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Abstract 

Deliverable D5.1 presents CISSAN efforts and results at the intersection of AI and IoT, with 
anomaly detection as a key technique in use. In the domain of smart grids, AI-based anomaly 
detection algorithms are applied for analysing network traffic and operational data from 
substations to detect threats and faults at both communication and operational levels. The 
developed anomaly detection models run locally, in network nodes, reflecting the focus of CISSAN 
Task 5.1 on distributed detection and – more generally – the project’s focus on enabling Collective 
Intelligence for improved cybersecurity. Another T5.1 effort included in this document is studies 
in the application of a modern Large Language Model (Llama 3.1) to IoT network traffic analysis, 
with a goal of detecting and analysing cyberattacks with minimal preprocessing and preparations. 

D5.1 also briefly presents work that fully or partially belongs to WP4: (i) the use of generative AI 
for producing synthetic data for training and validating intrusion detection systems, addressing 
such critical challenges as data scarcity and privacy; (ii) analysis of GPS data in public transport 
systems to identify system faults and attacks and improve the safety and resilience of transport 
systems; (iii) the use of anomaly detection as an ingredient in a blockchain-based framework for 
securely logging IoT events and producing verifiable proofs of detected anomalies. While these 
lines of work will be presented in detail in future CISSAN deliverables, (i) clearly supports T5.1 
and (ii) and (iii) show methodological similarities, so we find it helpful to articulate the connections. 
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Executive Summary 

The convergence of artificial intelligence (AI) and IoT technologies lies at the core of innovative 
cybersecurity solutions for interconnected systems. Deliverable D5.1 presents CISSAN efforts and 
results which harness this synergy to address the pressing security and reliability challenges of 
modern systems, with anomaly detection as a key technique in use. 

In the domain of smart grids (CISSAN Use Case 2), AI-based anomaly detection algorithms are 
applied for analysing network traffic and operational data from substations to detect threats and faults 
at both communication and operational levels. The developed anomaly detection models run locally, 
in network nodes, reflecting the focus of CISSAN Task 5.1 on distributed detection and – more 
generally – the project’s focus on enabling Collective Intelligence for improved cybersecurity. Another 
T5.1 effort included in this document is studies in the application of a modern Large Language Model 
(Llama 3.1) to IoT network traffic analysis, with a goal of detecting and analysing cyberattacks with 
minimal preprocessing and preparations. 

D5.1 also briefly presents work that fully or partially belongs to WP4: (i) the use of generative AI for 
producing synthetic data for training and validating intrusion detection systems, addressing such 
critical challenges as data scarcity and privacy; (ii) analysis of GPS data in public transport systems 
(in the scope of CISSAN Use Case 1) to identify system faults and attacks and improve the safety 
and resilience of transport systems; (iii) the use of anomaly detection as an ingredient in a 
blockchain-based framework for securely logging IoT events and producing verifiable proofs of 
detected anomalies. While these lines of work will be presented in detail in future CISSAN 
deliverables, (i) clearly supports T5.1 and (ii) and (iii) show methodological similarities, so we find it 
helpful to articulate the connections. 

Anomaly Detection in IoT-based Smart Grids 

This study investigates anomaly detection in IoT-enabled smart grids using AI-based algorithms, 
focusing on network traffic and operational data from grid substations. The experiments aimed to 
detect anomalies at both communication and operational levels. 

Network data was captured in the PCAP format, and two levels of analysis were conducted on it: 

• Network-Level Analysis: The AI algorithms processed the IP headers from the SCADA and 
MQTT packets, using features like Header Length, TTL, and a custom Inter-Arrival Time metric 
to account for timing. 

• Operational-Level Analysis: The sensor values in the SCADA and MQTT payloads were 
filtered based on Information Object Addresses (IOA) and mapped to signals of interest. 

At the communication (network) level, the AI models were trained on one million SCADA packets 
using selected IP headers. To test anomaly detection, the Total Length feature was manipulated 
during inference. The results showed that the models were able to identify deviations from normal 
behaviour via anomaly scores crossing the decision boundaries. 

The experiments at the operational level targeted substation health monitoring through signal 
analysis to detect system failures and attacks undetected at the communication level. Anomalous 
signals of two types were tested: 

• Frozen-Value signal: Signal values were frozen over multiple consecutive packets. 

• Mean-Shift Attack: Signal values were manipulated using a weighted moving average and one 
standard deviation, mimicking stealthier attacks. 

The AI models were trained on rolling-window statistical features (mean, standard deviation, etc.) 
from the measured signals (like Currents, Power Factor, etc). The results showed the successful 
detection of both types of anomalous signals, with the anomaly scores crossing the predefined 
thresholds during the manipulation periods. 

The novelty of our approach is in performing analysis on data generated at secondary substations, 
close to the source where higher-frequency data samples are accessible, to detect even subtle 
deviations in operational and communication / network behaviours. Achieving this requires 
lightweight, efficient algorithms that can run locally on resource-constrained edge devices. 

The primary objective in CISSAN Use Case 2 (UC2) is to automate grid monitoring and deliver 
intelligent, actionable insights to operators, addressing the challenges brought about by the 
changing dynamics of power grids. 
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While the current experiments are focusing on anomaly detection run locally within individual 
substations, future work aims to develop a global framework for aggregating and contextualizing 
observations across substations, enabling a holistic view of the grid performance. Advanced 
explainability features will be integrated to help operators identify root causes of anomalies and make 
informed decisions to improve grid reliability and efficiency. 

Llama analysis in detecting IoT-targeting cyberattacks 

The study explores the potential of Llama 3.1, a Large Language Model (LLM), to detect cyberattacks 
in IoT network traffic data, focusing on its ability to analyse raw, heterogeneous data without fine-
tuning or data preprocessing. LLMs have shown promise in cybersecurity by understanding 
cyberattack patterns and identifying vulnerabilities. In CISSAN, we evaluated Llama 3.1’s 
performance in detecting 12 attack types, leveraging its ability to interpret individual network packets 
(in the JSON format) extracted from the Edge-IIoTset dataset. 

The study highlights the observed Llama 3.1’s strengths, such as understanding network protocols, 
identifying suspicious IPs and ports, and analysing human-readable data. However, the limitations 
include hallucinations, particularly with encrypted payloads, and reduced accuracy in discerning 
attack signals amidst ambiguous data. Notably, the model's ability to correctly reason was high at 
94%, but its occasional inaccuracies necessitate human oversight for validation. 

In the qualitative analysis, the model demonstrated contextual awareness of Industrial Internet of 
Things (IIoT) environments and protocol-specific functions, underlining its ability to process raw 
network data meaningfully. 

In cases when LLM adaptation or data preprocessing are not justified or infeasible, our work 
contributes to exploring the limits of LLMs in cyberattack detection and to understanding preferred 
ways of their application. We are planning to extend the scope of our experiments and the datasets 
used in those, including synthetic data generated in WP4 (briefly presented in Section 4 and the 
paragraphs that immediately follow).   

Generative AI for Generating Cybersecurity Data 

In T4.2, we investigated the use of generative AI, particularly Generative Adversarial Networks 
(GANs), to generate synthetic cybersecurity data aimed at addressing challenges with building 
intrusion detection systems (IDS). Real-world cybersecurity data is often limited, imbalanced, and 
sensitive to privacy concerns, making synthetic data a valuable alternative. This study evaluates 
various synthetic data generation methods, including non-AI techniques (such as Random 
Oversampling and SMOTE) and AI-based methods (like GANs and Variational Autoencoders). The 
focus is on their effectiveness, data fidelity, and ability to handle class imbalance. 

