

P⊥ =
2q2v̇2

3m2c3
γ2

(
dp

dt

)2

We therefore see that, for a given applied force, a factor γ2 more radiation is produced if the
force is perpendicular to v as compared to the case in which it is parallel. In the former case the
force is usually produced by a magnetic field while in the latter case it produced by an electric
field.
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11.3 Radiation spectrum for circular motion

We will now study at which frequencies and intensities a charged in circular motion will radiate.
Let a particle with charge q carry out a circular motion in the x − y-plane, for instance due to
the presence of a magnetic field.

Figure 11.8: Charge moving along a circle in the plane z = 0.

The path of the particle is given by

z(t′) = a

 cos(ω0t
′)

sin(ω0t
′)

0


where a is the radius of the circle. For an observer at x the vector potential of the field generated
by the charge is given by the Liénard-Wiechert potential

A(x, t) =
q

c

dz(t′)

dt′
1

κ |x− z(t′)|
(11.21)

The motion is periodic with period T = 2π/ω0

z(t′ + T ) = z(t′)

and therefore the motion is periodic with the same period in the observation point x as can be
checked directly as well from the equation for the retarded time. We therefore have

A(x, t) = A(x, t+ T )

Because of this periodicity it will therefore be convenient to expand A in a Fourier series

A(x, t) =

+∞∑
l=−∞

Al(x) e−iω0lt

where the Fourier coefficient is given by

Al(x) =
1

T

∫ T

0

dtA(x, t) eiω0lt (11.22)

Since the vector potential A(x, t) is real we see that A∗l (x) = A−l(x). We want to study
the relative intensities of the various l-components which correspond to the higher harmonics
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lω0 of the fundamental frequency ω0. We can now insert the explicit form of Eq.(11.21) into
Eq.(11.22) to obtain

Al(x) =
q

cT

∫ T

0

dt
dz(t′)

dt′
1

κ |x− z(t′)|
eiω0lt =

q

cT

∫ T

0

dt′
dz(t′)

dt′
1

|x− z(t′)|
eiω0lt (11.23)

where we used that dt′/dt = 1/κ (see Eq.(9.37)) and the fact that the period is also T in the
t′-coordinate. To carry out this integral we need to know the dependence of t on t′. If we now
use Eq.(11.5) we can write

dt

dt′
= 1− 1

c

dz

dt′
· n(t′) = 1− a

c

 −ω0 sin(ω0t
′)

ω0 cos(ω0t
′)

0

 ·
 n1

n2

n3


= 1− ω0a

c
[− sin(ω0t

′)n1(t′) + cos(ω0t
′)n2(t′)] (11.24)

This equation can be integrated since we know the explicit form of

n(t′) =
x− z(t′)

|x− z(t′)|

(which would simply lead to the equation of the retarded time). However, if we are only interested
in the radiation at large distance |x| → ∞ we do not need this relation in full generality. In
that case the unit vector becomes constant and equal to n(t′) ≈ x/|x|. Furthermore since
the problem is rotationally symmetric under rotation around the z-axis no generality is lost by
putting x in the y − z-plane and we can write

n =

 0
sin θ
cos θ



Figure 11.9: The observation point x is chosen in the plane x = 0.

Then Eq.(11.24) becomes
dt

dt′
= 1− ω0a

c
cos(ω0t

′) sin θ

This is now easily integrated to yield

t(t′) = t′ − a

c
sin θ sin(ω0t

′) +
R(0)

c
(11.25)

where we used that t(0) = |x − z(0)|/c = R(0)/c. We can now insert this into Eq.(11.23) to
obtain

Al(x) =
q

cT
eiω0lR(0)/c

∫ T

0

dt′
dz(t′)

dt′
1

|x− z(t′)|
eiω0l(t

′− ac sin θ sin(ω0t
′))
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Again since we take |x| → ∞ we have |x− z(t′)| ≈ |x| and R(0) ≈ |x| we can write this as

Al(x) =
q

cT

eik|x|

|x|

∫ T

0

dt′
dz(t′)

dt′
eiω0l(t

′− ac sin θ sin(ω0t
′))

where we used the abbreviation k = ω0l/c. We now only need to insert the explicit form of z(t′)
and to perform the integral. This gives the following integrals for the x and y components of
Al (the z-component is zero)

Axl = −qω0a

cT

eik|x|

|x|

∫ T

0

dt′ sin(ω0t
′) eiω0l(t

′− ac sin θ sin(ω0t
′))

Ayl =
qω0a

cT

eik|x|

|x|

∫ T

0

dt′ cos(ω0t
′) eiω0l(t

′− ac sin θ sin(ω0t
′))

Using the substitution ϕ = ω0t
′ we can write this as

Axl = − qa
cT

eik|x|

|x|

∫ 2π

0

dϕ sinϕei(lϕ−ηl sin θ sinϕ) (11.26)

Ayl =
qa

cT

eik|x|

|x|

∫ 2π

0

dϕ cosϕei(lϕ−ηl sin θ sinϕ) (11.27)

(11.28)

where we defined η = ω0a/c. These integrals are closely related to the Bessel functions defined
by

Jl(x) =
1

2π

∫ 2π

0

dϕ ei(lϕ−x sinϕ)

