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Abstract

Deliverable D5.1 presents CISSAN efforts and results at the intersection of Al and IoT, with
anomaly detection as a key technique in use. In the domain of smart grids, Al-based anomaly
detection algorithms are applied for analysing network traffic and operational data from
substations to detect threats and faults at both communication and operational levels. The
developed anomaly detection models run locally, in network nodes, reflecting the focus of CISSAN
Task 5.1 on distributed detection and — more generally — the project’s focus on enabling Collective
Intelligence for improved cybersecurity. Another T5.1 effort included in this document is studies
in the application of a modern Large Language Model (Llama 3.1) to loT network traffic analysis,
with a goal of detecting and analysing cyberattacks with minimal preprocessing and preparations.

D5.1 also briefly presents work that fully or partially belongs to WP4: (i) the use of generative Al
for producing synthetic data for training and validating intrusion detection systems, addressing
such critical challenges as data scarcity and privacy; (ii) analysis of GPS data in public transport
systems to identify system faults and attacks and improve the safety and resilience of transport
systems; (iii) the use of anomaly detection as an ingredient in a blockchain-based framework for
securely logging loT events and producing verifiable proofs of detected anomalies. While these
lines of work will be presented in detail in future CISSAN deliverables, (i) clearly supports T5.1
and (i) and (iii) show methodological similarities, so we find it helpful to articulate the connections.
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Executive Summary

The convergence of artificial intelligence (Al) and loT technologies lies at the core of innovative
cybersecurity solutions for interconnected systems. Deliverable D5.1 presents CISSAN efforts and
results which harness this synergy to address the pressing security and reliability challenges of
modern systems, with anomaly detection as a key technique in use.

In the domain of smart grids (CISSAN Use Case 2), Al-based anomaly detection algorithms are
applied for analysing network traffic and operational data from substations to detect threats and faults
at both communication and operational levels. The developed anomaly detection models run locally,
in network nodes, reflecting the focus of CISSAN Task 5.1 on distributed detection and — more
generally — the project’s focus on enabling Collective Intelligence for improved cybersecurity. Another
T5.1 effort included in this document is studies in the application of a modern Large Language Model
(Llama 3.1) to 10T network traffic analysis, with a goal of detecting and analysing cyberattacks with
minimal preprocessing and preparations.

D5.1 also briefly presents work that fully or partially belongs to WP4: (i) the use of generative Al for
producing synthetic data for training and validating intrusion detection systems, addressing such
critical challenges as data scarcity and privacy; (ii) analysis of GPS data in public transport systems
(in the scope of CISSAN Use Case 1) to identify system faults and attacks and improve the safety
and resilience of transport systems; (iii) the use of anomaly detection as an ingredient in a
blockchain-based framework for securely logging I0T events and producing verifiable proofs of
detected anomalies. While these lines of work will be presented in detail in future CISSAN
deliverables, (i) clearly supports T5.1 and (ii) and (iii) show methodological similarities, so we find it
helpful to articulate the connections.

Anomaly Detection in loT-based Smart Grids

This study investigates anomaly detection in loT-enabled smart grids using Al-based algorithms,
focusing on network traffic and operational data from grid substations. The experiments aimed to
detect anomalies at both communication and operational levels.

Network data was captured in the PCAP format, and two levels of analysis were conducted on it:

e Network-Level Analysis: The Al algorithms processed the IP headers from the SCADA and
MQTT packets, using features like Header Length, TTL, and a custom Inter-Arrival Time metric
to account for timing.

e Operational-Level Analysis: The sensor values in the SCADA and MQTT payloads were
filtered based on Information Object Addresses (IOA) and mapped to signals of interest.

At the communication (network) level, the Al models were trained on one million SCADA packets
using selected IP headers. To test anomaly detection, the Total Length feature was manipulated
during inference. The results showed that the models were able to identify deviations from normal
behaviour via anomaly scores crossing the decision boundaries.

The experiments at the operational level targeted substation health monitoring through signal
analysis to detect system failures and attacks undetected at the communication level. Anomalous
signals of two types were tested:

e Frozen-Value signal: Signal values were frozen over multiple consecutive packets.

e Mean-Shift Attack: Signal values were manipulated using a weighted moving average and one
standard deviation, mimicking stealthier attacks.

The Al models were trained on rolling-window statistical features (mean, standard deviation, etc.)
from the measured signals (like Currents, Power Factor, etc). The results showed the successful
detection of both types of anomalous signals, with the anomaly scores crossing the predefined
thresholds during the manipulation periods.

The novelty of our approach is in performing analysis on data generated at secondary substations,
close to the source where higher-frequency data samples are accessible, to detect even subtle
deviations in operational and communication / network behaviours. Achieving this requires
lightweight, efficient algorithms that can run locally on resource-constrained edge devices.

The primary objective in CISSAN Use Case 2 (UC2) is to automate grid monitoring and deliver
intelligent, actionable insights to operators, addressing the challenges brought about by the
changing dynamics of power grids.

© 2024 CELTIC-NEXT participants in project CISSAN
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While the current experiments are focusing on anomaly detection run locally within individual
substations, future work aims to develop a global framework for aggregating and contextualizing
observations across substations, enabling a holistic view of the grid performance. Advanced
explainability features will be integrated to help operators identify root causes of anomalies and make
informed decisions to improve grid reliability and efficiency.

Llama analysis in detecting loT-targeting cyberattacks

The study explores the potential of Llama 3.1, a Large Language Model (LLM), to detect cyberattacks
in 1oT network traffic data, focusing on its ability to analyse raw, heterogeneous data without fine-
tuning or data preprocessing. LLMs have shown promise in cybersecurity by understanding
cyberattack patterns and identifying vulnerabilities. In CISSAN, we evaluated Llama 3.1’s
performance in detecting 12 attack types, leveraging its ability to interpret individual network packets
(in the JSON format) extracted from the Edge-lloTset dataset.

The study highlights the observed Llama 3.1’s strengths, such as understanding network protocols,
identifying suspicious IPs and ports, and analysing human-readable data. However, the limitations
include hallucinations, particularly with encrypted payloads, and reduced accuracy in discerning
attack signals amidst ambiguous data. Notably, the model's ability to correctly reason was high at
94%, but its occasional inaccuracies necessitate human oversight for validation.

In the qualitative analysis, the model demonstrated contextual awareness of Industrial Internet of
Things (IloT) environments and protocol-specific functions, underlining its ability to process raw
network data meaningfully.

In cases when LLM adaptation or data preprocessing are not justified or infeasible, our work
contributes to exploring the limits of LLMs in cyberattack detection and to understanding preferred
ways of their application. We are planning to extend the scope of our experiments and the datasets
used in those, including synthetic data generated in WP4 (briefly presented in Section 4 and the
paragraphs that immediately follow).

Generative Al for Generating Cybersecurity Data

In T4.2, we investigated the use of generative Al, particularly Generative Adversarial Networks
(GANSs), to generate synthetic cybersecurity data aimed at addressing challenges with building
intrusion detection systems (IDS). Real-world cybersecurity data is often limited, imbalanced, and
sensitive to privacy concerns, making synthetic data a valuable alternative. This study evaluates
various synthetic data generation methods, including non-Al techniques (such as Random
Oversampling and SMOTE) and Al-based methods (like GANs and Variational Autoencoders). The
focus is on their effectiveness, data fidelity, and ability to handle class imbalance.

Key findings indicate that while traditional methods, such as SMOTE and Cluster Centroids,
effectively maintain data distribution and class balance, they often do not generate novel data points.
In contrast, Al-based methods, such as Conditional Tabular GAN (CTGAN) and Tabular Variational
Autoencoders (TVAE), excel at producing high-quality synthetic data closely resembling real-world
statistical properties, although they may need additional techniques to address the class imbalance.
The study also emphasizes the importance of mutual information for feature selection and the use of
evaluation metrics like statistical similarity, performance, and class balance.

The research concludes that CTGAN and TVAE are particularly effective for cybersecurity
applications, providing a balance between data realism and utility, and suggests leveraging GANs to
simulate evolving cyberthreats, enhance 0T data privacy, and improve real-time IDS. This study
offers a comprehensive framework for selecting synthetic data generation methods tailored to
specific cybersecurity needs.

Analysis of GPS data in the public transport domain

GPS interference, spoofing, and jamming are growing cybersecurity concerns, particularly affecting
aviation and public transport. Real-time passenger information and vehicle location systems in public
transport depend on accurate, frequently updated positioning data, primarily from such GNSS
technologies as GPS or alternative sources.

The CISSAN project has been exploring methods and models for detecting anomalies in GPS data,
starting with the real-time bus position data from Tampere, Finland. Given the large volume of GPS
data collected daily (5-7 million coordinates), efficient and robust anomaly detection methods are
necessary. We are evaluating various algorithms, including statistical and ML models.

© 2024 CELTIC-NEXT participants in project CISSAN
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Initial results allowed us to identify in the data frequent small errors (likely due to environmental
interference, device sensitivity, or route characteristics) and occasional large errors (likely resulting
from signal loss, device malfunction, or data glitches). Future work will focus on developing and
validating methods optimized for real-time anomaly detection in public transport data.

Network Logging System

Anomaly detection is used as an ingredient in a blockchain-based framework being developed in
T4.3 for securely logging loT events and producing verifiable proofs of detected anomalies,
supporting, e.g., audits and incident investigations in 10T networks. The framework enables multiple
agents to transmit 10T events in a standardized format to a custom blockchain network. These events
are initially received and processed by anomaly detection models in so-called Hub nodes. A Master
node creates and extends a canonical blockchain of events, which every Hub node synchronizes
and verifies. As an additional assurance, the event blockchain is also timestamped on a public
blockchain (e.g., Bitcoin).

The anomaly detection part of the framework, which belongs to T5.1, will be developed further in the
2nd half of the project. Connecting to the synthetic data generation efforts presented above, we note
that GANs are planned to be used for improving the anomaly detection models for the loT event
logging framework.

© 2024 CELTIC-NEXT participants in project CISSAN



page 6 (38) CELTIC-NEXT project report

List of Authors

In alphabetic order by partner name:

Dure Adan Ammara, Blekinge Tekniska Hogskola
Wissam Aoudi, Clavister

Alberto Doval, Councilbox

Teemu Kemppainen, Mattersoft

Anders Lidén, Clavister

Karoly Makonyi, Savantic AB

Sara-Paivi Paukkeri, University of Jyvaskyla

Pasi Tapanainen, University of Jyvaskyla

© 2024 CELTIC-NEXT participants in project CISSAN



CELTIC-NEXT project report page 7 (38)