Key findings indicate that while traditional methods, such as SMOTE and Cluster Centroids, 
effectively maintain data distribution and class balance, they often do not generate novel data points. 
In contrast, AI-based methods, such as Conditional Tabular GAN (CTGAN) and Tabular Variational 
Autoencoders (TVAE), excel at producing high-quality synthetic data closely resembling real-world 
statistical properties, although they may need additional techniques to address the class imbalance. 
The study also emphasizes the importance of mutual information for feature selection and the use of 
evaluation metrics like statistical similarity, performance, and class balance. 

The research concludes that CTGAN and TVAE are particularly effective for cybersecurity 
applications, providing a balance between data realism and utility, and suggests leveraging GANs to 
simulate evolving cyberthreats, enhance IoT data privacy, and improve real-time IDS. This study 
offers a comprehensive framework for selecting synthetic data generation methods tailored to 
specific cybersecurity needs. 

Analysis of GPS data in the public transport domain 

GPS interference, spoofing, and jamming are growing cybersecurity concerns, particularly affecting 
aviation and public transport. Real-time passenger information and vehicle location systems in public 
transport depend on accurate, frequently updated positioning data, primarily from such GNSS 
technologies as GPS or alternative sources. 

The CISSAN project has been exploring methods and models for detecting anomalies in GPS data, 
starting with the real-time bus position data from Tampere, Finland. Given the large volume of GPS 
data collected daily (5-7 million coordinates), efficient and robust anomaly detection methods are 
necessary. We are evaluating various algorithms, including statistical and ML models. 
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Initial results allowed us to identify in the data frequent small errors (likely due to environmental 
interference, device sensitivity, or route characteristics) and occasional large errors (likely resulting 
from signal loss, device malfunction, or data glitches). Future work will focus on developing and 
validating methods optimized for real-time anomaly detection in public transport data. 

Network Logging System 

Anomaly detection is used as an ingredient in a blockchain-based framework being developed in 
T4.3 for securely logging IoT events and producing verifiable proofs of detected anomalies, 
supporting, e.g., audits and incident investigations in IoT networks. The framework enables multiple 
agents to transmit IoT events in a standardized format to a custom blockchain network. These events 
are initially received and processed by anomaly detection models in so-called Hub nodes. A Master 
node creates and extends a canonical blockchain of events, which every Hub node synchronizes 
and verifies. As an additional assurance, the event blockchain is also timestamped on a public 
blockchain (e.g., Bitcoin). 

The anomaly detection part of the framework, which belongs to T5.1, will be developed further in the 
2nd half of the project. Connecting to the synthetic data generation efforts presented above, we note 
that GANs are planned to be used for improving the anomaly detection models for the IoT event 
logging framework. 
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1 Introduction 

Artificial Intelligence (AI) lies at the heart of advancing cybersecurity in interconnected systems and 
critical infrastructures, offering powerful tools to address the growing complexity of IoT and OT 
networks, such as smart grids (CISSAN Use Case 2). In smart grids, AI-driven anomaly detection 
enables real-time identification of technical faults and cyberattacks, improving the resilience and 
operational efficiency of grid systems. The anomaly detection models presented in Section 2 run 
locally, in network nodes, reflecting the focus of CISSAN T5.1 on distributed detection and – more 
generally – the project’s focus on enabling Collective Intelligence for improved cybersecurity. 

Large Language Models (LLMs) show potential as tools for detecting malicious activities in 
heterogeneous, high-volume data streams. Another T5.1 effort included in this document (Section 3) 
is studies in the application of a modern Large Language Model (Llama 3.1) to IoT network traffic 
analysis, with a goal of detecting and analysing cyberattacks with minimal preprocessing and 
preparations. 

D5.1 also briefly presents work that fully or partially belongs to WP4: (i) the use of generative AI for 
producing synthetic data for training and validating intrusion detection systems, addressing such 
critical challenges as data scarcity and privacy (Section 4); (ii) analysis of GPS data in public 
transport systems (in the scope of CISSAN Use Case 1) to identify system faults and attacks and 
improve the safety and resilience of transport systems (Section 5). While these lines of work will be 
presented in future CISSAN deliverables, (i) clearly supports T5.1 and (ii) explores anomaly 
detection approaches, so we find it helpful to articulate the connections in D5.1. 

The presented results and findings highlight AI’s transformative potential to manage emerging risks 
and enhance the security of modern digital ecosystems. 

2 Network and operational anomalies in smart grid 

2.1 Introduction 

The integration of IoT and digital communications within electrical grids has paved the way for smart 
grids, transforming traditional power distribution systems into complex, interconnected networks. 
This evolution enables greater efficiency, real-time monitoring, and flexibility but also brings new 
security challenges. Detecting and managing anomalies—ranging from technical faults to 
sophisticated cyberattacks—is critical to ensuring the resilience and reliability of these systems. 
Anomalies within smart grids can signal irregular activities, such as data tampering, unauthorized 
access, or equipment malfunction, which may compromise the entire network's stability if left 
undetected.  

This section describes the application of AI-driven anomaly detection techniques through 
experiments on network and operational data from several substations. Using data collected from 
IoT-enabled devices, these experiments simulate potential failure- and attack signatures on the 
network and operation data. This includes scenarios such as frozen-value and mean-shift failures 
and attacks, to evaluate the models' ability to detect subtle and complex anomalies. The results 
underscore the importance of adaptable and layered detection models in managing the evolving 
cyber risks associated with modern smart grids. This work introduces components of a distributed 
system that will be realized in the second half of the project. 

By examining the advantages, challenges, and performance of different anomaly detection models, 
this document aims to provide insights into developing resilient, scalable solutions for anomaly 
detection in smart grids, with the goal of improving security, operational efficiency, and system 
reliability across electrical infrastructure networks. 

2.2 Objective of this Section 

The objective of this section is to present viable approaches to AI-based monitoring and highlight the 
hybrid approach as likely the most plausible one. Furthermore, this section presents the reader with 
experimental results and methodologies for AI-based monitoring of IoT-based power grids using real-
world data.  

2.3 Detection Approaches 

There are various anomaly detection models available in the literature, ranging from fully centralized 
approaches to decentralized models. 
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A centralized anomaly detection model involves collecting data from all substations and analyzing it 
at a central location. This approach allows for a comprehensive analysis, as aggregating data from 
all stations facilitates the identification of patterns that might be missed if analyzed in isolation. 
Additionally, it offers scalability, with the ability to scale up processing power and storage at the 
central location to accommodate increased data loads as the number of stations grows. However, 
this model has its drawbacks, including potential delays due to data transfer time, especially in low-
bandwidth or high-latency environments. The model's reliance on network connectivity means that 
disruptions can delay or even halt data collection and anomaly detection. Moreover, constantly 
transmitting large amounts of data from multiple stations can consume significant network bandwidth, 
and the central server or processing center becomes a single point of failure, making the entire 
system vulnerable if an issue arises. 

In contrast, a distributed anomaly detection model, where each node (station) performs anomaly 
detection independently, addresses some of these challenges. By sending only anomaly reports or 
summaries to a central location, this model significantly reduces the amount of data transmitted over 
the network, leading to lighter bandwidth usage. It also eliminates the single point of failure, as each 
station operates independently, ensuring that a failure at one station or the central server does not 
impact others. Additionally, nodes can continue functioning autonomously even if they lose 
connectivity with the central server. Monitoring and maintaining the functionality and consistency of 
all nodes also requires more complex systems. 

Hybrid approaches, such as hierarchical anomaly detection, seek to combine the strengths of both 
centralized and distributed models [1]. In hierarchical anomaly detection, each node performs initial 
anomaly detection on its data, focusing on clear, straightforward anomalies that require limited 
computational resources. The detected anomalies or summarized data are then sent to a central 
server for deeper, more comprehensive analysis, allowing for the identification of broader patterns 
or correlations between stations. This approach is efficient, reducing the amount of data sent to the 
central server and saving bandwidth while combining the immediacy of local detection with the 
broader perspective of centralized analysis. It is also scalable, as local processing lightens the load 
on the central server. However, it introduces complexity, requiring careful coordination between local 
and central algorithms, and nodes still need some level of processing power, though less than in a 
fully distributed model. The result of the process will be presented to the operators supporting his 
decision on the necessary action. 