From this integral we see that∫ 2π

0

dϕ sinϕei(lϕ−x sinϕ) = 2πi
d

dx
Jl(x)

and further that∫ 2π

0

dϕ cosϕei(lϕ−x sinϕ) =
i

x

∫ 2π

0

dϕ eilϕ
d

dϕ
e−ix sinϕ = − i

x

∫ 2π

0

dϕ e−ix sinϕ d

dϕ
eilϕ

=
2πl

x
Jl(x)

We therefore see that Eqs.(11.26) and (11.27) can be expressed in terms of the Bessel functions
and their derivatives at argument x = ηl sin θ. We have

Axl = − i 2πqa

cT

eik|x|

|x|
J ′l (ηl sin θ) (11.29)

Ayl =
2πqa

cT

eik|x|

|x|
Jl(ηl sin θ)

η sin θ
(11.30)

where we denoted J ′l (x) = dJl/dx. We are now ready to calculate the radiated power in point
x. According to Eq.(11.4) this is given by

dP

dΩ
= (S · n)(t)|x|2 =

c

4π
|x|2(|E|2 − (E · n)2) =

c

4π
|x|2|E|2 (|x| → ∞) (11.31)
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where we used Eq.(11.8). Note that here we now calculate the received power per solid angle
dΩ in x directly at time t and do no need the factor κ which arose from the transformation to
the retarded time t′ in Eq.(11.4) . Now since

|B| = |n×E| = |E|

we can write this also as

dP

dΩ
=

c

4π
|x|2|B|2 =

c

4π
|x|2|∇ ×A|2 (11.32)

where we used that B = ∇×A. Let us express this in terms of the Fourier coefficients Al(x).
We have

∇×A(x, t) =

+∞∑
l=−∞

(∇×Al(x)) eiω0lt

and therefore

|∇ ×A(x, t)|2 =

+∞∑
l,m=−∞

(∇×Al(x)) · (∇×Am(x)) eiω0(l+m)t

Consequently

1

T

∫ T

0

|∇ ×A(x, t)|2 =

+∞∑
l,m=−∞

(∇×Al(x)) · (∇×Am(x)) δl+m,0

=

+∞∑
l=−∞

(∇×Al(x)) · (∇×A−l(x)) =

+∞∑
l=−∞

|∇ ×Al(x)|2

where we used that A∗l = A−l and used the notation |a|2 = a · a∗. From Eq.(11.32) we then
see that the received power per solid angle in x is given by

〈dP
dΩ
〉 =

c

4π
|x|2

+∞∑
l=−∞

|∇ ×Al(x)|2 (11.33)

where the brackets denote the average over one period. We now only need to calculate the outer
product in this expression. We have

∇×Al =

 ∂
∂x
∂
∂y
∂
∂z

×
 Axl

Ayl
0

 =

 − ∂
∂zAyl
∂
∂zAxl

∂
∂xAyl − ∂

∂yAxl


If we denote

αx = −iω0aq

c
J ′l (lη sin θ)

αy =
ω0aq

c

Jl(lη sin θ)

η sin θ

then using

∂

∂xj

eik|x|

|x|
= eik|x|

(
ik

|x|
− 1

|x|2

)
∂|x|
∂xj

= xje
ik|x|

(
ik

|x|2
− 1

|x|3

)
= ik xj

eik|x|

|x|2
(|x| → ∞)
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we have

∇×Al = ik
eik|x|

|x|2

 −αyzαxz
−αxy


where we need to remember that the observation point x was in the plane x = 0. We therefore
find that

|∇ ×Al|2 =
k2

|x|4
(
(|αy|2 + |αx|2)z2 + |αx|2y2

)
If we further use that z = |x| cos θ and y = |x| sin θ then this yields

|∇ ×Al|2 =
k2

|x|2
(
(|αy|2 + |αx|2) cos2 θ + |αx|2 sin2 θ

)
=

k2

|x|2
(
|αy|2 cos2 θ + |αx|2

)
=

(
ω0akq

c|x|

)2{
cot2 θ

η2
J2
l (ηl sin θ) + J ′2l (ηl sin θ)

}
(11.34)

If we recall that η = ω0a/c and k = ω0l/c we have from Eq.(11.33) that

〈dP
dΩ
〉 =

c

4π

(ω0q

c

)2 +∞∑
l=−∞

l2
{

cot2 θJ2
l (ηl sin θ) + η2 J ′2l (ηl sin θ)

}
=
ω2

0q
2

2πc

∞∑
l=1

l2
{

cot2 θJ2
l (ηl sin θ) + η2 J ′2l (ηl sin θ)

}
=

∞∑
l=0

dPl
dΩ

where in the second step we used that the Bessel functions are even and we defined

dPl
dΩ

=
ω2

0q
2

2πc
l2
{

cot2 θJ2
l (ηl sin θ) + η2 J ′2l (ηl sin θ)

}
This expression gives the radiated power per solid angle and per cycle for each harmonic frequency
ω0l. The total radiated power is calculated from

Pl =

∫
dΩ

dPl
dΩ

=

∫ 2π

0

dφ

∫ π

0

dθ sin θ
dPl
dΩ

=
ω2

0l
2q2

c

∫ π

0

dθ sin θ
{

cot2 θJ2
l (ηl sin θ) + η2 J ′2l (ηl sin θ)