Table of Contents
EXECUTIVE SUMMIMARY .....ccuctteitteereenerenieeesereesernscressersssssnsesssssssssssssssssessssssssssssssssssssnsssassssnsessssesnsesansennsssanns 3
LIST OF AUTHORS .....ccucteiitieerteneteeerenereneenseressesnsesensessssssnsessssssnsessssssssessssesnssssnssssssssnssssssssnsessnsesnssssnsesnnssnnne 6
LIST OF FIGURES ....ccuuuuiiiiiietennnieeteieeenessssseseeessensssssesseessssssssssssssssnssssssssssssssssssssssssssssnassssssssssssnansssssesssssnnnns 8
LIST OF TABLES .....ccceuuuiiiiiieetennnieeteeeeenesssseeseeesseassssssssessssssssssssssssssssssssssssssssssssssssssssssnassssssssssssnanssssssssessnnnns 9
ABBREVIATIONS .....itttttteirieiietetteenesieeteeeessessssesssesssssssssesssssssnsssssssssssssnssssssssssssssnsssssssssssssnnnsssssssssssnnnsssnnns 10
1 INTRODUCGTION .....ceueieeiirinereenerenceeescrensenscsessesssesessssasesssssssssssssessssssnsessssssnsesassesssssassesnsesassssnsessnsennnsns 11
2 NETWORK AND OPERATIONAL ANOMALIES IN SMART GRID .....ccccteeuerenreenerenerencreniernncrenncensesensenanens 11
2.1 INTRODUCTION .1t uueeeeetertttteeeeeeeerssteeeeessssssssnnsesessessssanasessssssssnnaesessssssssnnsesessssssssnnsesessssssnsnnsessssssssnnenens 11
2.2 OBJECTIVE OF THIS SECTION 1.uvvvvereeeeeieitrureeeseeeiesissseereesesessssssssesesesssssssesseessemssssssssesssemssssssesessesnssssssesees 11
2.3 DETECTION APPROACHES .vveeiieieuttereeeeeeeieitueeeeseeeiesissseeesesesesisssssesesssemssstassseseseissssssseesesesensssssssseessenssnees 11
2.4 ANOMALY DETECTION IN |OT-BASED SMART GRIDS ...uvvvvrreeeeeiiuureereeeeeeiisrereeeeeeeisssreseeesesssmsssssseeseessmssssssesees 12
2.4.1 DOEA PrEPATATION ...ttt ettt e e sttt e s ettt e s e e s snnee e e 12
2.4.2 NetWOrks-Level EXPEIIMENT ...........cccueevueerieeiieeie ettt ettt ettt ieeesaee e 13
2.4.3 0peration-Level EXPEIIMENTLS .........c..cooueeeueeiieieee ettt sttt ettt e et e saee s 14
2.5 FUTURE PERSPECTIVES ... euvveeeetreeeeetreeeeeseeeeeitseeeessseseessseeeeasseeeensseseeasseeesnsseseessseeeeessssessnsseseensseeesnsnens 19
2.6 REFERENCES. 1vvvvteeeiieittreeereeeeeiissrereeeseeeieissaseeeseeesessbsssesseesseasssrssstesssesssstassseessesassbasseeeesesassbssseeseeesnnssnrens 20
3 LLAMA ANALYSIS IN DETECTING IOT-TARGETING CYBERATTACKS ....ceuurriiiiriinreenerceeerreeenennssseeeseesnnnnes 21
3.1 INTRODUCTION . .tteeitetttrtreeeeeeeiiuteeereseeesessbaseeeseeesesssassessessseasstaerseessesssstassseessesasbasseeeesesassbsrseeseeesnsssnrens 21
3.2 V13 (3T o ORIt 21
3.2.1 Prompt @NGINEEIING .....c..uueeeriiiieieiiiieeeee ettt ettt e e sttt e s et e e saseeessnneaenans 23
3.2.2 [ T 1o B T F R 23
3.2.3 [0 o IR 23
3.24 EXAMPIE Prompt QNG FESPONSE..........cccceeeeeseieeeeeeeeeceeeeestteeeseee e eetaeeeesraseesstsasesssssaaesresenans 24
3.3 RESULTS .. tteeeeeuteeeeeetreeeeeteeeeeetteeeeetreeeeeseeeestaeeeeasseeseessaeeeesseaeensseeeeessseeestseeeensseeeennsseeeansseeeensseeeennneens 26
3.3.1 QUANTTIEATIVE FOSUITS.......ccoooieiiiiiiiiiiiiie 26
3.3.2 QUATTEAEIVE FESUILS ...t e ettt e e e e ettt e e e e e e st eaaeeeessassaaaaesseesnsrenees 29
3.4 DISCUSSION 1vvvvvreeeiieitusreeeeeeeeeiissrereeeseeesesssasseeseeesasssasseesesssassssrssssesssessstasssesssesassbasssesssessssssssesseesensnsens 31
3.5 LIMITATIONS AND FUTURE RESEARCH ...uieieiviitiieieeeeeettsniieeeeersesssnaeseessssstnnaesessssssssnnsesessssssnnnnsesessssssnnnnsees 32
3.6 (0o \[ol KU L o] N PR RR 32
3.7 REFERENCES. ..vvvtuueeeeerertttuseeeeeesssnnnaseseesssssssnnseeesssssssnnsessssssssnnsesessssssssnnsesessssssssnnsesessssssnnnnsesesssssnnnnnsees 33
4  GENERATIVE Al FOR GENERATING CYBERSECURITY DATA .....cottttreeeeriienrrtennnnessesereeessnnsssssssseessnnnsssnnns 34
4.1 INTRODUCTION . .eeeeeeeiutrreeeeeeeeseitrrreeeseeesesstsseeeseeesasassaaseeessesassssaseasssesanrasssaeeeesaassssseeeseesassssseesesssnnnsnnees 34
4.1.1 The Role and Importance of Synthetic Data in Cybersecurity...................ccoouveecvivreeeiuveennne. 34
4.1.2 Challenges in Synthetic Data Generation for IDS ...................cccccveeecveeeeciieeeeiiieesiieeeesiieaenns 34
4.2 OBJECTIVES OF THE STUDY .tttuuuueieeereettutiieseeereestsniaseserssstannseseesssssnsnsesessssssnnesessssssssnaeseessssssmneesesssssnnnns 34
4.3 TECHNIQUES FOR SYNTHETIC DATA GENERATION ...eevvvttuieeeeeeeersunieeeeessrssanneseeessssssnnnesessssssssnnneeessssssssnnnesees 34
4.3.1 INON-AI-BASEA MEULROUS ............coovvveveveeeeeeeeerererererererereeereeereresesesssesessssssssssssssssssssssssssssrssessrsnen 34
4.3.2 AI-BASEA MEEROUS ...ttt e e ettt e e e e e e st e e e e e essasbarasaeeesssnsseses 35
4.4 EVALUATING FEATURE DEPENDENCIES WITH MUTUAL INFORMATION (M) c..evvvviieeeeeeciireeeee e ceeeiireeee e s 35
4.4.1 Experimental SEtup ANd RESUILS ....................ooeeeeeieeeeeeeeeiieeeeeeeescteeessee e e st eeseaeaessseaenns 35
4.4.2 Future Directions and IMpliCAtions....................ccccoooecuueieeiieeeesiiieeccieeesceeeesetaeeseeaessreaeens 36
5  ANALYSIS OF GPS DATA IN THE PUBLIC TRANSPORT DOMAIN .....ccottteeeunieeerreeeenneneeeereeeennssnesesesssnnnns 37
5.1 INTRODUCTION .11ttt eeeteruttneeeeeeeserssnneseeeesssssssnnsesesssssssnnsessssssssnnsesessssssssnnsesessssssssnnsesessssssnnnnsessssssssnnenens 37
5.2 TECHNICAL EXPERIMENTS WITH GPS COORDINATES OF BUSES ..cvvvvruueeeeerereruuiieeeeeeresrsnnieeeseeessssnneseesssssssnnneeees 37
5.3 METHODOLOGICAL APPROACH ...cetvtuuieieeeeetetutieseeereestsniaesessssssssnaesesssssstsnaesesssssssnnnsesessssssnnnnsesssssssnnnnneens 37
5.4 INITIAL EXPERIMENTS AND FINDINGS (WORK IN PROGRESS) «..eeeeeeuvrrereeeeieiinrrereeeeeesestseeeeeeeesesssseeesesssensnnees 37
5.5 AADDITIONAL ANALYSIS 11veeeeeeieitrreeeeeeesesisreeeeeeesesisresesesesesisrasssesesesmsssssseesesemssstssseesesesmsssssssseeeesmnssssesees 37
5.6 DISCUSSION 1vvveeeeeeeeesurrereeeeeeesesrsreeeseessessssseeseeesessssaessesssesasssssssasssesasssasseeessesasssssseesesesnssssssseseeesensnsees 37
5.7 FUTURE WORK .1uuueeeeetitttieeeeeeeettttiieeeseesssssstnseeessssssnnnesesessssssnnaesesssssstsnnsesesssssssnnnsesessssssnnnnsesessssssnnnenees 38

© 2024 CELTIC-NEXT participants in project CISSAN



page 8 (38) CELTIC-NEXT project report

List of Figures

Figure 2.1: Total Length feature including manipulated values. ...........ccoiviiiiveereiiiiiiiiiieeeeiniccceeeeee, 13
Figure 2.2. 3D representation of SCADA network in station 1...........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenseesseennne 14
Figure 2.3. 3D visualization of detecting the Total Length attack on station 1. .........cceeeeeeeeeeeeeeeeeeeeeeeennnes 14
Figure 2.4. PASAD'S dEPArture SCOIES. .....cceeeeeeeeeeeeeeeenmsesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnnnns 14
Figure 2.5. SCADA normal versus manipulated signals of station 1 (Frozen-value attack)............ccecueerrneee 15
Figure 2.6: Departure scores of GRP4 Current B model in station 1. ........ccccovvuereiiiiiiiiiseeneeininiissneeeeennnn, 16
Figure 2.7: GRP4 Current B model detection of the Frozen-value attack in station 1 in 3D. .........cccceerrnnee. 16
Figure 2.8: Departure scores of Temperature T1 model in station 1. .........ccceeeeeeeeemnnnnnnnnnnnnnnnnenneesssssssssnnnes 16
Figure 2.9: Temperature T1 model detection of the Frozen-value attack in station 1in 3D. .........cccccccc..... 16
Figure 2.10: Departure scores of the Power Factor T1-400 model in station 1. .........cceeeeeeeeeeeeeeeeeeeeeeeennnnes 16
Figure 2.11: Power Factor T1-400 model detection of the Frozen-value attack in station 1 in 3D. ............ 16
Figure 2.12: Departure scores of the Power Reactive T1-400 model in station 1..........ccceeeeeeeeeeeeeeneeeeennnnns 17
Figure 2.13: Power Reactive T1-400 detection of the Frozen-value attack in station 1 in 3D. ................... 17
Figure 2.14. Normal GRP4 and Power Factor versus manipulated GRP4 and Power Factor in station 1
(MEAN-ShIft ALEACK). ....ceeriiiiiiiiiiriiiiirrririrrrererrersreessssessssssssssse s sssssssssssssssssssssssssssssssssssssssssssssssssssnnnnes 18
Figure 2.15. GRP4 Current B detection of Mean-shift attack in station 1in 3D. ......ccceeeeeeeeeeeeeeeeeeeeeeeeennnees 19
Figure 2.16. PASAD's departure scores of the GRP4 Current B model of Mean-shift attack in station 1.... 19
Figure 2.17. Power Factor detection of Mean-shift attack in station 1 in 3D.......cccceeeeeeeeeeeeeeeeeeeeeeneeeeennnnnes 19
Figure 2.18. PASAD's departure scores of the Power Factor model of Mean-shift attack in station 1. ...... 19
FigUIe 3.1: RESEAICR PrOCESS....cuuuerereeereeemeeeeeeemeeesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 22

Figure 3.2: Each prompt is rated based on attack identification (A) and five assertions: True Findings (TF),
False Findings (FF), Attack Vector Identification (AV), Correct Reasoning (CR) and False Reasoning
(FR). True statements are indicated With @ Cross.......ccccceeeeerrveeeeiiinicccrrereeeee e cseeeree e e s sennneeseeeas 28

© 2024 CELTIC-NEXT participants in project CISSAN



CELTIC-NEXT project report page 9 (38)

List of Tables

Table 3.1: Llama 3.1’s Analysis for single Packets .........ccceviiiiiiiiiiiiiiiiiinsiinnisssinnssssnsssms 29
Table 3.2: Llama 3.1's analysis using multiple packets.........ccccceiiiiiiiiiiiiiiiiiiiiniissssssssssssssssssssssssssssssssssssnnes 32

© 2024 CELTIC-NEXT participants in project CISSAN



page 10 (38) CELTIC-NEXT project report

Abbreviations

Al — Artificial Intelligence

GAN — Generative Adversarial Network
GNSS - Global Navigation Satellite System
GPS - Global Positioning System
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1 Introduction

Artificial Intelligence (Al) lies at the heart of advancing cybersecurity in interconnected systems and
critical infrastructures, offering powerful tools to address the growing complexity of IoT and OT
networks, such as smart grids (CISSAN Use Case 2). In smart grids, Al-driven anomaly detection
enables real-time identification of technical faults and cyberattacks, improving the resilience and
operational efficiency of grid systems. The anomaly detection models presented in Section 2 run
locally, in network nodes, reflecting the focus of CISSAN T5.1 on distributed detection and — more
generally — the project’s focus on enabling Collective Intelligence for improved cybersecurity.