Each substation supplies electricity to a diverse range of end customers, which may include 
households, industrial zones, office buildings, or a mixture of these. These distinct areas often exhibit 
varying power demands and unique consumption patterns. Consequently, a single standardized 
model may not be suitable for all substations. 

Different models were considered to use and finally a lightweight model was selected to use that is 
able to run on each substation, even with limited hardware resources. A primary advantage of this 
local monitoring is the access to data and measurements at a fine-grained level thanks to running 
analysis closer to the data source. However, monitoring only individual substations does not offer a 
comprehensive view of the entire electricity grid’s status. Therefore, each substation’s status should 
be sent to a central node in a higher layer, allowing for event aggregation and semantic correlation 
analysis, as well as presentation to operators. In this setup, a hybrid anomaly detection model serves 
as a suitable solution for our needs. 

2.4 Anomaly Detection in IoT-based Smart Grids 

A series of anomaly-detection experiments have been performed using AI-based algorithms on data 
received from Affärsverken. This section outlines the different steps in these experiments, describes 
the methods used, and presents experimental results and lessons learned. 

2.4.1 Data preparation 

The datasets from Affärsverken were provided in the form of network captures in pcap format and 
originated from three stations. Experiments were conducted on all three stations, both at the network 
level by analysing IP headers and at the operational level by monitoring signal data.  

On the network level, Clavister’s AI algorithm PASAD [2, 3, 4, 5, 6] was applied on network data by 
processing selected IP headers of both MQTT and SCADA packets. Filtering IP traffic was based on 
source address, and selected headers included Header Length, Total Length, TTL, Protocol, 
Destination Address, etc., in addition to a crafted feature called Inter-Arrival Time, which measures 
the time gap between two consecutive packets to incorporate the time aspect in the analysis. 
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On the operational level, the algorithm was applied on sensor and signal values contained in the 
payloads of MQTT and SCADA messages. The filtering in this case was based on Information Object 
Address (IOA), and spreadsheets provided by project partners were used to map the IOA to signals 
of interest. 

2.4.2 Networks-Level Experiment 

In this experiment, we have trained and tested a PASAD model on selected IP headers of packets 
containing SCADA traffic. 

Training of PASAD models on IP data based on the selected headers has been done on enough 
packets (1 million in this experiment) to ensure that the dynamics of the device or network node 
under analysis have been captured. To simulate an anomaly during the inference phase, we have 
manipulated the Total Length feature by changing a sequence of consecutive values to a constant 
1000. Figure 2.1 shows the records of the original Total Length, highlighted in blue, as well as the 
manipulated records, highlighted in red. 

 

 

Figure 2.1: Total Length feature including manipulated values. 

 
Figure 2.2 shows a 3D representation of how a PASAD model works. The figure shows the model’s 
decision boundary (represented by the ellipsoid) and the classification of data records (green points) 
under normal conditions. If the communication behaviour of the monitored node conforms to the 
trained model and learnt patterns, the corresponding data instances are supposed to lie inside the 
decision boundary. In the case of anomalous behaviour, on the other hand, the datapoints will depart 
away from the datapoint cluster and cross the boundary. This is demonstrated in Figure 2.3 where 
PASAD could successfully detect the manipulation of the Total Length feature. The line graph in 
Figure 2.4 displays the so-called departure scores produced by the model, where each score 
represents, in a rough sense, the location of the corresponding datapoint with respect to the decision 
boundary. The model generates an event whenever the departure score crosses a predefined 
threshold. 
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Figure 2.2. 3D representation of SCADA network in station 1.  

 
 
 
 
 

 

Figure 2.3. 3D visualization of detecting the 

Total Length attack on station 1.  

 

Figure 2.4. PASAD's departure scores. 

 

2.4.3 Operation-Level Experiments 

The purpose of this type of experiment is to explore the possibility of monitoring the process health 
by analysing power-related signals at substation level to detect cyberattacks that may evade 
detection at the communication level. 

After identifying and extracting values for the different signals and training AI models on some 
selected signals, we have conducted two different attacks on signal data: the “Frozen-value” attack 
and the “Mean-shift” attack. For the Frozen-value attack, we have frozen the values of a specific 
range of consecutive packets. The Mean-shift attack was applied by taking the weighted moving 
average (WMA) plus one standard deviation of a specific range of consecutive packets based on the 
length of the signals. The Mean-Shift attack is stealthier than the Frozen-Value attack because it 
follows the distribution of the signal. 
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2.4.3.1 Frozen-Value Attack  

In station 1, we have extracted time series corresponding to four different signals, namely, GRP4 
Current B Level 1, Temperature T1, Power Factor T1-400, and Power Reactive T1-400. In addition, 
by manipulating the sensor values corresponding to the four different signals to a constant value, 
chosen to be the mean of the signals, we have ended up with four modified test time series. Figure 
2.5 shows the four different signals and their corresponding manipulated signals, where the 
manipulated parts are highlighted in orange. 

 

 

Figure 2.5. SCADA normal versus manipulated signals of station 1 (Frozen-value attack). 

 
To train and test PASAD on these signals, we have extracted 15 rolling-window statistical features 
from these signals such as mean, standard deviation, median, min, and max. PASAD has trained on 
normal rolling-window statistical features, which represent the normal signal, and tested on 
manipulated rolling-window statistical features, which represent the manipulated signal. 

The results show that PASAD could detect the manipulation of these signals. Figure 2.6 — Figure 
2.13 show departure scores and detection in 3D representation of the PASAD models trained on 
GRP4 Current B Level 1, Temperature T1, Power Factor T1-400, and Power Reactive T1-400, 



page 16 (38) CELTIC-NEXT project report 

 © 2024 CELTIC-NEXT participants in project CISSAN 

respectively. As shown in these graphs, the departure scores for the different signals surpass the 
threshold during the manipulation period and then return to the normal level. 

 

 

Figure 2.6: Departure scores of GRP4 Current 

B model in station 1. 

 

 

 

Figure 2.7: GRP4 Current B model detection of 

the Frozen-value attack in station 1 in 3D. 

 

 

Figure 2.8: Departure scores of Temperature 

T1 model in station 1. 

 

Figure 2.9: Temperature T1 model detection of 

the Frozen-value attack in station 1 in 3D. 

 
 

 

Figure 2.10: Departure scores of the Power 

Factor T1-400 model in station 1. 

 

Figure 2.11: Power Factor T1-400 model detection of 

the Frozen-value attack in station 1 in 3D. 
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Figure 2.12: Departure scores of the Power 

Reactive T1-400 model in station 1. 

 

Figure 2.13: Power Reactive T1-400 detection of 

the Frozen-value attack in station 1 in 3D. 

 

2.4.3.2 Mean-Shift Attack 

For the mean-shift attack, we have manipulated the consecutive values of the signals GRP4 Current 
B Level 1, Temperature T1, Power Factor T1-400, and Power Reactive T1-400 in station 1 by 
changing the values to the WMA plus one standard deviation of each signal. Figure 2.14 shows the 
normal signals of GRP4 Current B and Power Factor (on the left), and the manipulated signals of 
GRP4 Current B and Power Factor (on the right). The manipulation of the consecutive values is 
highlighted in orange for each signal. 
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Figure 2.14. Normal GRP4 and Power Factor versus manipulated GRP4 and Power Factor in station 1 

(Mean-shift attack). 