}
This integral an be manipulated using various special relations for the Bessel functions. We will
not do this here and refer to Landau and Lishitz [6] for all details. Another reference to this
calculation is [7]. The result is that in the relativistic limit γ � 1 the radiated power has the
form

Pl = 0.52

(
q2

2πc

)
ω2

0 l
1
3 (1� l� γ3)

Pl =
1

2
√
π

(
q2

2πc

)
ω2

0

(
l

γ

) 1
2

e−2l/3γ3

(l� γ3)

which looks qualitatively as follows
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Figure 11.10: Distribution of intensities of radiation at frequency ω0l.
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Chapter 12

Radiation reaction

In this Chapter we will investigate the how energy and momentum loss to the radiation field
creates a back reaction force on accelerated charged particles. This radiation reaction is de-
scribes by the Lorentz-Dirac equation. However, we will see that this equation has a number of
unphysical features. We will look into some of the solutions of this equation and discuss some
of its modifications.

12.1 Point charges and infinities

From our discussion in Chapter 6 we know that the motion of a charged particle is governed by
the Lorentz force law.

m
Dvµ

dτ
=
q

c

3∑
ν=0

Fµνvν

where vµ is the four-velocity of the particle. We also know that the particle will radiate as soon
as it accelerates. This means that the particle will loose energy and momentum to the emitted
radiation field. As a consequence of this energy-momentum loss there will be a reaction force
back on the charged particle. This is described by the Lorentz force law if we include into Fµν

also the radiation fields produced by the charge itself. The force produced by these fields is called
the radiation reaction force and the corresponding fields will be denoted by Fµνr . The problem,
however, is that these fields are singular at the position of the point particle and therefore yield an
infinite reaction force. These were exactly the problems at the late 19th and early 20th century
when Lorentz and others studied the electron. In the end it was found that usable equations
for the reaction force can be derived provided the infinities are absorbed into a redefinition of
the mass of the electron. Let us illustrate the idea with a simple example. Consider a simple
point charge q and let us calculate the energy of its corresponding electromagnetic field. This
is easiest in the rest frame of the particle, where we only have a spherically symmetric electric
field. The energy density in this field is given by Eq.(10.8). Since we only have an electric field
this gives the field energy

E =
1

8π

∫
dx|E|2 =

1

8π

∫
dx

(
q

|x|2

)2

= lim
r0→0

q2

8π

∫ ∞
r0

dr 4π
1

r2
= lim
r0→0

q2

2r0

where we put a lower limit r0 on the radial integral to show the way in which the energy
approaches infinity. Let us assume as Lorentz and others did that the charge describes the
electron, which is a fundamental physical object. Then the we could imagine that it has an
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internal structure and an extension characterized by the radius r0. We can then according to
the formula E = mc2 assign an electromagnetic mass me to the electron given by

E = mec
2 =

q2

2r0
(12.1)

If we assume all mass is of electromagnetic origin then for the electron we find r0 = 1.5×10−15m.
The infinities can therefore be avoided by assuming a finite extension. The physical question is
then whether the internal structure of the particle is relevant for radiation reaction. To study
this Lorentz considered a simple model for the electron.

12.2 The Lorentz model
To describe the effect of radiation reaction on the motion of the electron Lorentz [8, 9] considered
a hollow sphere with a uniform surface charge density. If the electron is at rest the forces on each
piece of the charge balance each other (assuming that electric forces are balanced by unknown
internal forces).

Figure 12.1: Charged sphere at rest.

However, when the sphere moves in a non-uniform manner the electric forces no longer balance
because the electromagnetic fields take times to travel from one pice of the sphere to another.

Figure 12.2: Charged sphere in motion.

For instance, the force on a piece α due to a piece β depends on the position of β at an earlier
time. Lorentz then chose a reference frame in which the particle was instantaneously at rest
at time t, i.e. ż(t) = 0 for a charge element at position z(t), and assumed that none of the
quantities ż, z̈,

...
z changes very much during the time it takes for an electromagnetic signal to

cross the electron, such that they can be expanded in a Taylor series around the retarded time

z(t′) = z(t− R

c
) = z(t)− R

c
ż(t) +

1

2

(
R

c

)2

z̈(t) + . . .

where R = |x− z(t′)| is the distance form x to the charge element at z(t′). By expanding the
various contributions of the electric field and performing an integral of the sphere Lorentz found
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[8, 9] that the net force F due to the self-force is given by

Fr =
2q2

3c3
...
z (t)− 2q2

3r0c2
z̈(t) =

2q2

3c3
...
z (t)−mez̈(t) (12.2)

where z(t) describes the position of the center of the sphere and q is the total charge of the
sphere. There are higher order terms as well, but these vanish in the limit that r0 → ∞. Here
we further define the electromagnetic mass by me = 2q3/3r0c

2. This differs from the previous
choice by a factor 2/3 but this is due to the specific model that we use. Note that again
me → ∞ for r0 → 0. The total force on the particle is then given by the sum of the external
and the reaction force. This is given by

m0z̈(t) = Fext +
2q2

3c3
...
z (t)−mez̈(t)

or equivalently

mz̈(t) = Fext +
2q2

3c3
...
z (t) (12.3)

where we defined the physical mass m = m0 + me. The mass m0 is an unobservable mass
parameter. Eq.(12.3) is known as the Lorentz equation. Somewhat unusually it is a third order
differential equation. One therefore needs to specify an initial position, velocity and acceleration
to solve it.