Large Language Models (LLMs) show potential as tools for detecting malicious activities in
heterogeneous, high-volume data streams. Another T5.1 effort included in this document (Section 3)
is studies in the application of a modern Large Language Model (Llama 3.1) to IoT network traffic
analysis, with a goal of detecting and analysing cyberattacks with minimal preprocessing and
preparations.

D5.1 also briefly presents work that fully or partially belongs to WP4: (i) the use of generative Al for
producing synthetic data for training and validating intrusion detection systems, addressing such
critical challenges as data scarcity and privacy (Section 4); (ii) analysis of GPS data in public
transport systems (in the scope of CISSAN Use Case 1) to identify system faults and attacks and
improve the safety and resilience of transport systems (Section 5). While these lines of work will be
presented in future CISSAN deliverables, (i) clearly supports T5.1 and (ii) explores anomaly
detection approaches, so we find it helpful to articulate the connections in D5.1.

The presented results and findings highlight Al's transformative potential to manage emerging risks
and enhance the security of modern digital ecosystems.

2 Network and operational anomalies in smart grid

2.1 Introduction

The integration of IoT and digital communications within electrical grids has paved the way for smart
grids, transforming traditional power distribution systems into complex, interconnected networks.
This evolution enables greater efficiency, real-time monitoring, and flexibility but also brings new
security challenges. Detecting and managing anomalies—ranging from technical faults to
sophisticated cyberattacks—is critical to ensuring the resilience and reliability of these systems.
Anomalies within smart grids can signal irregular activities, such as data tampering, unauthorized
access, or equipment malfunction, which may compromise the entire network's stability if left
undetected.

This section describes the application of Al-driven anomaly detection techniques through
experiments on network and operational data from several substations. Using data collected from
loT-enabled devices, these experiments simulate potential failure- and attack signatures on the
network and operation data. This includes scenarios such as frozen-value and mean-shift failures
and attacks, to evaluate the models' ability to detect subtle and complex anomalies. The results
underscore the importance of adaptable and layered detection models in managing the evolving
cyber risks associated with modern smart grids. This work introduces components of a distributed
system that will be realized in the second half of the project.

By examining the advantages, challenges, and performance of different anomaly detection models,
this document aims to provide insights into developing resilient, scalable solutions for anomaly
detection in smart grids, with the goal of improving security, operational efficiency, and system
reliability across electrical infrastructure networks.

2.2 Objective of this Section

The objective of this section is to present viable approaches to Al-based monitoring and highlight the
hybrid approach as likely the most plausible one. Furthermore, this section presents the reader with
experimental results and methodologies for Al-based monitoring of loT-based power grids using real-
world data.

2.3 Detection Approaches

There are various anomaly detection models available in the literature, ranging from fully centralized
approaches to decentralized models.

© 2024 CELTIC-NEXT participants in project CISSAN
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A centralized anomaly detection model involves collecting data from all substations and analyzing it
at a central location. This approach allows for a comprehensive analysis, as aggregating data from
all stations facilitates the identification of patterns that might be missed if analyzed in isolation.
Additionally, it offers scalability, with the ability to scale up processing power and storage at the
central location to accommodate increased data loads as the number of stations grows. However,
this model has its drawbacks, including potential delays due to data transfer time, especially in low-
bandwidth or high-latency environments. The model's reliance on network connectivity means that
disruptions can delay or even halt data collection and anomaly detection. Moreover, constantly
transmitting large amounts of data from multiple stations can consume significant network bandwidth,
and the central server or processing center becomes a single point of failure, making the entire
system vulnerable if an issue arises.

In contrast, a distributed anomaly detection model, where each node (station) performs anomaly
detection independently, addresses some of these challenges. By sending only anomaly reports or
summaries to a central location, this model significantly reduces the amount of data transmitted over
the network, leading to lighter bandwidth usage. It also eliminates the single point of failure, as each
station operates independently, ensuring that a failure at one station or the central server does not
impact others. Additionally, nodes can continue functioning autonomously even if they lose
connectivity with the central server. Monitoring and maintaining the functionality and consistency of
all nodes also requires more complex systems.

Hybrid approaches, such as hierarchical anomaly detection, seek to combine the strengths of both
centralized and distributed models [1]. In hierarchical anomaly detection, each node performs initial
anomaly detection on its data, focusing on clear, straightforward anomalies that require limited
computational resources. The detected anomalies or summarized data are then sent to a central
server for deeper, more comprehensive analysis, allowing for the identification of broader patterns
or correlations between stations. This approach is efficient, reducing the amount of data sent to the
central server and saving bandwidth while combining the immediacy of local detection with the
broader perspective of centralized analysis. It is also scalable, as local processing lightens the load
on the central server. However, it introduces complexity, requiring careful coordination between local
and central algorithms, and nodes still need some level of processing power, though less than in a
fully distributed model. The result of the process will be presented to the operators supporting his
decision on the necessary action.

Each substation supplies electricity to a diverse range of end customers, which may include
households, industrial zones, office buildings, or a mixture of these. These distinct areas often exhibit
varying power demands and unique consumption patterns. Consequently, a single standardized
model may not be suitable for all substations.

Different models were considered to use and finally a lightweight model was selected to use that is
able to run on each substation, even with limited hardware resources. A primary advantage of this
local monitoring is the access to data and measurements at a fine-grained level thanks to running
analysis closer to the data source. However, monitoring only individual substations does not offer a
comprehensive view of the entire electricity grid’s status. Therefore, each substation’s status should
be sent to a central node in a higher layer, allowing for event aggregation and semantic correlation
analysis, as well as presentation to operators. In this setup, a hybrid anomaly detection model serves
as a suitable solution for our needs.

2.4 Anomaly Detection in loT-based Smart Grids

A series of anomaly-detection experiments have been performed using Al-based algorithms on data
received from Affarsverken. This section outlines the different steps in these experiments, describes
the methods used, and presents experimental results and lessons learned.

2.4.1 Data preparation

The datasets from Affarsverken were provided in the form of network captures in pcap format and
originated from three stations. Experiments were conducted on all three stations, both at the network
level by analysing IP headers and at the operational level by monitoring signal data.

On the network level, Clavister’'s Al algorithm PASAD [2, 3, 4, 5, 6] was applied on network data by
processing selected IP headers of both MQTT and SCADA packets. Filtering IP traffic was based on
source address, and selected headers included Header Length, Total Length, TTL, Protocol,
Destination Address, etc., in addition to a crafted feature called Inter-Arrival Time, which measures
the time gap between two consecutive packets to incorporate the time aspect in the analysis.
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On the operational level, the algorithm was applied on sensor and signal values contained in the
payloads of MQTT and SCADA messages. The filtering in this case was based on Information Object
Address (IOA), and spreadsheets provided by project partners were used to map the IOA to signals
of interest.

2.4.2 Networks-Level Experiment

In this experiment, we have trained and tested a PASAD model on selected IP headers of packets
containing SCADA traffic.

Training of PASAD models on IP data based on the selected headers has been done on enough
packets (1 million in this experiment) to ensure that the dynamics of the device or network node
under analysis have been captured. To simulate an anomaly during the inference phase, we have
manipulated the Total Length feature by changing a sequence of consecutive values to a constant
1000. Figure 2.1 shows the records of the original Total Length, highlighted in blue, as well as the
manipulated records, highlighted in red.

SCADA Network: Total Length (Station 1)
10001 —— Abnormal (Manipulated data)

800

600

400

200

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
leb

Figure 2.1: Total Length feature including manipulated values.

Figure 2.2 shows a 3D representation of how a PASAD model works. The figure shows the model’s
decision boundary (represented by the ellipsoid) and the classification of data records (green points)
under normal conditions. If the communication behaviour of the monitored node conforms to the
trained model and learnt patterns, the corresponding data instances are supposed to lie inside the
decision boundary. In the case of anomalous behaviour, on the other hand, the datapoints will depart
away from the datapoint cluster and cross the boundary. This is demonstrated in Figure 2.3 where
PASAD could successfully detect the manipulation of the Total Length feature. The line graph in
Figure 2.4 displays the so-called departure scores produced by the model, where each score
represents, in a rough sense, the location of the corresponding datapoint with respect to the decision
boundary. The model generates an event whenever the departure score crosses a predefined
threshold.
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3D Representation of SCADA Network Model-Detection (Station 1)

= Normal data
Abnormal data
Decision Boundary

10 —30

Figure 2.2. 3D representation of SCADA network in station 1.
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Figure 2.3. 3D visualization of detecting the Figure 2.4. PASAD's departure scores.
Total Length attack on station 1.

2.4.3 Operation-Level Experiments

The purpose of this type of experiment is to explore the possibility of monitoring the process health
by analysing power-related signals at substation level to detect cyberattacks that may evade
detection at the communication level.

After identifying and extracting values for the different signals and training Al models on some
selected signals, we have conducted two different attacks on signal data: the “Frozen-value” attack
and the “Mean-shift’ attack. For the Frozen-value attack, we have frozen the values of a specific
range of consecutive packets. The Mean-shift attack was applied by taking the weighted moving
average (WMA) plus one standard deviation of a specific range of consecutive packets based on the
length of the signals. The Mean-Shift attack is stealthier than the Frozen-Value attack because it
follows the distribution of the signal.
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2.4.3.1 Frozen-Value Attack

In station 1, we have extracted time series corresponding to four different signals, namely, GRP4
Current B Level 1, Temperature T1, Power Factor T1-400, and Power Reactive T1-400. In addition,
by manipulating the sensor values corresponding to the four different signals to a constant value,
chosen to be the mean of the signals, we have ended up with four modified test time series. Figure
2.5 shows the four different signals and their corresponding manipulated signals, where the
manipulated parts are highlighted in orange.

SCADA Normal vs. Manipulated Signals in Station 1

Normal GRP4 Current B Manipulated GRP4 Current B
401 40
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Figure 2.5. SCADA normal versus manipulated signals of station 1 (Frozen-value attack).

To train and test PASAD on these signals, we have extracted 15 rolling-window statistical features
from these signals such as mean, standard deviation, median, min, and max. PASAD has trained on
normal rolling-window statistical features, which represent the normal signal, and tested on
manipulated rolling-window statistical features, which represent the manipulated signal.

The results show that PASAD could detect the manipulation of these signals. Figure 2.6 — Figure
2.13 show departure scores and detection in 3D representation of the PASAD models trained on
GRP4 Current B Level 1, Temperature T1, Power Factor T1-400, and Power Reactive T1-400,
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respectively. As shown in these graphs, the departure scores for the different signals surpass the
threshold during the manipulation period and then return to the normal level.

GRP4 Current B Model: Detection of Frozen-Value Attack (Station 1)
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Figure 2.6: Departure scores of GRP4 Current

B model in station 1.
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Figure 2.8: Departure scores of Temperature
T1 model in station 1.
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Figure 2.10: Departure scores of the Power
Factor T1-400 model in station 1.

3D Representation of GRP4 Current B Model
Detection of Frozen-Value Attack (Station 1)
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Figure 2.7: GRP4 Current B model detection of
the Frozen-value attack in station 1 in 3D.

3D Representation of Temperature Tl Model
Detection of Frozen-Value Attack (Station 1)
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Figure 2.9: Temperature T1 model detection of
the Frozen-value attack in station 1 in 3D.