PASAD was trained on the normal signals and tested on the manipulated signals. PASAD managed 
to detect the Mean-shift attack in all signals. Figure 2.15 – Figure 2.18 show that PASAD models 
successfully detected the manipulation. 
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Figure 2.15. GRP4 Current B detection of 

Mean-shift attack in station 1 in 3D. 

 

Figure 2.16. PASAD's departure scores of the 

GRP4 Current B model of Mean-shift attack in 

station 1 

 

Figure 2.17. Power Factor detection of 

Mean-shift attack in station 1 in 3D. 

 

Figure 2.18. PASAD's departure scores of the 

Power Factor model of Mean-shift attack in station 

1. 

2.5 Future Perspectives 

We have explored an anomaly detection approach for both internet-level and operation-level data 
streams generated by secondary substations in a smart electrical grid. However, our investigation 
thus far has focused on a localized anomaly detection scheme, where each substation identifies 
anomalies solely within its own data. These detected anomalies are not contextualized within a 
broader framework to enable global data interpretation. 

Our next objective is to conduct a comprehensive evaluation of our method using synthetic data 
(see Section 4). Following this, we aim to design and implement a robust framework capable of 
gathering critical information from individual substations across the network. This framework will 
aggregate the collected data, enabling a holistic view of the electrical grid's performance and 
status. Additionally, we will integrate advanced explainability features into the framework to provide 
grid operators with actionable insights. These insights will help operators understand the underlying 
causes of network behaviours and facilitate informed decision-making to enhance grid reliability 
and efficiency. 
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3 Llama analysis in detecting IoT-targeting cyberattacks 

3.1 Introduction 

The number of IoT devices has rapidly increased over the years, and this growth is not stopping. In 
2023, the number of IoT devices worldwide was around 15 billion, and the number is forecasted to 
be more than 29 billion in the year 2030 [1]. The amount of data going through a network can be 
massive. However, one of the most significant issues regarding IoT network data is its heterogeneity. 
An IoT network may have thousands of devices that utilize various protocols. Building a monitoring 
system to detect malicious activities for IoT networks may require a lot of professional effort. 
Generally, in the literature, intrusion detection systems are tested by training them on only one or a 
few datasets. Even if a trained ML model works well with one dataset, it may not be suitable for 
another or real life. We wanted to avoid such an approach in this report. 

Many works have utilized large language models (LLMs) in cybersecurity-related tasks with various 
success, such as writing malicious code [2, 3, 4], being sparring partners for pen-testers [5], 
identifying complex vulnerabilities [6] and imitating to be a honeypot [7, 8]. These examples illustrate 
LLMs’ ability to understand cyber-attacks. Considering the IoT network data, one of the most 
interesting abilities of LLMs is its ability to understand text data and the context of data. These 
findings led us to experiment with how LLMs can enhance cybersecurity in IoT networks in the future.  

Ideally, a well-performed LLM could be installed on an edge router to monitor traffic data. If the LLM 
detects an attack early enough, it can warn IoT devices about what kind of malicious traffic is coming. 
Then IoT devices can prepare for the attack. It may also be possible to have a conversation between 
IoT devices and an LLM if the IoT devices have sufficient capability, such as an internet connection. 
The IoT device could send suspicious packets to the LLM and ask it to analyze them and deliver 
possible IoAs to neighbouring IoT devices. The essential first step is to explore the strengths and 
weaknesses of recent LLMs in detecting cyberattacks from IoT traffic data. This information is 
needed for building real-life solutions and planning future research steps. 

In this study, we analysed how capable Llama 3.1 is of detecting IoT-targeting cyberattacks of several 
frequently occurring types in IoT network traffic data. Our goal was to find out what kind of signals of 
malicious activities LLMs can detect, how well they can process the meaning of several simultaneous 
signals, and what the current limitations of LLMs are. Because one of the motivators for this study 
was the complexity of IoT networks, we experimented with LLMs as a generalized model. Thus, we 
did not preprocess our data or fine-tune our model.   

This report is organized as follows. Section 3.2 (Method) presents our research process, prompt 
engineering, used data, and model selection. Section 3.3 (Results) provides our results and findings 
including both strengths and weaknesses of the used model. In Section 3.4 (Discussion), we discuss 
our results and outline future research directions. Finally, Section 3.6 (Conclusion) concludes this 
report. 

3.2 Method 

In our study, we experimented with how well LLMs can detect cyberattacks of popular types from IoT 
network traffic data. The heterogeneity of IoT traffic data is one of the most significant issues related 
to IoT network data. Thus, we wanted to test whether LLMs are capable of handling heterogeneous 
data without fine-tuning. Fine-tuning typically increases the performance of a model for a specific 
dataset, but it also requires work from professionals. We decided to leave the study of the effect of 
fine-tuning to later research and experiment with a model whose capabilities we have not affected.  

We also decided not to preprocess our data. The main reason behind this decision was again the 
heterogeneity of IoT data. We wanted to experiment with how well LLMs understand heterogeneous 
data and what kind of preprocessing may be essential to achieve good results. Usually, data 
professionals select the features, clean the data, and otherwise preprocess it before training ML 
models. This is an essential process when using traditional ML models or DL models. However, this 
process causes a significant amount of work for professionals. If LLMs were able to understand raw 
data and detect cyber-attacks from it, it would be a waste of time to spend time for preprocessing the 
data. In this work, we studied if this kind of approach is possible. 
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Figure 3.1: Research process 

 
Figure 3.1 outlines the steps of our research process. Our dataset contains data from 12 different 
attack types in PCAP format. First, we selected three single packets from each attack type, as 
described in Section 3.2.3. Then, we converted the selected packets into JSON format with all the 
values Wireshark adds to the data by default. Next, we prompted LLM with each of the packets 12 
times. Each of these 12 prompts asked LLM if the packets were part of a different cyber-attack. In 
total, we prompted the LLM 468 times, each time with a different prompt. Finally, we analyzed the 
results. 

Our analysis included two phases. The first part of the analysis was to find out how often LLM detects 
a packet as an attack. The second part contains a closer analysis where we had five statements with 
which we tried to find out what kind of things LLM recognizes and what its limitations are. Our 
statements were the following: 

TF: True finding – the findings of LLM were from the provided data, e.g., correct IP addresses and 
port numbers. In Section 3.2.4, the findings consist of the seven items mentioned by the LLM from 
the data. 

FF: False findings – the LLM hallucinated the findings so much that it affected the quality of the 
response, e.g., additional transport layers or wrong MAC addresses. 

AV: Attack vector – LLM identified signals of potential malicious activities (or a significant part of 
them) from the data and mentioned that the findings were suspicious. LLMs do not need to specify 
the exact attack type but should provide enough suspicious findings from the data for a user to 
deduce the attack vector. 

CR: Correct reasoning – LLM drew correct conclusions based on its findings. It did not matter if the 
findings were hallucinated or not, nor were the answers correct. Here, we considered whether the 
conclusions drawn from the findings were correct. 

FR: False reasoning – LLM’s conclusions based on the findings were wrong. 

During the analysis, we focused on the findings and reasoning that were important for the 
conclusions, disregarding minor mistakes. When identifying malicious activities, we decided that the 
answer should be sufficiently useful for a user. This means that one minor suspicious finding (e.g., 
only an unusual port number) is not enough. On the other hand, LLMs do not need to find all the 
suspicious things that humans can find. Additionally, one important finding (e.g., an SQL query) can 
also be enough. The purpose behind evaluating LLMs’ ability to identify malicious activities is to 
ensure that the answer is useful for a user and mentions that the findings are potentially malicious. 
An example of a prompt and LLM’s response is in Section 3.2.4. 
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3.2.1 Prompt engineering 

Above is a prompt structure we developed to utilize in every prompt. We tried multiple prompts and 
chose one that seemed to be the best. In the beginning, there was a data capture to be analyzed, 
and the data always contained a single network packet. A more detailed description of the data can 
be found in Section 3.2.3. After the dataset, we briefly described the context of the data to the LLM. 
Next, we prompted the actual task for the LLM. Each packet had been prompted 12 times with 
different attack types, namely ARP spoofing, backdoor attack, cross-site scripting (XSS), DDoS, DNS 
spoofing, OS Fingerprinting, password cracking, port scanning, ransomware attack, SQL injection, 
uploading attack, and vulnerability scanning. Each prompt was individual, and the model did not see 
previous prompts or responses. 