12.3 The Lorentz-Dirac equation
The Lorentz equation in the previous section was derived in a specific reference frame by expan-
sion in powers of R/c where R is essentially the radius of the electron. However, the last term in
Eq.(12.3) is independent of this radius and the higher order terms in 1/cn (n ≥ 4) vanish when
R → 0. Therefore Eq.(12.3) has the potential of being exact and it will be worthwhile to find
its relativistic generalization. The obvious guess in Minkowskian coordinates is

m
d2zµ

dτ2
= Fµext +

2q2

3c3
d3zµ

dτ3

We should, however, remember that the Lorentz equation was derived in the instantaneous rest
frame of the electron and therefore in a general Lorentz frame terms proportional to dzµ/dτ
may appear. We therefore make the Ansatz

m
d2zµ

dτ2
= Fµext +

2q2

3c3

(
d3zµ

dτ3
+ S

dzµ

dτ

)
(12.4)

where S is a scalar function to be determined. It is readily derived that S can not be equal to
zero. From the condition (6.9)

3∑
µ=0

vµv
µ = −c2 (12.5)

where vµ = dzµ/dτ we derived Eq.(6.12) which in Minkowskian coordinates reads

0 =

3∑
µ=0

vµ
dvµ

dτ
(12.6)

and which in turn yields

0 =

3∑
µ=0

vµF
µ (12.7)
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where F is any applied force assumed to be proportional to the four-momentum. When we apply
this condition to both sides of Eq.(12.4) we obtain the relation

0 =

3∑
µ=0

(
dzµ
dτ

d3zµ

dτ3
+ S

dzµ
dτ

dzµ

dτ

)
=

3∑
µ=0

dzµ
dτ

d3zµ

dτ3
− c2S

and consequently we find that

S =
1

c2

3∑
µ=0

dzµ
dτ

d3zµ

dτ3

This equation can be rewritten since by differentiation of Eq.(12.6) with respect to the proper
time τ we have

0 =

3∑
µ=0

dvµ
dτ

dvµ

dτ
+

3∑
µ=0

vµ
d2vµ

dτ2
(12.8)

from which it follows that

S = − 1

c2

3∑
µ=0

d2zµ
dτ2

d2zµ

dτ2
= − 1

c2

3∑
µ=0

dvµ
dτ

dvµ

dτ
(12.9)

Our relativistic proposal for the radiation reaction equation (12.4) therefore becomes

m
dvµ

dτ
= Fµext +

2q2

3c3

(
d2vµ

dτ2
− 1

c2

[
3∑

ν=0

dvν
dτ

dvν

dτ

]
vµ

)
(12.10)

This equation is known as the Lorentz-Dirac equation. Dirac derived this equation in a very
different way than Lorentz using point particles from the start and conservation of energy-
momentum. A good discussion of this derivation is given in [10, 11]. Before we discuss some of
the solutions of the Lorentz-Dirac equation let us first give some physical meaning to the extra
term in Eq.(12.10). We first write it as

3∑
ν=0

dvν
dτ

dvν

dτ
=

3∑
ν=0

dvν
dt

dvν

dt

(
dt

dτ

)2

= γ2
3∑

ν=0

dvν
dt

dvν

dt

where we reparametrized the motion zµ(τ) of the particle by the time t in the Lorentz frame
from which we observe the particle and used that dt/dτ = (1 − v2/c2)−1/2 = γ. Let us now
calculate the last term more explicitly. the four-velocity has the form (see Eq.(6.17))

v = γ(c,v)

and therefore
dv

dt
= (c

dγ

dt
,
dγ

dt
v + γ

dv

dt
)

Since
dγ

dt
=

d

dt

(
1− v2

c2

)− 1
2

= v · dv
dt

1

c2
γ3

we have
dv

dt
= (

1

c
γ3v · dv

dt
,v · dv

dt

v

c2
γ3 + γ

dv

dt
)
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from which it follows that

3∑
ν=0

dvν
dt

dvν

dt
= −γ

6

c2

(
v · dv

dt

)2

+

(
v · dv

dt

v

c2
γ3 + γ

dv

dt

)2

= −γ
6

c2

(
1− v2

c2

)(
v · dv

dt

)2

+
2γ4

c2

(
v · dv

dt

)2

+ γ2

(
dv

dt

)2

= γ2

(
γ2

c2

(
v · dv

dt

)2

+

(
dv

dt

)2
)

= γ4

((
dv

dt

)2

+
1

c2

[(
v · dv

dt

)2

− v2

(
dv

dt

)2
])

= γ4

((
dv

dt

)2

− 1

c2

(
v × dv

dt

)2
)

= c2γ4(β̇
2
− (β × β̇)2)

where β = v/c. We therefore find that

3∑
ν=0

dvν
dτ

dvν

dτ
= c2γ6(β̇

2
− (β × β̇)2)

If we compare this expression to the formula of the total radiated power P of Eq.(11.18) we see
that