3D Representation of Power Factor Model
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Figure 2.11: Power Factor T1-400 model detection of
the Frozen-value attack in station 1 in 3D.
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2.4.3.2 Mean-Shift Attack

For the mean-shift attack, we have manipulated the consecutive values of the signals GRP4 Current
B Level 1, Temperature T1, Power Factor T1-400, and Power Reactive T1-400 in station 1 by
changing the values to the WMA plus one standard deviation of each signal. Figure 2.14 shows the
normal signals of GRP4 Current B and Power Factor (on the left), and the manipulated signals of
GRP4 Current B and Power Factor (on the right). The manipulation of the consecutive values is
highlighted in orange for each signal.

3D Representation of Power Reactive Model
Detection of Frozen-Value Attack (Station 1)
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Figure 2.13: Power Reactive T1-400 detection of
the Frozen-value attack in station 1 in 3D.
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SCADA Normal vs. Manipulated Signals in Station 1
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Figure 2.14. Normal GRP4 and Power Factor versus manipulated GRP4 and Power Factor in station 1
(Mean-shift attack).
PASAD was trained on the normal signals and tested on the manipulated signals. PASAD managed

to detect the Mean-shift attack in all signals. Figure 2.15 — Figure 2.18 show that PASAD models
successfully detected the manipulation.
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3D Representation of GRP4 Current B Model
Detection of Mean-Shift Attack (Station 1)
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Figure 2.15. GRP4 Current B detection of
Mean-shift attack in station 1 in 3D.

3D Representation of Power Factor Model
Detection of Mean-Shift Attack (Station 1)
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Figure 2.17. Power Factor detection of
Mean-shift attack in station 1 in 3D.

2.5 Future Perspectives
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Figure 2.16. PASAD's departure scores of the

GRP4 Current B model of Mean-shift attack in
station 1

Power Factor Model: Detection of Mean-Shift Attack (Station 1

—— Normal Scores
Anomaly Scores

7

& w

Departure Scores
w

MM

0 1000

1 M
0 200 460 600 80

Figure 2.18. PASAD's departure scores of the
Power Factor model of Mean-shift attack in station
1.

1200 1400 1600

We have explored an anomaly detection approach for both internet-level and operation-level data
streams generated by secondary substations in a smart electrical grid. However, our investigation
thus far has focused on a localized anomaly detection scheme, where each substation identifies
anomalies solely within its own data. These detected anomalies are not contextualized within a
broader framework to enable global data interpretation.

Our next objective is to conduct a comprehensive evaluation of our method using synthetic data
(see Section 4). Following this, we aim to design and implement a robust framework capable of
gathering critical information from individual substations across the network. This framework will
aggregate the collected data, enabling a holistic view of the electrical grid's performance and
status. Additionally, we will integrate advanced explainability features into the framework to provide
grid operators with actionable insights. These insights will help operators understand the underlying
causes of network behaviours and facilitate informed decision-making to enhance grid reliability

and efficiency.
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3 Llama analysis in detecting loT-targeting cyberattacks

3.1 Introduction

The number of 10T devices has rapidly increased over the years, and this growth is not stopping. In
2023, the number of loT devices worldwide was around 15 billion, and the number is forecasted to
be more than 29 billion in the year 2030 [1]. The amount of data going through a network can be
massive. However, one of the most significant issues regarding 0T network data is its heterogeneity.
An loT network may have thousands of devices that utilize various protocols. Building a monitoring
system to detect malicious activities for 10T networks may require a lot of professional effort.
Generally, in the literature, intrusion detection systems are tested by training them on only one or a
few datasets. Even if a trained ML model works well with one dataset, it may not be suitable for
another or real life. We wanted to avoid such an approach in this report.

Many works have utilized large language models (LLMs) in cybersecurity-related tasks with various
success, such as writing malicious code [2, 3, 4], being sparring partners for pen-testers [5],
identifying complex vulnerabilities [6] and imitating to be a honeypot [7, 8]. These examples illustrate
LLMs’ ability to understand cyber-attacks. Considering the IoT network data, one of the most
interesting abilities of LLMs is its ability to understand text data and the context of data. These
findings led us to experiment with how LLMs can enhance cybersecurity in 0T networks in the future.

Ideally, a well-performed LLM could be installed on an edge router to monitor traffic data. If the LLM
detects an attack early enough, it can warn I0T devices about what kind of malicious traffic is coming.
Then loT devices can prepare for the attack. It may also be possible to have a conversation between
I0T devices and an LLM if the 10T devices have sufficient capability, such as an internet connection.
The IoT device could send suspicious packets to the LLM and ask it to analyze them and deliver
possible 10As to neighbouring 10T devices. The essential first step is to explore the strengths and
weaknesses of recent LLMs in detecting cyberattacks from IoT traffic data. This information is
needed for building real-life solutions and planning future research steps.

In this study, we analysed how capable Llama 3.1 is of detecting loT-targeting cyberattacks of several
frequently occurring types in l1oT network traffic data. Our goal was to find out what kind of signals of
malicious activities LLMs can detect, how well they can process the meaning of several simultaneous
signals, and what the current limitations of LLMs are. Because one of the motivators for this study
was the complexity of 10T networks, we experimented with LLMs as a generalized model. Thus, we
did not preprocess our data or fine-tune our model.

This report is organized as follows. Section 3.2 (Method) presents our research process, prompt
engineering, used data, and model selection. Section 3.3 (Results) provides our results and findings
including both strengths and weaknesses of the used model. In Section 3.4 (Discussion), we discuss
our results and outline future research directions. Finally, Section 3.6 (Conclusion) concludes this
report.

3.2 Method

In our study, we experimented with how well LLMs can detect cyberattacks of popular types from IoT
network traffic data. The heterogeneity of 10T traffic data is one of the most significant issues related
to loT network data. Thus, we wanted to test whether LLMs are capable of handling heterogeneous
data without fine-tuning. Fine-tuning typically increases the performance of a model for a specific
dataset, but it also requires work from professionals. We decided to leave the study of the effect of
fine-tuning to later research and experiment with a model whose capabilities we have not affected.

We also decided not to preprocess our data. The main reason behind this decision was again the
heterogeneity of 10T data. We wanted to experiment with how well LLMs understand heterogeneous
data and what kind of preprocessing may be essential to achieve good results. Usually, data
professionals select the features, clean the data, and otherwise preprocess it before training ML
models. This is an essential process when using traditional ML models or DL models. However, this
process causes a significant amount of work for professionals. If LLMs were able to understand raw
data and detect cyber-attacks from it, it would be a waste of time to spend time for preprocessing the
data. In this work, we studied if this kind of approach is possible.
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Figure 3.1: Research process

Figure 3.1 outlines the steps of our research process. Our dataset contains data from 12 different
attack types in PCAP format. First, we selected three single packets from each attack type, as
described in Section 3.2.3. Then, we converted the selected packets into JSON format with all the
values Wireshark adds to the data by default. Next, we prompted LLM with each of the packets 12
times. Each of these 12 prompts asked LLM if the packets were part of a different cyber-attack. In
total, we prompted the LLM 468 times, each time with a different prompt. Finally, we analyzed the
results.

Our analysis included two phases. The first part of the analysis was to find out how often LLM detects
a packet as an attack. The second part contains a closer analysis where we had five statements with
which we tried to find out what kind of things LLM recognizes and what its limitations are. Our
statements were the following:

TF: True finding — the findings of LLM were from the provided data, e.g., correct IP addresses and
port numbers. In Section 3.2.4, the findings consist of the seven items mentioned by the LLM from
the data.

FF: False findings — the LLM hallucinated the findings so much that it affected the quality of the
response, e.g., additional transport layers or wrong MAC addresses.

AV: Attack vector — LLM identified signals of potential malicious activities (or a significant part of
them) from the data and mentioned that the findings were suspicious. LLMs do not need to specify
the exact attack type but should provide enough suspicious findings from the data for a user to
deduce the attack vector.

CR: Correct reasoning — LLM drew correct conclusions based on its findings. It did not matter if the
findings were hallucinated or not, nor were the answers correct. Here, we considered whether the
conclusions drawn from the findings were correct.

FR: False reasoning — LLM’s conclusions based on the findings were wrong.

During the analysis, we focused on the findings and reasoning that were important for the
conclusions, disregarding minor mistakes. When identifying malicious activities, we decided that the
answer should be sufficiently useful for a user. This means that one minor suspicious finding (e.g.,
only an unusual port number) is not enough. On the other hand, LLMs do not need to find all the
suspicious things that humans can find. Additionally, one important finding (e.g., an SQL query) can
also be enough. The purpose behind evaluating LLMs’ ability to identify malicious activities is to
ensure that the answer is useful for a user and mentions that the findings are potentially malicious.
An example of a prompt and LLM’s response is in Section 3.2.4.
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3.2.1 Prompt engineering

{dataset}
Here is an lloT network capture file, specifically a JSON-formatted Wireshark capture. The file contains
a single packet, and your job is to analyze this data.

Can you identify this data as {attack type}? Include in your answer the probability of occurrence for
attack and typical traffic.

Explain this data to me in at least 100 words. Then solve for the answer. Go through the packet
carefully step-by-step.

Above is a prompt structure we developed to utilize in every prompt. We tried multiple prompts and
chose one that seemed to be the best. In the beginning, there was a data capture to be analyzed,
and the data always contained a single network packet. A more detailed description of the data can
be found in Section 3.2.3. After the dataset, we briefly described the context of the data to the LLM.
Next, we prompted the actual task for the LLM. Each packet had been prompted 12 times with
different attack types, namely ARP spoofing, backdoor attack, cross-site scripting (XSS), DDoS, DNS
spoofing, OS Fingerprinting, password cracking, port scanning, ransomware attack, SQL injection,
uploading attack, and vulnerability scanning. Each prompt was individual, and the model did not see
previous prompts or responses.

At the end of the prompt, we added two prompt engineering methods to improve the performance of
LLMs. Yugeswardeenoo et al. introduced the Question-Answer prompting (QAP) method in their
paper and its original form is “Explain this problem to me in at least n words. Then solve for the
answer”. Yugeswardeenoo et al. utilized their method in arithmetic and commonsense problems
where the problem is described at the beginning of the prompt. [9] Their problem description
corresponds to the data in our case, so we changed the word problem to the word data in our prompt.
We came to this solution because LLMs are sensitive to word choices, as also mentioned by
Yugeswardeenoo et al. [9]. For us, this also provides the possibility to check whether the LLM has
understood the data correctly. Wei et al. prompted LLMs to think step-by-step in their Chain-of-
Thought method [10]. We also adopted this method for our study.

3.2.2 Lama3.1

This study considered IoT networks whose data privacy can be an important aspect. Additionally,
I0T devices may have only a very narrowband internet connection, but an attack detection tool should
still work. Thus, we decided to utilize local large language models (LLMs) in this study. LLMs are a
fast-evolving technology that guided us to choose the most recent models for the study. We selected
Llama as a model to be tested because Llama models can be run locally, they have succeeded in
various benchmark tests, and the most recent models have a relatively long context length, 128K
[11]. At the starting point of this study, the most recent version of Llama was Llama 3.1. We selected
that version with 70 billion parameters, Llama 3.1:70b, in the hope of a balance between better results
and computational requirements.

We wrote our code using Python programming language and utilized the Ollama framework [12] to
run LLMs locally on our computer. The used computer has an Apple M3 Max chip with 128 GB of
memory.