At the end of the prompt, we added two prompt engineering methods to improve the performance of 
LLMs. Yugeswardeenoo et al. introduced the Question-Answer prompting (QAP) method in their 
paper and its original form is “Explain this problem to me in at least n words. Then solve for the 
answer”. Yugeswardeenoo et al. utilized their method in arithmetic and commonsense problems 
where the problem is described at the beginning of the prompt. [9] Their problem description 
corresponds to the data in our case, so we changed the word problem to the word data in our prompt. 
We came to this solution because LLMs are sensitive to word choices, as also mentioned by 
Yugeswardeenoo et al. [9]. For us, this also provides the possibility to check whether the LLM has 
understood the data correctly. Wei et al. prompted LLMs to think step-by-step in their Chain-of-
Thought method [10]. We also adopted this method for our study. 

3.2.2 Lama 3.1 

This study considered IoT networks whose data privacy can be an important aspect. Additionally, 
IoT devices may have only a very narrowband internet connection, but an attack detection tool should 
still work. Thus, we decided to utilize local large language models (LLMs) in this study. LLMs are a 
fast-evolving technology that guided us to choose the most recent models for the study. We selected 
Llama as a model to be tested because Llama models can be run locally, they have succeeded in 
various benchmark tests, and the most recent models have a relatively long context length, 128K 
[11]. At the starting point of this study, the most recent version of Llama was Llama 3.1. We selected 
that version with 70 billion parameters, Llama 3.1:70b, in the hope of a balance between better results 
and computational requirements.  

We wrote our code using Python programming language and utilized the Ollama framework [12] to 
run LLMs locally on our computer. The used computer has an Apple M3 Max chip with 128 GB of 
memory. 

3.2.3 Data 

To achieve our goals, our requirements for a dataset were that it should be cyber-related IoT network 
traffic data, labelled in terms of attack type, and heterogeneous. Edge-IIoTset contains labelled 
network data generated from an IIoT network including more than ten devices and using various 
protocols. The network has been attacked by 14 different attack types, namely port scanning, 
vulnerability scanning attack, four different types of DDoS attacks, OS Fingerprinting, DNS spoofing 
attack, ARP spoofing attack, Cross-site scripting (XSS) attack, SQL injection, Uploading attack, 
Backdoor attack, Password cracking attack, and ransomware attack. [13] The data is shared in CSV 
and PCAP formats. 

{dataset}  

Here is an IIoT network capture file, specifically a JSON-formatted Wireshark capture. The file contains 

a single packet, and your job is to analyze this data.  

Can you identify this data as {attack type}? Include in your answer the probability of occurrence for 

attack and typical traffic.  

Explain this data to me in at least 100 words. Then solve for the answer. Go through the packet 

carefully step-by-step.  
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We utilized Edge-IIoTset’s PCAP files and decided to analyse individual packets because they are 
the basic unit of network traffic. We are aware that some attacks are challenging or even impossible 
to detect from a single packet. On the other hand, we need to know how well LLMs can analyse 
single packets in order to compare performance with multiple packets. This decision also allowed us 
to make a deeper analysis of Llama 3.1’s behavior because individual packets are easier to analyse 
manually than larger datasets. We selected three packets from each attack type for our usage, except 
in the case of DDoS attacks, we selected three packets in total. The selected ones were one of each 
TCP SYN Flood attacks, UDP flood DDoS attacks, and HTTP flood DDoS attacks. We selected the 
packets randomly and then saw if the packets contained clues about the attack. If not, then we tried 
again. ARP spoofing attacks were challenging to detect from only one packet, so these packets did 
not contain clear clues about the attack. Between the packets, the difficulty of detecting an attack 
varies a lot. In addition, we selected three packets of normal traffic, one from each of following PCAP 
files: Distance, Modbus, and Temperature and Humidity. After selection, we converted the raw PCAP 
captures to JSON format and did not preprocess the data otherwise. In total, we used 39 individual 
packets in our analysis. 

3.2.4 Example prompt and response 

In this section, we provide an example of one prompt (input) and Llama 3.1’s response (output). The 
attack type in the data was password cracking. The probability of attack was usually provided as a 
numerical value in Llama 3.1’s responses, but in this example, it was in low-medium-high scale. 
However, in this example, it can be seen well how Llama 3.1 listed its findings from data and then 
made brief conclusions based on them. Finally, Llama 3.1 justified its estimation of the likelihood of 
an attack and offered overall conclusions. This kind of structure were usual for Llama 3.1’s 
responses. 

Input:  