P =
2q2

3c

1

(1− β2)3
(β̇

2
− (β × β̇)2) =

2q2

3c3

3∑
ν=0

dvν
dτ

dvν

dτ
(12.11)

which gives a explicitly Lorentz invariant description of the radiated power. We can therefore
equivalently write Eq.(12.10) as

m
dvµ

dτ
= Fµext +

2q2

3c3
d2vµ

dτ2
− P

c2
vµ

Let us now take the external force to be given by an external electromagnetic field Fµνext. Then
we can write Eq.(12.10) as

m
dvµ

dτ
=
q

c

3∑
ν=0

Fµνextvν +
2q2

3c3

(
d2vµ

dτ2
− 1

c2

[
3∑

ν=0

dvν
dτ

dvν

dτ

]
vµ

)
(12.12)

Also the last term can be written in terms of a reaction force tensor Fµνr such that

m
dvµ

dτ
=
q

c

3∑
ν=0

(Fµνext + Fµνr )vν (12.13)

where

Fµνr =
2q

3c4

(
vµ
d2vν

dτ2
− vν d

2vµ

dτ2

)
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This is readily checked. We have

q

c

3∑
ν=0

Fµνr vν =
2q2

3c5

3∑
ν=0

(
vµ
d2vν

dτ2
vν − vνvν

d2vµ

dτ2

)

=
2q2

3c5

(
−vµ

3∑
ν=0

dvν
dτ

dvν

dτ
+ c2

d2vµ

dτ2

)

=
2q2

3c3

(
d2vµ

dτ2
− 1

c2

3∑
ν=0

dvν
dτ

dvν

dτ

)
which is exactly the last term in Eq.(12.12). The Lorentz-Dirac equation can therefore be written
in the form of Eq.(12.13) which is exactly the Lorentz force law in which the electromagnetic
field tensor now includes a piece Fµνr due to the fields produced by the charge itself. Note to now
our logics has made a circle. In Chapter 6 we assumed that the derivative of the momentum
was proportional to the four-velocity from which we concluded that they were connected by
an anti-symmetric tensor Fµν . We then in Chapter 7 constructed the Maxwell equations for
the electromagnetic tensor in terms of the four-current. By solving the Maxwell equations in
Chapter 8 we could in Chapters 9 and 11 derive the Liénard-Wiechert potentials for the fields
produced by moving charges. Using the Poynting vector from the energy-momentum tensor
we then calculated the radiated power by moving particles. We then concluded that since the
particle looses energy and momentum to the emitted field there must be a reaction force back
on the particle. Here we find that this reaction force is described by the reaction field tensor
Fµνr . But now we see that due to Fµνr the change in momentum in Eq.(12.13) is not anymore
linear in the four-velocity since Fµνr depends in a non-linear way on vµ. The whole dynamics of
a system of charged particles is still described by our fundamental Eqs.(7.25)-(7.27) What we
have effectively done is to solve Eqs.(7.25) and (7.26) in terms of the four-current and put the
solution into Eq.(7.27) thereby making the Lorentz force law a non-linear equation for the four-
velocity. The coupling of several linear equations therefore leads to rather complicated nonlinear
dynamics.

12.4 Solutions of the Lorentz-Dirac equation

12.4.1 Linear motion

Let us no study some solutions of the Lorentz-Dirac equation. As we will see we will run into a
number of conceptual issues, which we will address at the end of this section. Let us consider
Eq.(12.10) for the case of linear one-dimensional motion. Because of the condition (12.5) we
can always write for motion along the x-axis that the four-velocity vµ can be parametrized as

v = (c coshw(τ), c sinhw(τ), 0, 0) (12.14)

since then
3∑

µ=0

vµv
µ = −c2(cosh2 w(τ)− sinh2 w(τ)) = −c2

If we consider the four-velocity in a given Lorentz frame then we have (see Eq.(6.17)) that

v = γ(c, vx, 0, 0) (12.15)

where vx is the velocity along the x-axis. By comparison to Eq.(12.14) we can therefore identify

γ = coshw(τ)

vx = c tanhw(τ) (12.16)
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We further have that
dv

dτ
=
dw

dτ
(c sinhw(τ), c coshw(τ), 0, 0)

and therefore

3∑
ν=0

dvν
dτ

dvν

dτ
= c2

(
dw

dτ

)2

(− sinh2 w(τ) + cosh2 w(τ)) = c2
(
dw

dτ

)2

Finally we have that

d2v

dτ2
=
d2w

dτ2
(c sinhw(τ), c coshw(τ), 0, 0) +

(
dw

dτ

)2

(c coshw(τ), c sinhw(τ), 0, 0)

If we now insert all this information back into Eq.(12.10) we obtain the equation

mc
dw

dτ

(
sinhw
coshw

)
=

(
F 0

F 1

)
+

2q2

3c3
d2w

dτ2
c

(
sinhw
coshw

)
(12.17)

where we assume a force only acting along the x-axis. Now the condition (12.7) on the external
force gives the relation

F 0v0 + F 1v1 = 0 =⇒ F 0 = −v1

v0
F 1 = tanhw(τ)F 1

If we further define the function F (τ) by

F 1(τ) = coshw(τ)F (τ)

then we can write

F = (F 0, F 1, 0, 0) = (sinhw(τ)F (τ), coshw(τ)F (τ), 0, 0)

and Eq.(12.17) attains the simple form

dw

dτ
− 2q2

3mc3
d2w

dτ2
=

1

mc
F (τ)