3.2.3 Data

To achieve our goals, our requirements for a dataset were that it should be cyber-related 10T network
traffic data, labelled in terms of attack type, and heterogeneous. Edge-lloTset contains labelled
network data generated from an lloT network including more than ten devices and using various
protocols. The network has been attacked by 14 different attack types, namely port scanning,
vulnerability scanning attack, four different types of DDoS attacks, OS Fingerprinting, DNS spoofing
attack, ARP spoofing attack, Cross-site scripting (XSS) attack, SQL injection, Uploading attack,
Backdoor attack, Password cracking attack, and ransomware attack. [13] The data is shared in CSV
and PCAP formats.
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We utilized Edge-lloTset’'s PCAP files and decided to analyse individual packets because they are
the basic unit of network traffic. We are aware that some attacks are challenging or even impossible
to detect from a single packet. On the other hand, we need to know how well LLMs can analyse
single packets in order to compare performance with multiple packets. This decision also allowed us
to make a deeper analysis of Llama 3.1’s behavior because individual packets are easier to analyse
manually than larger datasets. We selected three packets from each attack type for our usage, except
in the case of DDoS attacks, we selected three packets in total. The selected ones were one of each
TCP SYN Flood attacks, UDP flood DDoS attacks, and HTTP flood DDoS attacks. We selected the
packets randomly and then saw if the packets contained clues about the attack. If not, then we tried
again. ARP spoofing attacks were challenging to detect from only one packet, so these packets did
not contain clear clues about the attack. Between the packets, the difficulty of detecting an attack
varies a lot. In addition, we selected three packets of normal traffic, one from each of following PCAP
files: Distance, Modbus, and Temperature and Humidity. After selection, we converted the raw PCAP
captures to JSON format and did not preprocess the data otherwise. In total, we used 39 individual
packets in our analysis.

3.2.4 Example prompt and response

In this section, we provide an example of one prompt (input) and Llama 3.1’s response (output). The
attack type in the data was password cracking. The probability of attack was usually provided as a
numerical value in Llama 3.1’s responses, but in this example, it was in low-medium-high scale.
However, in this example, it can be seen well how Llama 3.1 listed its findings from data and then
made brief conclusions based on them. Finally, Llama 3.1 justified its estimation of the likelihood of
an attack and offered overall conclusions. This kind of structure were usual for Llama 3.1’s
responses.

Input:

[{_index": 'packets-2021-12-04', ' type" 'doc', ' score: None, ' source" {layers {frame"
{frame.encap_type" '1’, ‘frame.time". 'Dec 4, 2021 19:30:22.830794000 EET", ‘frame.time_utc": 'Dec
4, 2021 17:30:22.830794000 UTC,, ‘frame.time_epoch': '1638639022.830794000',
‘frame.offset_shift": '0.000000000', 'frame.time_delta": '0.000133000', ‘frame.time_delta_displayed':
'0.007166000', ‘frame.time_relative": '60286.869222000', 'frame.number’: '449208', ‘frame.len". '327',

‘frame.cap_len". ‘327", ‘frame.marked": ‘0, ‘frame.ignored": ‘0, ‘frame.protocols":
‘eth:ethertype:ip:tcp:http:urlencoded-form’, ‘frame.coloring_rule.name": 'HTTP!,
‘frame.coloring_rule.string": 'http || tcp.port == 80 || http2'}, 'eth": {'eth.dst": 'dc:a6:32:fb:69:b5',
‘eth.dst_tree". {'eth.dst_resolved" 'RaspberryPiT_fb:69:b5', ‘eth.dst.oui": '14460466',

‘eth.dst.oui_resolved: 'Raspberry Pi Trading Ltd', '‘eth.dst.lg": '0', ‘eth.dst.ig": '0', ‘eth.addr"
'dc:a6:32:fb:69:b5', ‘'eth.addr_resolved: 'RaspberryPiT_fb:69:b5', ‘eth.addr.oui: '14460466',
‘eth.addr.oui_resolved': 'Raspberry Pi Trading Ltd', ‘'eth.lg: 'O, ‘eth.ig. '0%, ‘eth.src"
'd8:f2:ca:8e:17:69', 'eth.src_tree": {'eth.src_resolved" ‘Intel_8e:17:69', 'eth.src.oui: '14217930',
‘eth.src.oui_resolved': 'Intel Corporate’, 'eth.src.lg": '0', 'eth.src.ig": '0’, 'eth.addr": 'd8:f2:ca:8e:17:69',
‘eth.addr_resolved": ‘Intel 8e:17:69', ‘eth.addr.oui: '14217930', ‘eth.addr.oui_resolved ‘Intel
Corporate’, 'eth.lg": '0', 'eth.ig" '07}, 'eth.type": '0x0800', 'eth.stream'’ '0%}, 'ip": {ip.version" '4',
'ip.hdr_len": '20', 'ip.dsfield": '0x00', 'ip.dsfield_tree": {ip.dsfield.dscp": '0', ‘ip.dsfield.ecn: '0'}, ‘ip.len":
‘313", 'ip.id": 'Oxd713', 'ip.flags": '0x02', 'ip.flags_tree": {ip.flags.rb": '0', 'ip.flags.df': '1', 'ip.flags.mf": ‘0,
'ip.frag_offset": '0", 'ip.ttl": '64", 'ip.proto’: '6", 'ip.checksum': '0xe030', 'ip.checksum.status": '2', 'ip.src"
'192.168.0.170', 'ip.addr: '192.168.0.128', 'ip.src_host": '192.168.0.170', 'ip.host": '192.168.0.128',
'ip.dst": '192.168.0.128", 'ip.dst_host": '192.168.0.128', 'ip.stream": '0'}, 'tcp": {'tcp.srcport’: '54974',
'tcp.dstport': '80', 'tcp.port”: '80', 'tcp.stream’: '40226', 'tcp.stream.pnum': '3', 'tcp.completeness': '31',
'tcp.completeness_tree": {'tcp.completeness.rst': ‘0, 'tcp.completeness.fin': 1,
'tcp.completeness.data’:  '1', ‘'tcp.completeness.ack: 'l', ‘'tcp.completeness.syn-ack: 'l
'tcp.completeness.syn: 'l', ‘'tcp.completeness.str: '-FDASS', ‘tcp.en: '261', ‘'tcp.seq: 'l
'tcp.seq_raw': '3520572880", 'tcp.nxtseq: '262', ‘'tcp.ack: '1', ‘tcp.ack_raw': '1550123349',
'tcp.hdr_len": '32', ‘tcp.flags': '0x0018', ‘tcp.flags_tree" {tcp.flags.res': '0', ‘'tcp.flags.ae" 'O,
‘tcp.flags.cwr': '0', 'tcp.flags.ece”: '0', ‘'tcp.flags.urg: '0', ‘tcp.flags.ack’ '1', ‘'tcp.flags.push’ ‘1,
'tcp.flags.reset: '0', ‘tcp.flags.syn: '0', ‘tcp.flags.fin: 'O, ‘tcp.flags.str': eeeeee AP---1,
'tcp.window_size value': '502', 'tcp.window_size': '64256', 'tcp.window_size scalefactor: '128',
'tcp.checksum':  '0x360d', 'tcp.checksum.status': '2', ‘'tcp.urgent pointer: '0', ‘tcp.options":
'01:01:08:0a:e7:b3:5a:00:7b:28:4a:6d', 'tcp.options_tree'": {'tcp.options.nop": ‘01,
'tcp.options.nop_tree": {'tcp.option_kind": 1, 'tcp.options.timestamp':
'08:0a:e7:b3:5a:00:7b:28:4a:6d', 'tcp.options.timestamp_tree": {'tcp.option_kind": '8', 'tcp.option_len":
10", 'tcp.options.timestamp.tsval: '3887290880', 'tcp.options.timestamp.tsecr: 2066238061},
‘Timestamps": {'tcp.time_relative': '0.007223000', 'tcp.time_delta": '0.007166000}, 'tcp.analysis"
{tcp.analysis.acks_frame': '449203', 'tcp.analysis.ack_rtt': '0.007166000', 'tcp.analysis.initial_rtt'"
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'0.007223000', ‘'tcp.analysis.bytes in_flight: '261', ‘tcp.analysis.push_bytes sent: '261%,
‘tcp.payload”:

'50:41:53:54:20:2f:44:56:57:41:21:6¢:6f:67:69:6e:2e:70:68:70:20:48:54:54:50:2f:31:2e:30:0d:0a:48:6
f:73:74:3a:20:31:39:32:2e:31:36:38:2e:30:2e:31:32:38:0d:0a:55:73:65:72:2d:41:67:65:6e:74:3a:20:
4d:6f:7a:69:6c:6¢:61:2f:35:2€:30:20:28:48:79:64:72:61:29:0d:0a:43:6f:6e:74:65:6e:74:2d:4c:65:6¢€:
67:74:68:3a:20:33:38:0d:0a:43:6f:6e:74:65:6€:74:2d:54:79:70:65:3a:20:61:70:70:6¢:69:63:61:74:69
:6f:6e:2f:78:2d:77:77:77:2d:66:6f:72:6d:2d:75:72:6¢:65:6€:63:6f:64:65:64:0d:0a:43:6f:6f:6b:69:65:3
a:20:50:48:50:53:45:53:53:49:44:3d:33:71:35:6¢:64:61:73:6¢:36:35:66:61:74:6f:31:33:30:67:32:61:3
7:71:66:6a:6¢:70:3b:20:73:65:63:75:72:69:74:79:3d:69:6d:70:6f:73:73:69:62:6¢:65:0d:0a:0d:0a: 75:
73:65:72:6€:61:6d:65:3d:61:64:6d:69:6€:26:70:61:73:73:77:6f:72:64:3d:30:30:26:4¢:6f:67:69:6e:3d:
4c:6f:67:69:6e'}, 'http": {{POST /DVWA/login.php HTTP/1.0\r\\n": {'http.request.method": 'POST",
‘http.request.uri': /DVWA/login.php', 'http.request.version: 'HTTP/1.0'}, 'http.host": '192.168.0.128',
‘http.request.line": 'Cookie: PHPSESSID=3q5Ildosl65fato130g2a7dfjlp; security=impossible\r\n’,

‘http.user_agent": '‘Mozilla/5.0 (Hydra)', ‘http.content_length_header": ‘38",
‘http.content_length_header_tree": {'http.content_length": '38'}, 'http.content_type": ‘application/x-
www-form-urlencoded', 'http.cookie': 'PHPSESSID=3q5ldosl65fato130g2a7qfjlp;
security=impossible', 'http.cookie_tree": {http.cookie_pair': 'security=impossible’}, "W\\n": ",
‘http.request': 1, 'http.response_in": '449210', 'http.request.full_uri';
'http://192.168.0.128/DVWA/login.php’, ‘http.file_data’:

"75:73:65:72:6€:61:6d:65:3d:61:64:6d:69:6€:26:70:61:73:73:77:6f:72:64:3d:30:30:26:4¢:6f:67:69:6e
:3d:4c¢:6f:67:69:6€'}, 'urlencoded-form';: {'Form item: "username” = "admin™: {'urlencoded-form.key":
‘username’, 'urlencoded-form.value': ‘admin’}, ‘Form item: "password" = "00™: {'urlencoded-form.key":
‘password’, ‘urlencoded-form.value': '00}, 'Form item: "Login" = "Login": {'urlencoded-form.key"
‘Login’, 'urlencoded-form.value": 'Login}}}}}]

Here is an lloT network capture file, specifically a JSON-formatted Wireshark capture. The file
contains a single packet, and your job is to analyze this data.

Can you identify this data as XSS? Include in your answer the probability of occurrence for attack
and typical traffic.

Explain this data to me in at least 100 words. Then solve for the answer. Go through the packet
carefully step-by-step.

Output:

The provided JSON-formatted Wireshark capture contains a single packet with various layers of
information. Let's break it down step by step:

1. The first section describes the frame, including the protocol (HTTP), source and destination IP
addresses, and other low-level detalils.

2. The next section is the HTTP request layer:
- The “http.request.method’ is set to "POST", indicating that the client is sending data to the server.