[{'_index': 'packets-2021-12-04', '_type': 'doc', '_score': None, '_source': {'layers': {'frame': 
{'frame.encap_type': '1', 'frame.time': 'Dec  4, 2021 19:30:22.830794000 EET', 'frame.time_utc': 'Dec  
4, 2021 17:30:22.830794000 UTC', 'frame.time_epoch': '1638639022.830794000', 
'frame.offset_shift': '0.000000000', 'frame.time_delta': '0.000133000', 'frame.time_delta_displayed': 
'0.007166000', 'frame.time_relative': '60286.869222000', 'frame.number': '449208', 'frame.len': '327', 
'frame.cap_len': '327', 'frame.marked': '0', 'frame.ignored': '0', 'frame.protocols': 
'eth:ethertype:ip:tcp:http:urlencoded-form', 'frame.coloring_rule.name': 'HTTP', 
'frame.coloring_rule.string': 'http || tcp.port == 80 || http2'}, 'eth': {'eth.dst': 'dc:a6:32:fb:69:b5', 
'eth.dst_tree': {'eth.dst_resolved': 'RaspberryPiT_fb:69:b5', 'eth.dst.oui': '14460466', 
'eth.dst.oui_resolved': 'Raspberry Pi Trading Ltd', 'eth.dst.lg': '0', 'eth.dst.ig': '0', 'eth.addr': 
'dc:a6:32:fb:69:b5', 'eth.addr_resolved': 'RaspberryPiT_fb:69:b5', 'eth.addr.oui': '14460466', 
'eth.addr.oui_resolved': 'Raspberry Pi Trading Ltd', 'eth.lg': '0', 'eth.ig': '0'}, 'eth.src': 
'd8:f2:ca:8e:17:69', 'eth.src_tree': {'eth.src_resolved': 'Intel_8e:17:69', 'eth.src.oui': '14217930', 
'eth.src.oui_resolved': 'Intel Corporate', 'eth.src.lg': '0', 'eth.src.ig': '0', 'eth.addr': 'd8:f2:ca:8e:17:69', 
'eth.addr_resolved': 'Intel_8e:17:69', 'eth.addr.oui': '14217930', 'eth.addr.oui_resolved': 'Intel 
Corporate', 'eth.lg': '0', 'eth.ig': '0'}, 'eth.type': '0x0800', 'eth.stream': '0'}, 'ip': {'ip.version': '4', 
'ip.hdr_len': '20', 'ip.dsfield': '0x00', 'ip.dsfield_tree': {'ip.dsfield.dscp': '0', 'ip.dsfield.ecn': '0'}, 'ip.len': 
'313', 'ip.id': '0xd713', 'ip.flags': '0x02', 'ip.flags_tree': {'ip.flags.rb': '0', 'ip.flags.df': '1', 'ip.flags.mf': '0'}, 
'ip.frag_offset': '0', 'ip.ttl': '64', 'ip.proto': '6', 'ip.checksum': '0xe030', 'ip.checksum.status': '2', 'ip.src': 
'192.168.0.170', 'ip.addr': '192.168.0.128', 'ip.src_host': '192.168.0.170', 'ip.host': '192.168.0.128', 
'ip.dst': '192.168.0.128', 'ip.dst_host': '192.168.0.128', 'ip.stream': '0'}, 'tcp': {'tcp.srcport': '54974', 
'tcp.dstport': '80', 'tcp.port': '80', 'tcp.stream': '40226', 'tcp.stream.pnum': '3', 'tcp.completeness': '31', 
'tcp.completeness_tree': {'tcp.completeness.rst': '0', 'tcp.completeness.fin': '1', 
'tcp.completeness.data': '1', 'tcp.completeness.ack': '1', 'tcp.completeness.syn-ack': '1', 
'tcp.completeness.syn': '1', 'tcp.completeness.str': '·FDASS'}, 'tcp.len': '261', 'tcp.seq': '1', 
'tcp.seq_raw': '3520572880', 'tcp.nxtseq': '262', 'tcp.ack': '1', 'tcp.ack_raw': '1550123349', 
'tcp.hdr_len': '32', 'tcp.flags': '0x0018', 'tcp.flags_tree': {'tcp.flags.res': '0', 'tcp.flags.ae': '0', 
'tcp.flags.cwr': '0', 'tcp.flags.ece': '0', 'tcp.flags.urg': '0', 'tcp.flags.ack': '1', 'tcp.flags.push': '1', 
'tcp.flags.reset': '0', 'tcp.flags.syn': '0', 'tcp.flags.fin': '0', 'tcp.flags.str': '·······AP···'}, 
'tcp.window_size_value': '502', 'tcp.window_size': '64256', 'tcp.window_size_scalefactor': '128', 
'tcp.checksum': '0x360d', 'tcp.checksum.status': '2', 'tcp.urgent_pointer': '0', 'tcp.options': 
'01:01:08:0a:e7:b3:5a:00:7b:28:4a:6d', 'tcp.options_tree': {'tcp.options.nop': '01', 
'tcp.options.nop_tree': {'tcp.option_kind': '1'}, 'tcp.options.timestamp': 
'08:0a:e7:b3:5a:00:7b:28:4a:6d', 'tcp.options.timestamp_tree': {'tcp.option_kind': '8', 'tcp.option_len': 
'10', 'tcp.options.timestamp.tsval': '3887290880', 'tcp.options.timestamp.tsecr': '2066238061'}}, 
'Timestamps': {'tcp.time_relative': '0.007223000', 'tcp.time_delta': '0.007166000'}, 'tcp.analysis': 
{'tcp.analysis.acks_frame': '449203', 'tcp.analysis.ack_rtt': '0.007166000', 'tcp.analysis.initial_rtt': 
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'0.007223000', 'tcp.analysis.bytes_in_flight': '261', 'tcp.analysis.push_bytes_sent': '261'}, 
'tcp.payload': 
'50:4f:53:54:20:2f:44:56:57:41:2f:6c:6f:67:69:6e:2e:70:68:70:20:48:54:54:50:2f:31:2e:30:0d:0a:48:6
f:73:74:3a:20:31:39:32:2e:31:36:38:2e:30:2e:31:32:38:0d:0a:55:73:65:72:2d:41:67:65:6e:74:3a:20:
4d:6f:7a:69:6c:6c:61:2f:35:2e:30:20:28:48:79:64:72:61:29:0d:0a:43:6f:6e:74:65:6e:74:2d:4c:65:6e:
67:74:68:3a:20:33:38:0d:0a:43:6f:6e:74:65:6e:74:2d:54:79:70:65:3a:20:61:70:70:6c:69:63:61:74:69
:6f:6e:2f:78:2d:77:77:77:2d:66:6f:72:6d:2d:75:72:6c:65:6e:63:6f:64:65:64:0d:0a:43:6f:6f:6b:69:65:3
a:20:50:48:50:53:45:53:53:49:44:3d:33:71:35:6c:64:6f:73:6c:36:35:66:61:74:6f:31:33:30:67:32:61:3
7:71:66:6a:6c:70:3b:20:73:65:63:75:72:69:74:79:3d:69:6d:70:6f:73:73:69:62:6c:65:0d:0a:0d:0a:75:
73:65:72:6e:61:6d:65:3d:61:64:6d:69:6e:26:70:61:73:73:77:6f:72:64:3d:30:30:26:4c:6f:67:69:6e:3d:
4c:6f:67:69:6e'}, 'http': {'POST /DVWA/login.php HTTP/1.0\\r\\n': {'http.request.method': 'POST', 
'http.request.uri': '/DVWA/login.php', 'http.request.version': 'HTTP/1.0'}, 'http.host': '192.168.0.128', 
'http.request.line': 'Cookie: PHPSESSID=3q5ldosl65fato130g2a7qfjlp; security=impossible\r\n', 
'http.user_agent': 'Mozilla/5.0 (Hydra)', 'http.content_length_header': '38', 
'http.content_length_header_tree': {'http.content_length': '38'}, 'http.content_type': 'application/x-
www-form-urlencoded', 'http.cookie': 'PHPSESSID=3q5ldosl65fato130g2a7qfjlp; 
security=impossible', 'http.cookie_tree': {'http.cookie_pair': 'security=impossible'}, '\\r\\n': '', 
'http.request': '1', 'http.response_in': '449210', 'http.request.full_uri': 
'http://192.168.0.128/DVWA/login.php', 'http.file_data': 
'75:73:65:72:6e:61:6d:65:3d:61:64:6d:69:6e:26:70:61:73:73:77:6f:72:64:3d:30:30:26:4c:6f:67:69:6e
:3d:4c:6f:67:69:6e'}, 'urlencoded-form': {'Form item: "username" = "admin"': {'urlencoded-form.key': 
'username', 'urlencoded-form.value': 'admin'}, 'Form item: "password" = "00"': {'urlencoded-form.key': 
'password', 'urlencoded-form.value': '00'}, 'Form item: "Login" = "Login"': {'urlencoded-form.key': 
'Login', 'urlencoded-form.value': 'Login'}}}}}] 

Here is an IIoT network capture file, specifically a JSON-formatted Wireshark capture. The file 
contains a single packet, and your job is to analyze this data. 

Can you identify this data as XSS? Include in your answer the probability of occurrence for attack 
and typical traffic. 

Explain this data to me in at least 100 words. Then solve for the answer. Go through the packet 
carefully step-by-step. 

Output: 

The provided JSON-formatted Wireshark capture contains a single packet with various layers of 
information. Let's break it down step by step: 

  

1. The first section describes the frame, including the protocol (HTTP), source and destination IP 
addresses, and other low-level details. 

  

2. The next section is the HTTP request layer: 

   - The `http.request.method` is set to `POST`, indicating that the client is sending data to the server. 

   - The `http.request.uri` is `/DVWA/login.php`, which suggests that this packet is part of a login 
process on a Damn Vulnerable Web Application (DVWA) instance. DVWA is a deliberately 
vulnerable web application used for training and testing purposes. 

  

3. The `http.host` field contains the domain name or IP address of the server being accessed, which 
in this case is `192.168.0.128`. 

  

4. The `http.user_agent` field indicates that the client claims to be running Mozilla/5.0 (Hydra). 
However, Hydra is a known vulnerability scanner and exploit tool, not a typical web browser. 