If we further denote

τ0 =
2q2

3mc3

f(τ) =
1

mc
F (τ) (12.18)

then we obtain the simple linear differential equation

dw

dτ
− τ0

d2w

dτ2
= f(τ) (12.19)

where the constant τ0 has the dimension of time. It is not difficult to find a general solution of
this equation. If we write

h(τ) =
dw

dt

The equation is transformed to the first order equation

h(τ)− τ0
dh

dτ
= f(τ)
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We apply the standard method of variation of constants for solving this equation. We first
consider the homogeneous solution f = 0. In this case the general solution is obviously

h(τ) = Ae
τ
τ0

This is clearly an unphysical solution unless A = 0 as the particle will accelerate exponentially
in time in the absence of any force. We therefore need to take A = 0 for the homogeneous
solution. The remaining particular solution is obtained by variation of constants. We say

h(τ) = e
τ
τ0 g(τ)

which inserted back into the differential equation gives

−τ0 e
τ
τ0
dg

dτ
= f(τ)

and which is easily integrated to give

g(τ) = g(σ)− 1

τ0

∫ τ

σ

dτ ′ e−
τ′
τ0 f(τ ′)

We therefore find that

h(τ) = e
τ
τ0

[
g(σ)− 1

τ0

∫ τ

σ

dτ ′ e−
τ′
τ0 f(τ ′)

]
where g(σ) must be determined by a boundary condition. We see that h(τ) → ∞ for τ → ∞
for any force profile unless

0 = lim
τ→∞

[
g(σ)− 1

τ0

∫ τ

σ

dτ ′ e−
τ′
τ0 f(τ ′)

]
(12.20)

To prevent again unphysical run-away solutions we have to choose

g(σ) =
1

τ0

∫ ∞
σ

dτ ′ e−
τ′
τ0 f(τ ′)

and we find that

h(τ) =
e
τ
τ0

τ0

∫ ∞
τ

dτ ′ e−
τ′
τ0 f(τ ′) =

dw

dτ
(12.21)

A further integration then gives

w(τ) = w(a) +
1

τ0

∫ τ

a

ds e
s
τ0

∫ ∞
s

dτ ′ e−
τ′
τ0 f(τ ′)

where w(a) is an initial value. Let us apply this to a simple case. We take

f(τ) = λ δ(τ)

i.e. we apply a delta pulse of strength λ (if you prefer a more physically force you could
approximate this with a sharp Gaussian function for instance). If we insert this force into
Eq.(12.21) we find

dw

dτ
=
e
τ
τ0

τ0

∫ ∞
τ

dτ ′ e−
τ′
τ0 λ δ(τ ′) =

{
λ
τ0
e
τ
τ0 (τ < 0)

0 (τ > 0)
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and therefore

w(τ) =

{
w(−∞) + λ e

τ
τ0 (τ < 0)

w(−∞) + λ (τ > 0)

where the integration constants for τ > 0 and τ < 0 are connected by requiring w(τ) to be
continuous for τ = 0. If, for simplicity, we say that the particle has zero velocity for τ → −∞
then we have the following situation

Figure 12.3: Solution for w for a delta pulse force.

The velocity of the particle is given by Eq.(12.16). We therefore observe the strange situation
that the particle starts to move before the delta pulse at τ = 0 is applied. This phenomena has
been called pre-acceleration and is a strange feature of the Lorentz-Dirac equation. Note that
the time-scale τ0 on which this happens is very small. For the case of an electron

τ0 = 0.62× 10−23 s

The phenomenon could therefore signify the breakdown of a classical regime and indicate the
necessity of a quantum description of the problem. For a discussion see [10].

12.4.2 Harmonic motion and radiation damping

Let us finally discuss the following physical phenomenon Imagine a charge in harmonic motion,
like a pendulum or a spring

Figure 12.4: Harmonic motion with radiation damping.

If we let the charge oscillate then the particle accelerates and starts to radiate. The particle
looses energy to the radiation field and consequently the oscillatory motion will be damped by
the reaction force. This phenomenon is called radiation damping. Let us see how the Lorentz-
Dirac equation describes this phenomenon. We consider one-dimension motion again and take
for F (τ) in Eq.(12.18) the expression

F (τ) = −k c
∫ τ

a

dτ ′ w(τ ′) (12.22)

where k is a spring constant and a an initial time. This equation represents a relativistic
generalization of the harmonic force equation. Let us check this. In the non-relativistic limit for
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vx � c we have according to Eq.(12.16) that

w = tanh−1 vx
c
≈ vx

c
=

1

c

dx

dτ
(12.23)

in which limit we can also equalize the proper time τ and the time t in the Lorentz frame. So
the non-relativistic limit becomes

F (τ) = −k
∫ τ

a

dτ ′
dx

dτ ′
= −k(x(τ)− x(a)) (12.24)

which is the usual harmonic force law. We may imagine other relativistic generalizations of this
force law than (12.22) but this one is one of the simplest and nicely illustrates the phenomenon
of radiation damping. With this choice of the force Eq.(12.19 ) becomes

dw

dτ
− τ0

d2w

dτ2
= − k

m

∫ τ

a

dτ ′ w(τ ′)

A subsequent differentiation of this equation then gives

d2w

dτ2
− τ0

d3w

dτ3
+
k

m
w = 0

If we denote by ω0 =
√
k/m the harmonic frequency and use the Ansatz w = e−iα then we

find that
−α2 − iτ0 α3 + ω2

0 = 0

The three solutions to this equation are given by

α1 = ω − iγ, α2 = −ω − iγ, α3 = i(
1

τ0
+ 2γ)

where

ω =
1

2

√
3 (a+ − a−)

1

τ0

γ =
1

τ0

[
1

2
(a+ + a−)− 1

3

]

a± =

 (ω0τ0)2

2
+

1

27
±

√(
(ω0τ0)2

2
+

1

27

)2

−
(

1

27

)2
1/3

=
1

3
± ω0τ0√

3
+

(ω0τ0)2

2
+ . . .