- The “http.request.uri’ is /DVWA/login.php’, which suggests that this packet is part of a login
process on a Damn Vulnerable Web Application (DVWA) instance. DVWA is a deliberately
vulnerable web application used for training and testing purposes.

3. The “http.host" field contains the domain name or IP address of the server being accessed, which
in this case is "192.168.0.128".

4. The “http.user_agent™ field indicates that the client claims to be running Mozilla/5.0 (Hydra).
However, Hydra is a known vulnerability scanner and exploit tool, not a typical web browser.

5. The “http.content_type" field shows that the request body contains data in the format of
application/x-www-form-urlencoded.

6. Looking at the request body, we find the following form data:
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- ‘username=admin’
- “password=00"

- "Login=Login’

7. Lastly, let's examine the HTTP cookie header: 'PHPSESSID=3q5ldosl65fato130g2a7qfjlp;
security=impossible’. The presence of a PHP session ID suggests that this packet is part of an
ongoing interaction with the server.

Now, considering these details as a whole:

- **Probability of occurrence for attack:** High

The combination of a POST request to a login page on a vulnerable web application (DVWA), along
with form data containing a username and password, raises suspicions. The fact that Hydra is being
used instead of a typical browser further increases the likelihood of this packet being part of an attack.

- **Typical traffic:** Low

Given the specific details of this packet, such as the use of DVWA, Hydra, and the explicit mention
of "security=impossible" in the cookie header, it's unlikely that this represents normal traffic. This
suggests a deliberate attempt to exploit vulnerabilities rather than routine web activity.

**|s this data indicative of XSS (Cross-Site Scripting)?**

While this packet does contain signs of malicious activity, there isn't explicit evidence of Cross-Site
Scripting (XSS). The presence of form data and the context suggest an attempt to login or interact
with the application in a potentially unauthorized manner. However, without seeing any attempts to
inject scripts into the request or manipulate the server's response for client-side script execution, we
cannot conclusively say this packet is indicative of XSS.

**Conclusion:**

This packet shows signs of malicious activity aimed at exploiting vulnerabilities in a web application
(DVWA). The high probability of occurrence for an attack and the low likelihood of representing typical
traffic are clear indicators that this data warrants closer inspection. However, it does not explicitly
indicate Cross-Site Scripting (XSS) without further evidence or context.

3.3 Results
3.3.1 Quantitative results

Figure 3.2 outlines the results of our Llama analysis. Every prompt was analysed based on the
answer (whether the packet was identified as an attack or not) and five statements which are
described in the previous section. The prompts where the requested attack type matches the data
attack type are grayed out. Also, the corresponding calculated values are marked with a light gray
background. The ARP spoofing and normal traffic packets have a ‘-‘mark in the attack vector (AV)
column because there were no clear signals about attacks.

Llama 3.1 labelled our packet captures as a cyber-attack (A in Figure 3.2) in 54% of the cases within
all the packets and all the prompts, but it found the signals of malicious activities (AV in Figure 3.2)
in only 35% of the cases. This means that Llama 3.1 relatively often said that the packet was an
attack but did not give clear evidence of that. Here, it should be remembered that we required the
model to identify malicious signals enough that the answer would be useful to professionals. In
addition, it had to be mentioned that these signals were suspicious (see Section Model). This choice
made an impact on the success rate in identifying signals of malicious activities.
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Llama performed best with SQL injection. Within the three SQL packets and all the experiments, it
concluded that the packet was an attack (A in Figure 3.2) in 86% of the cases. It also identified
malicious signals (AV in Figure 3.2) almost every time, in 92% of the cases. This means that Llama
successfully mentioned suspicious activities even if it was not sure about the attack. It detected SQL
gueries well from the data and could specify that the attack type was an SQL injection, even though
it had been requested about other attack types. The detection rate for vulnerability scanning attacks
(A in Figure 3.2) was also high, at 81%. Unfortunately, it could identify the suspicious signals (AV in
Figure 3.2) worse than in the case of SQL injection, achieving a rate of 67%. Moreover, Llama 3.1
claimed the packets as attacks in 90% of the cases when the prompted attack type was a vulnerability
scanning attack, even whenever the packet was normal traffic. Thus, the detection of vulnerability
scanning cannot be seen as successful as in the case of SQL injection.

The most challenging attack types for Llama3.1 were ransomware attacks, OS fingerprinting, DNS
spoofing, backdoor attacks, and ARP spoofing. The poor success in OS fingerprinting, DNS spoofing,
and ARP spoofing is explained by the fact that they were challenging to detect from one packet even
by humans. An interesting aspect of ransomware and backdoor attacks was that Llama hallucinated
lotin these cases. We assume that the reason behind this was encrypted data in the payloads. Llama
3.1 can read ASCII-formatted data and decode it into human-readable format, but in the case of
encrypted data, it answered badly.

In general, Llama 3.1’s hallucination significantly reduces the quality of the response (FF in Figure
3.2) in 22% of the cases within all the packets and all the experiments. Mostly, this happened when
there was an encrypted payload in the packet (ransomware packets 2-3 and backdoor packets 1-3
in Figure 3.2), as mentioned earlier. Llama 3.1 was able to read ASCII-formatted payloads (e.g.,
DDoS packet 2 in Figure 3.2). In these cases, the hallucination rate (FF in Figure 3.2) was relatively
low, even if the text was not strictly human-readable. However, Llama 3.1 hallucinated if the packet
contained other unreasonable strings, even if it seemed to humans that the data was only machinery-
generated filler. These kinds of issues occurred with a large amount of repeated hexadecimal
numbers in payload, such as 58s (DDoS packet 3 in Figure 3.2) or 00s (Port scanning packet 2 in
Figure 3.2), and with hexadecimal formatted TCP options (XSS packets 2 and 3 in Figure 3.2). These
observations strongly indicate that Llama 3.1 is not able to answer correctly if the prompt contains
data it cannot read.

Llama 3.1’s reasoning was sensible (CR in Figure 3.2) 94% of the time within all the prompts. In
other words, Llama 3.1 can generate a believable answer regardless of whether it is true or not.
Thus, the hallucination is challenging to detect if you do not have the original data as a reference
point. In any case, LLMs’ habit of hallucinating causes more work for professionals because they
must double-check all the answers. In addition, it reduces the reliability of the model’s answers.
Interestingly, we observed that if Llama3.1 hallucinated in its answer, it usually hallucinated also
values provided in the data, such as IP addresses and port numbers. Fortunately, these values are
easy to check, but unfortunately, the model did not mention these values in every answer.
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The prompts where the requested attack type matched the data attack type had better results than
the average of all prompts. In these cases, Llama 3.1 identified the packets as attacks (A in Figure
3.2) 67% of the time. Among all attack types and all prompts, it successfully identified them in only
54% of the cases (56,3% without normal traffic). Respectively, the identification rate of malicious
activities (AV in Figure 3.2) rose to 58% from 35% (37,5% without normal traffic). The latter one is
interesting because the increase is so large. Thus, it seems that the type of attack given in the prompt
affects the analysis of LLM, and Llama 3.1 can detect malicious activities better if it has a prompt
with a similar attack type to the actual attack type.

3.3.2 Qualitative results

In this section, we go through examples that show LLM’s ability to understand network data and its
context. Examples are collected in Table 3.1. We selected examples that described well how Llama
3.1 worked and examples that existed multiple times. The goal of this section is to improve
understanding of Llama’s strengths and weaknesses as a cyber-attack detector.

Table 3.1: Llama 3.1’s Analysis for single packets

Example |Attacktype [Example of Llama’s response

number

1 XSS The packet contains an HTTP request with the method "TRACE" (line 234). This is not
a typical method used in standard web browsing and is often used by attackers to
identify vulnerabilities.

2 XSS Typical traffic for an lloT network would likely involve machine-to-machine
communication, such as sensor data transmission or control commands. This
packet appears to be part of a human-initiated HTTP request, which is unusualin an
IloT context

3 DDoS **Source and Destination**: The source IP address is *78.151.46.12", and the
destination IP address is ~192.168.0.128 . This suggests that the traffic is coming
from outside the local network.

4 Port scanning | The destination portis 65535, which is an unusual and high-numbered port.

5 Port scanning | tcp.srcport™ : Source port number (" 29227 ) is not a standard port for any well-known
service.

6 (O8] The source port number is 12924, which could indicate that it's a dynamically

Fingerprinting | assigned port, often seen in botnet traffic or other malicious activities.

7 Backdoor The packet is a TCP segment with a destination port of 80, indicating it's targeting a
web server.

8 DDoS The payload of the packet contains a sequence of X" (ASCII value 58) characters,
which appears to be padding or filler data. This could be an indication of anomalous
traffic, as legitimate HTTP requests typically contain meaningful data in the payload.

9 (ON] This contains a large amount of data (48 bytes) with a repeating pattern of

Fingerprinting | incrementing hexadecimal values (*08:09:0a:0b:..."). This is likely a padding or
probing packet used to gather information about the target device.

10 Password The presence of a “<form>" element submitting data to a PHP script suggests that
there may be an opportunity for SQL injection.

11 SQL injection | Specifically, the query tries to select 5666 from a subquery that sleeps for 5 seconds
(" SLEEP(5)"). This is likely an attempt to exploit a SQL injection vulnerability in the
web application.
(*/DVWA/vulnerabilities/sqli_blind/?id=7%20AND%20%28SELECT%205666%20FR
OM%20%28SELECT%28SLEEP%285%29%29%29WkG0%29&Submit=Submitid=5
7)

12 Vulnerability |The query parameter value contains suspicious characters and a Windows file path

scanning (" c:\\boot.ini"), which could indicate an attempt to inject malicious code.

13 Vulnerability | urlencoded-form™: The URL-encoded form data contains an interesting item:

scanning + Key: " <!--#include virtual®
+Value: " "/index.jsp"-->""
This appears to be an attempt to inject malicious code using the " #include’
directive, which is commonly used in Server-Side Includes (SSI). This could be a
signature of a Cross-Site Scripting (XSS) attack.
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14 Vulnerability |The " http.user_agent’ field contains a user agent string that identifies the client as
scanning "Mozilla/5.00 (Nikto/2.1.6)". Nikto is a well-known web application vulnerability
scanner, which further supports the conclusion that this traffic is related to
vulnerability scanning.

15 Sqlinjection |that the requestis coming from an instance of sglmap, a popular open-source tool
for identifying and exploiting SQL injection vulnerabilities.

16 Sqlinjection |DVWA (Damn Vulnerable Web Application) is a known vulnerable web application,
which suggests that this packet might be part of a vulnerability scan.
17 Password The “User-Agent™ header is set to ~Mozilla/5.0 (Hydra)", which is a known HTTP

client that can be used for malicious activities

18 DDoS This User-Agent string appears to be spoofed or manipulated, as it contains a mix of
different browsers and versions:

* Opera 9.80 is an outdated version.

* Macintosh; Intel Mac OS X 10.7.0 suggests a Mac running Lion (2011).

* Edition MacAppStore is not a standard User-Agent component.

* AppleWebKit/534.34 is an old WebKit version.

* PhantomJS/1.9.0 is a headless browser, which is unusual for regular web traffic.
* Safari/534.34 is another outdated Safari version.