  

5. The `http.content_type` field shows that the request body contains data in the format of 
application/x-www-form-urlencoded. 

  

6. Looking at the request body, we find the following form data: 
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   - `username=admin` 

   - `password=00` 

   - `Login=Login` 

  

7. Lastly, let's examine the HTTP cookie header: `PHPSESSID=3q5ldosl65fato130g2a7qfjlp; 
security=impossible`. The presence of a PHP session ID suggests that this packet is part of an 
ongoing interaction with the server. 

  

Now, considering these details as a whole: 

  

- **Probability of occurrence for attack:** High 

The combination of a POST request to a login page on a vulnerable web application (DVWA), along 
with form data containing a username and password, raises suspicions. The fact that Hydra is being 
used instead of a typical browser further increases the likelihood of this packet being part of an attack. 

  

- **Typical traffic:** Low 

Given the specific details of this packet, such as the use of DVWA, Hydra, and the explicit mention 
of "security=impossible" in the cookie header, it's unlikely that this represents normal traffic. This 
suggests a deliberate attempt to exploit vulnerabilities rather than routine web activity. 

  

**Is this data indicative of XSS (Cross-Site Scripting)?** 

  

While this packet does contain signs of malicious activity, there isn't explicit evidence of Cross-Site 
Scripting (XSS). The presence of form data and the context suggest an attempt to login or interact 
with the application in a potentially unauthorized manner. However, without seeing any attempts to 
inject scripts into the request or manipulate the server's response for client-side script execution, we 
cannot conclusively say this packet is indicative of XSS. 

  

**Conclusion:** 

  

This packet shows signs of malicious activity aimed at exploiting vulnerabilities in a web application 
(DVWA). The high probability of occurrence for an attack and the low likelihood of representing typical 
traffic are clear indicators that this data warrants closer inspection. However, it does not explicitly 
indicate Cross-Site Scripting (XSS) without further evidence or context. 

3.3 Results 

3.3.1 Quantitative results 

Figure 3.2 outlines the results of our Llama analysis. Every prompt was analysed based on the 
answer (whether the packet was identified as an attack or not) and five statements which are 
described in the previous section. The prompts where the requested attack type matches the data 
attack type are grayed out. Also, the corresponding calculated values are marked with a light gray 
background. The ARP spoofing and normal traffic packets have a ‘-‘mark in the attack vector (AV) 
column because there were no clear signals about attacks.  

Llama 3.1 labelled our packet captures as a cyber-attack (A in Figure 3.2) in 54% of the cases within 
all the packets and all the prompts, but it found the signals of malicious activities (AV in Figure 3.2) 
in only 35% of the cases. This means that Llama 3.1 relatively often said that the packet was an 
attack but did not give clear evidence of that. Here, it should be remembered that we required the 
model to identify malicious signals enough that the answer would be useful to professionals. In 
addition, it had to be mentioned that these signals were suspicious (see Section Model). This choice 
made an impact on the success rate in identifying signals of malicious activities.  
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Llama performed best with SQL injection. Within the three SQL packets and all the experiments, it 
concluded that the packet was an attack (A in Figure 3.2) in 86% of the cases. It also identified 
malicious signals (AV in Figure 3.2) almost every time, in 92% of the cases. This means that Llama 
successfully mentioned suspicious activities even if it was not sure about the attack. It detected SQL 
queries well from the data and could specify that the attack type was an SQL injection, even though 
it had been requested about other attack types. The detection rate for vulnerability scanning attacks 
(A in Figure 3.2) was also high, at 81%. Unfortunately, it could identify the suspicious signals (AV in 
Figure 3.2) worse than in the case of SQL injection, achieving a rate of 67%. Moreover, Llama 3.1 
claimed the packets as attacks in 90% of the cases when the prompted attack type was a vulnerability 
scanning attack, even whenever the packet was normal traffic. Thus, the detection of vulnerability 
scanning cannot be seen as successful as in the case of SQL injection. 

The most challenging attack types for Llama3.1 were ransomware attacks, OS fingerprinting, DNS 
spoofing, backdoor attacks, and ARP spoofing. The poor success in OS fingerprinting, DNS spoofing, 
and ARP spoofing is explained by the fact that they were challenging to detect from one packet even 
by humans. An interesting aspect of ransomware and backdoor attacks was that Llama hallucinated 
lot in these cases. We assume that the reason behind this was encrypted data in the payloads. Llama 
3.1 can read ASCII-formatted data and decode it into human-readable format, but in the case of 
encrypted data, it answered badly. 

In general, Llama 3.1’s hallucination significantly reduces the quality of the response (FF in Figure 
3.2) in 22% of the cases within all the packets and all the experiments. Mostly, this happened when 
there was an encrypted payload in the packet (ransomware packets 2-3 and backdoor packets 1-3 
in Figure 3.2), as mentioned earlier. Llama 3.1 was able to read ASCII-formatted payloads (e.g., 
DDoS packet 2 in Figure 3.2). In these cases, the hallucination rate (FF in Figure 3.2) was relatively 
low, even if the text was not strictly human-readable. However, Llama 3.1 hallucinated if the packet 
contained other unreasonable strings, even if it seemed to humans that the data was only machinery-
generated filler. These kinds of issues occurred with a large amount of repeated hexadecimal 
numbers in payload, such as 58s (DDoS packet 3 in Figure 3.2) or 00s (Port scanning packet 2 in 
Figure 3.2), and with hexadecimal formatted TCP options (XSS packets 2 and 3 in Figure 3.2). These 
observations strongly indicate that Llama 3.1 is not able to answer correctly if the prompt contains 
data it cannot read. 

Llama 3.1’s reasoning was sensible (CR in Figure 3.2) 94% of the time within all the prompts. In 
other words, Llama 3.1 can generate a believable answer regardless of whether it is true or not. 
Thus, the hallucination is challenging to detect if you do not have the original data as a reference 
point. In any case, LLMs’ habit of hallucinating causes more work for professionals because they 
must double-check all the answers. In addition, it reduces the reliability of the model’s answers. 
Interestingly, we observed that if Llama3.1 hallucinated in its answer, it usually hallucinated also 
values provided in the data, such as IP addresses and port numbers. Fortunately, these values are 
easy to check, but unfortunately, the model did not mention these values in every answer. 
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Figure 3.2: Each prompt is rated based on attack identification (A) and five assertions: True Findings (TF), 

False Findings (FF), Attack Vector Identification (AV), Correct Reasoning (CR) and False Reasoning (FR). 

True statements are indicated with a cross.  



CELTIC-NEXT project report page 29 (38) 

© 2024 CELTIC-NEXT participants in project CISSAN  

 

The prompts where the requested attack type matched the data attack type had better results than 
the average of all prompts. In these cases, Llama 3.1 identified the packets as attacks (A in Figure 
3.2) 67% of the time. Among all attack types and all prompts, it successfully identified them in only 
54% of the cases (56,3% without normal traffic). Respectively, the identification rate of malicious 
activities (AV in Figure 3.2) rose to 58% from 35% (37,5% without normal traffic). The latter one is 
interesting because the increase is so large. Thus, it seems that the type of attack given in the prompt 
affects the analysis of LLM, and Llama 3.1 can detect malicious activities better if it has a prompt 
with a similar attack type to the actual attack type. 

3.3.2 Qualitative results 

In this section, we go through examples that show LLM’s ability to understand network data and its 
context. Examples are collected in Table 3.1. We selected examples that described well how Llama 
3.1 worked and examples that existed multiple times. The goal of this section is to improve 
understanding of Llama’s strengths and weaknesses as a cyber-attack detector. 

Table 3.1: Llama 3.1’s Analysis for single packets 

Example 
number 

Attack type Example of Llama’s response 

1 XSS The packet contains an HTTP request with the method "TRACE" (line 234). This is not 
a typical method used in standard web browsing and is often used by attackers to 
identify vulnerabilities. 