These equations imply that ω, γ ≥ 0. The general solution for w is therefore given by

w(τ) = A1 e
−iα1 τ +A2 e

−iα2 τ +A3 e
−iα3 τ

= e−γτ (A1 e
−iω τ +A2 e

iω τ ) +A3 e
( 1
τ0

+2γ) τ

In order for w(τ) to remain finite for τ → ∞ we must have A3 = 0. The general solution can
therefore be written as

w(τ) = Ae−γτ sin(ωτ + φ)

where the amplitude A and phase φ are determined by the initial conditions on w and dw/dτ .
We therefore observe a damped harmonic motion with damping determined by γ. In the limit
ω0 � 1/τ0 it follows that

ω ≈ ω0 , γ ≈ 1

2
ω2

0τ0
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and therefore
w(τ) = Ae−

1
2ω

2
0τ0τ sin(ω0τ + φ)

For A� 1(vx � c) we have vx ≈ cw. The frequency 1/τ0 is of the order of 1023 Hz for a single
electron and therefore the approximation ω0τ0 � 1 is a very realistic one for most applications of
electromagnetic theory. The damping rate is therefore in general very small. However, radiation
reaction effects have recently been under active study due to the study of electronic motion in
ultra-intense laser fields [12, 13, 14].

12.5 The Landau-Lifshitz equation
As we have seen the Lorentz-Dirac equation has a number of artificial properties, such as run-
away solutions and pre-acceleration. These undesirable acausal features of the equation can be
traced back to the fact that it contains third order time-derivatives derivatives. One way to turn
the equation into a lower order equation which does not possess any causality probelms been
indicated by Landau and Lifshitz. Let us first write Eq.(12.12) as

dvµ

dτ
=

q

mc

3∑
ν=0

Fµνextvν + τ0

(
d2vµ

dτ2
− 1

c2

[
3∑

ν=0

dvν
dτ

dvν

dτ

]
vµ

)
(12.25)

Since τ0 is a very small number we may decide to expand the solution in powers of τ0. The
zeroth order approximation is simply given by

dvµ

dτ
=

q

mc

3∑
ν=0

Fµνextvν

from which we by differentiation obtain

d2vµ

dτ2
=

q

mc

3∑
ν=0

(
dFµνext

dτ
vν + Fµνext

dvν
dτ

)
=

q

mc

3∑
ν,ρ=0

(
dFµνext

dxρ
dxρ

dτ
vν + Fµνext

q

mc

3∑
η=0

Fνη,extv
η

)

=
q

mc

∑
ν,ρ

dFµνext

dxρ
vρvν +

( q

mc

)2∑
ν,η

FµνextFνη,extv
η

If we insert all these expressions back into Eq.(12.25) we obtain

dvµ

dτ
=

q

mc

3∑
ν=0

Fµνextvν+

τ0

(
q

mc

∑
ν,ρ

dFµνext

dxρ
vρvν +

( q

mc

)2∑
ν,η

FµνextFνη,extv
η − 1

c2

( q

mc

)2 ∑
ν,ρ,η

Fνρ,extF
νη
extv

ρvηv
µ

)

in which we neglected terms of order τ2
0 . Using Eq.(12.8) we also could have written this equation

in alternative ways which would only matter to second order in τ0. This equation is known as
the Landau-Lifshitz equation [6]. However, the most important thing is that the right hand
side of the equation only depends on velocities and not on their time-derivatives and therefore
cures the a-causal features of the Lorentz-Dirac equation. We may wonder how fundamental
this equation is as we neglected higher order terms in τ0. We should, however, keep in mind that
these classical equations are anyway only approximate as we, for instance, neglected quantum
effects. In any case both the Landau-Lifshitz and Lorentz-Dirac equation are subject of current
investigations for electronic motion in intense laser fields [14].
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Chapter 13

Maxwell action and gauge
curvature

13.1 Integration of differential forms

13.1.1 Differential forms and volume

13.1.2 Stokes’ equation

13.1.3 A differential form inner product

13.2 Maxwell action

13.3 Gauge curvature
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Appendix A

Diagonalization of
non-degenerate metric
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Appendix B

Covariant divergence from
exterior calculus

We give here a proof of Eq.(7.61). To do this we have to evaluate ? d? on a general p-form ω.
Let us first derive a useful formula. From Eq.(3.107) we see that we can write

εi1...in =
1

g
εi1...in (B.1)

We will use this formula below. Let us take an arbitrary p-form ω

ω =

n∑
i1<...<ip

ωi1...ip dx
i1 ∧ . . . ∧ dxip

Then according to Eq.(3.101) we have

?ω =
1

(n− p)!p!