19 DDoS ['tcp.payload':
'47:45:54:20:21:20:48:54:54:50:2f:31:2e:31:0d:0a:48:6:73:74:3a:20:31:39:32:2e:3
1:36:38:2€:30:2€:31:32:38:0d:0a:55:73:65:72:2d:41:67:65:6e:74:3a:20:41:70:65:72
:61:2f:39:2€:38:30:20:28:4d:61:63:69:6€:74:6f:73:68:3b:20:49:6€:74:65:6¢:20:4d:6
1:63:20:4f:53:20:58:20:31:30:2€:37:2€:30:3b:20:55:3b:20:45:64:69:74:69:6f:6e:20:
4d:61:63:41:70:70:53:74:6f:72:65:3b:20:65:6€:29:20:4d:6f:7a:69:6¢:6¢:61:2f:35:2e
:30:20:28:4d:61:63:69:6e:74:6f:73:68:3b:20:49:6e:74:65:6¢:20:4d:61:63:20:4f:53:2
0:58:29:20:41:70:70:6¢:65:57:65:62:4b:69:74:2:35:33:34:2€:33:34:20:28:4b:48:54
:4d:4c:2¢:6¢:69:6b:65:20:47:65:63:6b:61:29:20:50:68:61:6e:74:6f:6d:4a:53:2f:31:2
e:39:2e:30:20:28:64:65:76:65:6¢:6f:70:6d:65:6€:74:29:20:53:61:66:61:72:69:2f:35:
33:34:2e:33:34:0d:0a:52:65:66:65:72:65:72:3a:20:54:45:53:54:49:4e:47:5f:50:55:5
2:50:41:53:45:53:5f:4f:4e:4¢:59:0d:0a']

The HTTP request is interesting:

*The "Host™ header specifies the destination IP address (* 192.168.0.118").

* The “User-Agent’ header identifies the client software as Opera 9.80 (Macintosh;
Intel Mac OS X 10.7; U; Edition MacAppStore; en) with a AppleWebKit-based
rendering engine.

* The "Referer’ header contains a URL that appears to be a test or debugging
purpose (" TESTING_PURPOSES_ONLY ).

Based on our results, Llama 3.1 understood how different protocols work, what the function of a
protocol is, and what kind of data it typically transfers. The meaning of parameters was usually
correctly understood, and the JSON formatted data did not seem to cause difficulties. Llama was
even able to consider the context of an 0T network as we can see from example 2 in Table 3.1. In
Table 3.1, example 1 shows how Llama used information about the TRACE in its reasoning and thus,
we can see that it understands the difference between different HTTP methods.

The most typical observations from a packet capture were MAC addresses, IP addresses, and port
numbers. Llama3.1 has a good, but not perfect, idea about the default ports of different protocols,
such as HTTP using port 80 and HTTPS port 443. It also saw high-numbered ports as suspicious
ports. Examples 4-7 in Table 3.1 outline this capability of LLMs. In addition, Llama understood the
structure of IP addresses, which can be seen in its responses where it deduces whether the network
is local or not based on the IP address. It was even able to use this information to estimate the
likelihood of a cyber-attack (see example 3 in Table 3.1).

Llama 3.1 can identify human-readable suspicious pieces of data and make conclusions based on
them. In addition, Llama3.1 understands ASCII-formatted data if it is not encrypted (example 19).
The model was reliable in detecting SQL queries, usually from URLs (see example 11 in Table 3.1),
and it multiple times detected suspicious payloads where data seemed maliciously generated. For
instance, Llama 3.1 identified if the payload repeats the same numbers (00:00:00:00:00... or
58:58:58:58:58...) or the data contained increasing values (08:09:0a:0b...) as shown in examples 8
and 9 in Table 3.1. Interestingly, Llama 3.1 also concluded that an event is suspicious even if it
cannot directly see the malicious data. In Table 3.1, examples 10 and 13 show how Llama identified
files as potentially malicious activities. By combining the other evidence of malicious traffic, it
concluded that the uploaded file was probably malicious.
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Examples 14-17 in Table 3.1 illustrate Llama 3.1’s ability to identify used tools as evidence of
malicious activities. Not only did Llama recognize tools, but it could also tell the suspicious purpose
of the tool or vulnerabilities related to the tool (example 18 in Table 3.1).

As shown above, Llama 3.1 was able to detect different attacks using various hints of malicious
activities. However, according to our experiments, we cannot yet trust Llama 3.1 as a cyberattack
detector because it does not notice the attack every time and it also has other weaknesses. Next,
we go through our findings regarding the issues that need to be solved before using them in real-life
solutions.

Some of our experiments were quite challenging. Sometimes, it was difficult even for the researchers
to show properly that a single packet contains malicious activities. There might have been only some
weak signs about anomalies in the data, such as ransomware should be detected mainly based on
large amounts of encrypted data. These experiments provided us an interesting view of LLM’s
behavior. If LLM was not able to answer the question, it hallucinated additional information to the
prompted data. The most significant thing was that LLM did not only add hallucinated values, such
as additional transport layers, but it usually also hallucinated existing parameters, such as IP
addresses and port numbers. For example, it said that “The packet is an Ethernet Il frame with a
source MAC address of
"ab:54:27:39:4d:8d:59:51:¢2:19:95:ee:44:45:31:f4:69:2a:15:60:45:d3:05:¢2:35:¢8:09:9b:b2: 2f: 2f:21:
4d:7¢:82:0d:de:8a:c9:20:3b:c3:€3:49:0b:7b:20:fe:24:96:42:d9:24:27:09:0d:95:78:45:80:59:1e:f1:a3:
ab6:bf:81:48:65:af:49:99:f4.0f.fa:fb:ef.a2:71:99:fe:d5:35:40:4¢:96:9d:d7:14:aa:60:9f:9c:bb:c8:7f.23:7

9:93:65:23:d9:be:61:63:a4:0b:98:cd:5b:ed:9b:e7:0e:53:32:7b:f2:70:dc:dc:10:3a:ab:5a:53:a4:05:be:

9d:89:¢3:9e:86:¢c0:61:5a’.” In this case, the string was a part of the payload. IP and MAC addresses
were also often strings other than those appearing in the data. In future research, it would be
interesting to experiment with whether it is possible to detect hallucinated answers of LLM by
checking the correctness of parameters existing in the provided data.

Llama 3.1 had challenges with data that Wireshark had added to the traffic data. Often, it did not
consider the relative sequence and acknowledge numbers that could have given clues about the
attack, instead, it only mentioned raw numbers. Sometimes, it also confuses TCP flags and
conversation completeness flags. In the case of DNS spoofing, Llama 3.1 did not find short TTL
values (TTL=1) or the lack of DNS response as suspicious things even if the data contained a note
or warning by Wireshark. More context of the network data or context-learning would be valuable for
LLM to understand better the data added by Wireshark. Overall, Llama 3.1 had a high variation in
identifying attacks across attack types and packets.

3.4 Discussion

Based on our analysis, Llama 3.1 understands what different attack types mean and what traffic
should be transferred with various protocols. It also has many advantages compared to other models,
such as traditional ML and DL models. Llama 3.1 was able to understand the context of data, has
knowledge about cyber-attacks, protocols, and tools, understood human-readable language and
even ASCII characters, and made logical conclusions. In addition, Llama could explain what
happened in the data and what could be signs of malicious activity. With such a response, a cyber
specialist can quickly verify whether the findings and conclusions are true. Llama 3.1 may also help
professionals to focus quickly on suspicious things though it is not yet reliable enough to operate
alone. Thus, LLMs are a promising technology in lloT network traffic analysis in the future. In
particular, LLMs may be a valuable tool in explaining the content of network traffic packets.

In this study, we also could use our LLM without fine-tuning or context-learning and analyze data
without preprocessing. Our method allowed us to observe how Llama 3.1 works with unfamiliar
datasets and various protocols. Our study showed that Llama 3.1 did not require information about
normal traffic to analyze network traffic data. Thus, LLMs may be valuable tools when handling
heterogeneous data, because it does not need to define all the network’s characteristics. However,
providing a smaller amount of information can still be useful. More research is needed to determine
the necessary information, but we see promising signals here. LLMs must be made to recognize
cyber-attacks with sufficient credibility.

Llama 3.1 still has multiple weaknesses that need solutions. The general weaknesses are the
computational requirements and its habit of hallucinating. The analysis of packets took so long that
it is not meaningful to analyse network traffic packets one by one using LLMs. Additionally, the
calculation requires a lot of memory and power, which can be limited in 10T networks. In our analysis,
we noticed that Llama 3.1 got confused when it had encrypted data in the prompt, and then only in
rare cases, was it able to answer sensibly. In addition, even if Llama 3.1 could identify various clues
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about attacks from data, this ability was unreliable. Often, it did not identify clear signs which,
however, it detected in another run. All in all, Llama 3.1 has the ability to detect malicious activities.
There is still a relatively long way to go to detect malicious activities every time and based on weak
signals. Data preprocessing, and model fine-tuning or context learning are still needed. The future
research question is to determine how much LLMs need preprocessing and fine-tuning.

Some of our experiments were difficult to identify as an attack based on only one packet, especially
ARP spoofing. Thus, we tested how Llama 3.1 can detect ARP spoofing if we prompted the model
using two packets so that the detection is possible. We used the same prompt as earlier, except the
text “The file contains a single packet” was replaced with the real number of packets. A part of Llama
3.1’s analysis is added to Table 3.2 and it shows that Llama 3.1 can utilize multiple packets while
analyzing network traffic data. The usage of larger amounts of data would enable a wider analysis of
network traffic.

Table 3.2: Llama 3.1's analysis using multiple packets

Attack type Example of Llama’s response

ARP spoofing After analyzing the packets, | can see that:

* Both packets are ARP responses with opcode 2.

* The source MAC address in both packets is the same ('d8:f2:ca:8e:17:69').

* The destination MAC address in both packets is the same ('dc:a6:32:fb:69:b5').

* However, the source IP addresses in the two packets are different ('192.168.0.152' and
'192.168.0.101").

This behavior is indicative of an ARP spoofing attack, where an attacker sends fake ARP
responses to associate their MAC address with multiple IP addresses on the network.

Based on the results of this study, we decided to test whether we could reduce the hallucination of
Llama 3.1. We removed the encrypted payloads from the data and replaced this information with
information about what kind of data is removed and how much. Early results show that Llama 3.1
hallucinated significantly less when the data did not contain non-human-readable data.

3.5 Limitations and Future Research

Our study examines only one dataset and one LLM, albeit in depth. In the future, we are going to
study more datasets and models. More experiments with normal network traffic are also needed.
Large language models are rapidly evolving technology and may require research such as this on a
regular basis to detect when models are advanced enough for reliable analysis.

Based on our results we also identified other future research questions. In our study, we did not
provide any information about the l1loT network for the model. It would be important to research what
kind of information would be most valuable for LLMs and still retain the model’s ability to generalize.
Llama 3.1 considers ports, IP, and MAC addresses carefully, so we are going to do more experiments
by providing information about used ports and trusted IP and MAC addresses for the model.

Data preprocessing also appears to be required. Handling encrypted strings seems to be the most
significant challenge. Is it necessary to delete encrypted data or can the matter be handled with
prompt engineering? The usage of a larger amount of data in one prompt is also one future research
direction as well as finding out the effect of model fine-tuning or other ways to help LLM with analysis.

First, we intend to prioritize the research on handling encrypted data and the information provided to
the model. Based on the results of these tests, we plan the order of the next steps.

3.6 Conclusions

In this work, we analysed Llama 3.1’s ability to detect loT-targeting cyber-attacks from lloT network
traffic data. We prompted Llama 3.1 with combinations of single network packet captures and
possible attack types. Based on our results, Llama 3.1 has multiple advantages compared to other
machine learning models, such as its ability to understand the context of data and knowledge about
network traffic and cyber-attacks. In addition, our study showed the possibility of using LLM with an
unusually low amount of data preprocessing. However, before LLMs can be used in real-life
solutions, there are multiple research questions to be solved, such as handling encrypted data,
hallucinations, resource intensiveness, and utilizing more input data in prompts.
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4 Generative Al for Generating Cybersecurity Data

4.1 Introduction

The generation and application of synthetic data through advanced generative artificial intelligence
(Al) models have emerged as transformative solutions in the domain of cybersecurity. Real-world
cybersecurity data collection faces significant challenges, including stringent privacy regulations,
logistical constraints, and the inherent difficulty of obtaining representative datasets encompassing
both normal and attack scenarios. Synthetic data provides a promising alternative by replicating real-
world data characteristics without violating privacy boundaries. However, creating synthetic data that
achieves the necessary balance among utility, fidelity, and integrity remains a formidable challenge.
Poorly generated synthetic data may lack realism or introduce vulnerabilities, compromising its
effectiveness for training and testing cybersecurity tools.