n∑
j1...jp,ip+1...in

√
|g|ωj1...jpεj1...jpip+1...indx

ip+1 ∧ . . . ∧ dxin

If we now apply the exterior derivative to this expression we find

d ? ω =
1

(n− p)!p!

n∑
j1...jp,ip+1...in

∂

∂xk

(√
|g|ωj1...jp

)
εj1...jpip+1...indx

k ∧ dxip+1 ∧ . . . ∧ dxin

=
1

p!(n− p)!(n− p+ 1)!

n∑
k,j1...jp,ip+1...in

l1...ln−p+1

δ
l1...ln−p+1

k ip+1...in
εj1...jpip+1...in

∂

∂xk

(√
|g|ωj1...jp

)

× dxl1 ∧ . . . ∧ dxln−p+1

=
1

(n− p+ 1)!

n∑
l1...ln−p+1

ηl1...ln−p+1
dxl1 ∧ . . . ∧ dxln−p+1

where the coefficients of the (n− p+ 1)-form η = d ? ω are given by

ηl1...ln−p+1
=

1

(n− p)!p!

n∑
k,j1...jp
ip+1...in

δ
l1...ln−p+1

k ip+1...in
εj1...jpip+1...in

∂

∂xk

(√
|g|ωj1...jp

)
(B.2)
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It remains to act with the ? operator on η. This yields

? η =

√
|g|

(n− p+ 1)!(p− 1)!

n∑
l1...ln−p+1
m1...mp−1

ηl1...ln−p+1εl1...ln−p+1m1...mp−1
dxm1 ∧ . . . dxmp−1

=

√
|g|

(n− p+ 1)!(p− 1)!

n∑
l1...ln−p+1
m1...mp−1
r1...rp−1

ηl1...ln−p+1
εl1...ln−p+1r1...rp−1gr1m1

. . . grp−1mp−1

× dxm1 ∧ . . . ∧ dxmp−1

=

√
|g|
g

1

(n− p+ 1)!(p− 1)!

n∑
l1...ln−p+1
m1...mp−1
r1...rp−1

ηl1...ln−p+1εl1...ln−p+1r1...rp−1gr1m1 . . . grp−1mp−1

× dxm1 ∧ . . . ∧ dxmp−1

where in the last step we used Eq.(B.1). The only thing that remains is to insert the explicit
form (B.2) into this expression. This gives

? d ? ω =
sign(g)√
|g|

1

p!(n− p)!(n− p+ 1)!(p− 1)!

n∑
l1...ln−p+1

m1...mp−1,r1...rp−1

k,j1...jp,ip+1...in

δ
l1...ln−p+1

k ip+1...in

× εj1...jpip+1...inεl1...ln−p+1r1...rp−1

∂

∂xk

(√
|g|ωj1...jp

)
gr1m1

. . . grp−1mp−1
dxm1 ∧ . . . ∧ dxmp−1

=
sign(g)√
|g|

1

p!(n− p)!(p− 1)!

n∑
m1...mp−1,r1...rp−1

k,j1...jp,ip+1...in

∂

∂xk

(√
|g|ωj1...jp

)
× εj1...jpip+1...inεk ip+1...inr1...rp−1gr1m1 . . . grp−1mp−1dx

m1 ∧ . . . ∧ dxmp−1

=
sign(g)√
|g|

(−1)(n−p)(p−1)

p!(n− p)!(p− 1)!

n∑
m1...mp−1,r1...rp−1

k,j1...jp,ip+1...in

∂

∂xk

(√
|g|ωj1...jp

)
× εj1...jpip+1...inεk r1...rp−1ip+1...ingr1m1

. . . grp−1mp−1
dxm1 ∧ . . . ∧ dxmp−1

(B.3)

where in the last step we shifted n− p indices over p− 1 positions. If we now use that

n∑
i1...ip+1

εj1...jpip+1...inεk r1...rp−1ip+1...in = (n− p)! δk r1...rp−1

j1...jp



255

we find

? d ? ω =
sign(g)√
|g|

(−1)(n−p)(p−1)

p!(p− 1)!

n∑
m1...mp−1,r1...rp−1

k,j1...jp

δ
k r1...rp−1

j1...jp

∂

∂xk

(√
|g|ωj1...jp

)
× gr1m1

. . . grp−1mp−1
dxm1 ∧ . . . ∧ dxmp−1

=
sign(g)√
|g|

(−1)(n−p)(p−1)

(p− 1)!

n∑
m1...mp−1

k,r1...rp−1

∂

∂xk

(√
|g|ωk r1...rp−1

)
× gr1m1

. . . grp−1mp−1
dxm1 ∧ . . . ∧ dxmp−1

=
1

(p− 1)!

n∑
m1...mp−1

(? d ? ω)m1...mp−1
dxm1 ∧ . . . ∧ dxmp−1 (B.4)

where we defined

(? d ? ω)m1...mp−1
=

sign(g)√
|g|

(−1)n(p−1)
n∑

k,r1...rp−1

∂

∂xk

(√
|g|ωk r1...rp−1

)
gr1m1

. . . grp−1mp−1

where we used that (−1)p(p−1) = 1. This expression is equivalent to Eq.(7.61).
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