4.1.1 The Role and Importance of Synthetic Data in Cybersecurity

Synthetic data serves as a cornerstone for advancing cybersecurity research and application. Its
ability to preserve privacy while enabling comprehensive data analysis makes it a critical resource.
The scarcity of cybersecurity data, particularly for rare and evolving malicious events, underscores
the importance of synthetic data in addressing class imbalances and enhancing IDS capabilities.
Synthetic datasets can be tailored to simulate diverse and uncommon attack scenarios, allowing
developers to rigorously test and optimize IDS tools. Moreover, high-quality synthetic datasets
provide a broader and more diverse training pool for Al models, significantly improving IDS
performance and adaptability.

4.1.2 Challenges in Synthetic Data Generation for IDS

Despite its advantages, synthetic data generation faces several challenges. The foremost is ensuring
realism: synthetic data must closely emulate real-world conditions, including network behaviour and
malicious activity patterns. Insufficient variability limits the capacity to capture the full spectrum of
potential threats, making models trained on such data less effective. Addressing class imbalances is
another critical challenge, as malicious traffic is often underrepresented in real-world datasets.
Privacy concerns remain paramount, as synthetic data might inadvertently expose sensitive details
through replication of underlying data structures. Furthermore, standardizing the processes for
generating, validating, and integrating synthetic data is complex, creating inconsistencies and
reliability issues. Finally, evaluating the performance of synthetic datasets is challenging; high
similarity to real data does not always translate to real-world applicability, necessitating advanced
and nuanced validation metrics.

4.2 Objectives of the Study

The primary aim of this study is to evaluate synthetic data generation methods based on their utility,
fidelity, integrity, and capacity to address class imbalances. Key research questions include:

e  Which methods preserve utility and effectively train IDS models?

¢ How well do these methods maintain the statistical properties of original datasets?

¢ Can these methods balance class distributions while preserving data integrity?

e  Which generative adversarial network (GAN) models are most effective for synthesizing

cybersecurity network traffic data?

4.3 Techniques for Synthetic Data Generation

Synthetic data generation methods can be broadly categorized into non-Al-based and Al-based
approaches. Each approach offers unique strengths and limitations, as outlined below:

4.3.1 Non-Al-Based Methods

Random Oversampling (ROS): This method duplicates minority class samples to balance class
distributions, making it suitable for addressing simple class imbalances in smaller datasets. However,
its reliance on duplication can lead to overfitting and a lack of data diversity.

© 2024 CELTIC-NEXT participants in project CISSAN



CELTIC-NEXT project report page 35 (38)

SMOTE (Synthetic Minority Oversampling Technique): SMOTE generates new minority class
samples by interpolating between existing samples, thereby enhancing the dataset's diversity. While
effective for structured datasets, SMOTE struggles with complex data interdependencies.

ADASYN (Adaptive Synthetic Sampling): Building upon SMOTE, ADASYN focuses on hard-to-
learn instances within the minority class, creating synthetic samples in areas with sparse data. This
method prioritizes adaptability but may introduce noise in high-dimensional datasets.

Cluster Centroids: This technique reduces majority class samples by clustering and averaging
them, preserving overall data structure while addressing imbalances. However, it is less effective for
datasets with highly complex or overlapping class distributions.

Gaussian Mixture Models (GMM): GMM represents data as a mixture of Gaussian distributions,
effectively modeling sub-populations within datasets. While it excels in capturing statistical
properties, its utility for IDS training is limited by computational complexity and scalability issues.

4.3.2 Al-Based Methods

Bayesian Networks (BNs): BNs employ probabilistic graphical models to capture dependencies
among variables. Their ability to model complex relationships makes them valuable for feature-rich
datasets, but they face challenges in scalability and computational efficiency.

Tabular Variational Autoencoder (TVAE): TVAE extends traditional autoencoders to
accommodate tabular data, ensuring that synthetic data preserves original dataset complexity and
accuracy. It is particularly effective in maintaining fidelity and utility across diverse datasets.

Diffusion Models (e.g., TabDDPM): Adapted for tabular data, diffusion models offer high-quality
synthesis of mixed data types. However, their computational demands limit their scalability for large
datasets.

Generative Adversarial Networks (GANSs):

e CTGAN: Designed specifically for tabular data, CTGAN effectively handles class
imbalances and  preserves inter-variable relationships. It uses conditional generation
techniques to produce high-quality synthetic data.

e CopulaGAN: By integrating copula-based statistical modelling with GANs, CopulaGAN
captures intricate dependencies among variables, making it highly effective for
complex datasets.

e  GANBLR++: This enhanced version of GANBLR handles mixed data types and captures
intricate  dependencies, achieving a balance between accuracy and computational

efficiency.

e CasTGAN: Leveraginga cascaded architecture, CasTGAN generates semantically valid
data by  accurately modelling interdependencies. However, it struggles with binary
constraints and high-dimensional data.

4.4 Evaluating Feature Dependencies with Mutual Information (MI)

Mutual information (MI) provides a robust framework for evaluating dependencies between variables.
Unlike correlation measures, MI captures both linear and nonlinear relationships, making it ideal for
cybersecurity datasets with complex inter-variable interactions. Ml is model-agnostic and unbiased,
enabling reliable feature selection by considering relationships among features and their relevance
to the target variable.

In this study, MI was used to rank features based on their relevance to the target variable. The top
25% of features were selected for modelling, ensuring computational efficiency and high information
retention. This approach enhanced the interpretability and efficacy of IDS models, as the selected
features accurately represented critical patterns in the data.

4.4.1 Experimental Setup and Results

The experiments were conducted on advanced hardware, including a 13th Gen Intel® i9 processor
and NVIDIA GeForce RTX 4090 GPU. A comprehensive software environment incorporating Python
3.12.4, PyTorch, SDV, and scikit-learn facilitated the evaluation. Preprocessing of datasets such as
NSL-KDD and CICIDS-17 involved encoding, feature selection using MI, and dimensionality
reduction, ensuring optimized inputs for synthetic data generation.
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Statistical methods like SMOTE and Cluster Centroid demonstrated strong performance in
preserving class balance and statistical fidelity, achieving up to 99% accuracy in classification tasks.
However, these methods lacked the novelty required for generating realistic synthetic data. In
contrast, GAN-based approaches, particularly CTGAN and CopulaGAN, excelled in utility and fidelity
metrics, achieving utility accuracy rates of up to 98%. TVAE's use of latent probabilistic spaces
further enhanced its ability to generate high-quality synthetic data. Although CastGAN showed
promise in modelling complex dependencies, it struggled with binary constraints. Bayesian Networks
and diffusion models exhibited potential but faced scalability and fidelity challenges.

4.4.2 Future Directions and Implications

Within the CISSAN framework, future research will focus on leveraging GANs to simulate evolving
cyber threats and generate realistic attack scenarios. This includes dynamically defining thresholds
for anomaly detection and balancing fidelity with privacy requirements. Real-time feature adaptation
and dynamic synthetic data generation techniques will further enhance IDS robustness in IoT
environments.

The findings of this study highlight the trade-offs between different synthetic data generation
methods. While statistical methods like SMOTE and Cluster Centroid effectively address class
imbalances, advanced GANs such as CTGAN and CopulaGAN provide superior realism and utility.
These results have significant implications for cybersecurity applications, guiding the selection of
synthetic data generation techniques based on specific requirements.

By integrating GAN-generated data into frameworks like CISSAN, cybersecurity systems can
achieve greater resilience, privacy-conscious operation, and adaptability. This adaptability is
particularly crucial for securing critical infrastructures, such as energy systems and loT networks,
against evolving threats. As synthetic data generation methods continue to advance, their role in
shaping the future of cybersecurity becomes increasingly pivotal.
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5 Analysis of GPS data in the public transport domain

5.1 Introduction

GPS interference, spoofing and jamming have become an increasing cybersecurity concern,
affecting especially aviation but to some extent also public transport. Real-time passenger
information and computer-aided vehicle location systems within public transport require reliable,
frequently updated or close to real-time positioning information from vehicles.

In most contemporary systems, positioning is based on GNSS (global navigation satellite system)
technologies, especially on GPS (global positioning system). Alternative sources are positioning
satellites (such as Galileo or GLONASS), Inertia measuring units in vehicles, or RFID tags along the
pathways or tracks. These and some other solutions, which we plan to elaborate further in deliverable
D6.1, require additional equipment and interfaces to be established in vehicles or in the traffic
infrastructure.

Within CISSAN, we wanted to explore software solutions in detecting possible anomalies in readily
available GPS positioning data. Real-time position data of the buses in a Finnish city (Tampere) were
made available to CISSAN via a data acquisition interface. In this brief note for D5.1, the initial
discoveries of our technical experiments with the collected real-life data are presented.

5.2 Technical Experiments with GPS Coordinates of buses

The primary goal was to understand the properties of and anomalies in GPS data of buses via data
analysis methods.

5.3 Methodological Approach

Given the large volume of GPS data collected daily (approximately 5-7 million coordinates), detecting
anomalies requires robust and efficient approaches. Various algorithms, including statistical
methods, machine learning, and artificial intelligence, can be applied to identify different types of
anomalies. However, there is no gold standard delivering perfect results, necessitating manual
assessment for quality assurance during the project.

The data is collected from an MQTT (Message Queuing Telemetry Transport) broker and stored daily
in SQLite before being loaded into PostgreSQL for spatial queries and analysis. Preprocessing steps
include data cleaning, coordinate transformation, noise reduction, error detection, and spatial
indexing.

By applying multiple algorithms, we aim to capture a wide range of anomalies. Each algorithm may
highlight different issues, from minor deviations to significant anomalies. The manual review process
during the project is essential for ensuring the quality and accuracy of the detected anomalies.

5.4 Initial Experiments and Findings (Work in progress)

e Buses frequently outside the defined area were identified.

e Instances where buses were more than 10 km from their path were counted.

¢ Maximum distances and frequencies of buses being off path were analysed.

e Devices frequently deviating by at least 1 km were studied.

e  Off-path percentages at different times on November 8th and 18th 2024 were compared.

5.5 Additional Analysis

PostGIS (a spatial database extender for PostgreSQL) functions were used to determine the
proximity of buses to stops, updating fields to indicate whether a bus is near a stop and the current
stop in the sequence. Distances between bus stops and routes were analysed to identify potential
issues in stop placement or route mapping.

5.6 Discussion

Frequent small errors are likely due to environmental interference, device sensitivity, or route
characteristics. Infrequent large errors may be caused by temporary signal loss, device malfunction,
or data transmission glitches. Mixed patterns suggest variable environmental conditions or
intermittent device issues.
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5.7 Future Work

The plan for future work focuses on developing and testing anomaly detection methods in public
transportation data. It includes:

Preliminary Analysis and Data Preparation:

(1) Collect and preprocess data, generate additional variables, and clean the data.
(2) Create new variables using the existing ones.

(3) Create proper aggregation to handle long-term datasets.

Algorithm Selection and Initial Testing: Select and test such algorithms as statistical
methods, Local Outlier Factor (LOF), and Isolation Forest to find anomalies. These algorithms
should gain from a large variable set.

Detailed Analysis and Optimization: Fine-tune parameters and optimize algorithms for
better performance.

Validation and Final Evaluation: Validate algorithms on a separate dataset and compare
performance.

Implementation and Deployment (Optional): Integrate the best-performing algorithm for real-
time anomaly detection and provide training and documentation for end-users.
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