2 XSS Typical traffic for an IIoT network would likely involve machine-to-machine 
communication, such as sensor data transmission or control commands. This 
packet appears to be part of a human-initiated HTTP request, which is unusual in an 
IIoT context 

3 DDoS **Source and Destination**: The source IP address is `78.151.46.12`, and the 
destination IP address is `192.168.0.128`. This suggests that the traffic is coming 
from outside the local network. 

4 Port scanning The destination port is `65535`, which is an unusual and high-numbered port. 
5 Port scanning tcp.srcport`: Source port number (`2922`) is not a standard port for any well-known 

service. 
6 OS 

Fingerprinting 
The source port number is 12924, which could indicate that it's a dynamically 
assigned port, often seen in botnet traffic or other malicious activities. 

7 Backdoor The packet is a TCP segment with a destination port of 80, indicating it's targeting a 
web server. 

8 DDoS The payload of the packet contains a sequence of `X` (ASCII value 58) characters, 
which appears to be padding or filler data. This could be an indication of anomalous 
traffic, as legitimate HTTP requests typically contain meaningful data in the payload. 

9 OS 
Fingerprinting 

This contains a large amount of data (48 bytes) with a repeating pattern of 
incrementing hexadecimal values (`08:09:0a:0b:...`). This is likely a padding or 
probing packet used to gather information about the target device. 

10 Password The presence of a `<form>` element submitting data to a PHP script suggests that 
there may be an opportunity for SQL injection. 

11 SQL injection Specifically, the query tries to select 5666 from a subquery that sleeps for 5 seconds 
(`SLEEP(5)`). This is likely an attempt to exploit a SQL injection vulnerability in the 
web application. 
(`/DVWA/vulnerabilities/sqli_blind/?id=7%20AND%20%28SELECT%205666%20FR
OM%20%28SELECT%28SLEEP%285%29%29%29WkGO%29&Submit=Submitid=5
7) 

12 Vulnerability 
scanning 

The query parameter value contains suspicious characters and a Windows file path 
(`c:\\boot.ini`), which could indicate an attempt to inject malicious code. 

13 Vulnerability 
scanning 

`urlencoded-form`: The URL-encoded form data contains an interesting item: 
                  + Key: `<!--#include virtual` 
                  + Value: `"/index.jsp"-->"` 
This appears to be an attempt to inject malicious code using the `#include` 
directive, which is commonly used in Server-Side Includes (SSI). This could be a 
signature of a Cross-Site Scripting (XSS) attack. 
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14 Vulnerability 
scanning 

The `http.user_agent` field contains a user agent string that identifies the client as 
"Mozilla/5.00 (Nikto/2.1.6)". Nikto is a well-known web application vulnerability 
scanner, which further supports the conclusion that this traffic is related to 
vulnerability scanning. 

15 Sql injection that the request is coming from an instance of sqlmap, a popular open-source tool 
for identifying and exploiting SQL injection vulnerabilities. 

16 Sql injection DVWA (Damn Vulnerable Web Application) is a known vulnerable web application, 
which suggests that this packet might be part of a vulnerability scan. 

17 Password The `User-Agent` header is set to `Mozilla/5.0 (Hydra)`, which is a known HTTP 
client that can be used for malicious activities 

18 DDoS This User-Agent string appears to be spoofed or manipulated, as it contains a mix of 
different browsers and versions: 
* Opera 9.80 is an outdated version. 
* Macintosh; Intel Mac OS X 10.7.0 suggests a Mac running Lion (2011). 
* Edition MacAppStore is not a standard User-Agent component. 
* AppleWebKit/534.34 is an old WebKit version. 
* PhantomJS/1.9.0 is a headless browser, which is unusual for regular web traffic. 
* Safari/534.34 is another outdated Safari version. 

19 DDoS ['tcp.payload': 
'47:45:54:20:2f:20:48:54:54:50:2f:31:2e:31:0d:0a:48:6f:73:74:3a:20:31:39:32:2e:3
1:36:38:2e:30:2e:31:32:38:0d:0a:55:73:65:72:2d:41:67:65:6e:74:3a:20:4f:70:65:72
:61:2f:39:2e:38:30:20:28:4d:61:63:69:6e:74:6f:73:68:3b:20:49:6e:74:65:6c:20:4d:6
1:63:20:4f:53:20:58:20:31:30:2e:37:2e:30:3b:20:55:3b:20:45:64:69:74:69:6f:6e:20:
4d:61:63:41:70:70:53:74:6f:72:65:3b:20:65:6e:29:20:4d:6f:7a:69:6c:6c:61:2f:35:2e
:30:20:28:4d:61:63:69:6e:74:6f:73:68:3b:20:49:6e:74:65:6c:20:4d:61:63:20:4f:53:2
0:58:29:20:41:70:70:6c:65:57:65:62:4b:69:74:2f:35:33:34:2e:33:34:20:28:4b:48:54
:4d:4c:2c:6c:69:6b:65:20:47:65:63:6b:6f:29:20:50:68:61:6e:74:6f:6d:4a:53:2f:31:2
e:39:2e:30:20:28:64:65:76:65:6c:6f:70:6d:65:6e:74:29:20:53:61:66:61:72:69:2f:35:
33:34:2e:33:34:0d:0a:52:65:66:65:72:65:72:3a:20:54:45:53:54:49:4e:47:5f:50:55:5
2:50:4f:53:45:53:5f:4f:4e:4c:59:0d:0a'] 
  
The HTTP request is interesting: 
* The `Host` header specifies the destination IP address (`192.168.0.118`). 
* The `User-Agent` header identifies the client software as Opera 9.80 (Macintosh; 
Intel Mac OS X 10.7; U; Edition MacAppStore; en) with a AppleWebKit-based 
rendering engine. 
* The `Referer` header contains a URL that appears to be a test or debugging 
purpose (`TESTING_PURPOSES_ONLY`). 

 

Based on our results, Llama 3.1 understood how different protocols work, what the function of a 
protocol is, and what kind of data it typically transfers. The meaning of parameters was usually 
correctly understood, and the JSON formatted data did not seem to cause difficulties. Llama was 
even able to consider the context of an IIoT network as we can see from example 2 in Table 3.1. In 
Table 3.1, example 1 shows how Llama used information about the TRACE in its reasoning and thus, 
we can see that it understands the difference between different HTTP methods. 

The most typical observations from a packet capture were MAC addresses, IP addresses, and port 
numbers. Llama3.1 has a good, but not perfect, idea about the default ports of different protocols, 
such as HTTP using port 80 and HTTPS port 443. It also saw high-numbered ports as suspicious 
ports. Examples 4-7 in Table 3.1 outline this capability of LLMs. In addition, Llama understood the 
structure of IP addresses, which can be seen in its responses where it deduces whether the network 
is local or not based on the IP address. It was even able to use this information to estimate the 
likelihood of a cyber-attack (see example 3 in Table 3.1). 

Llama 3.1 can identify human-readable suspicious pieces of data and make conclusions based on 
them. In addition, Llama3.1 understands ASCII-formatted data if it is not encrypted (example 19). 
The model was reliable in detecting SQL queries, usually from URLs (see example 11 in Table 3.1), 
and it multiple times detected suspicious payloads where data seemed maliciously generated. For 
instance, Llama 3.1 identified if the payload repeats the same numbers (00:00:00:00:00… or 
58:58:58:58:58…) or the data contained increasing values (08:09:0a:0b…) as shown in examples 8 
and 9 in Table 3.1. Interestingly, Llama 3.1 also concluded that an event is suspicious even if it 
cannot directly see the malicious data. In Table 3.1, examples 10 and 13 show how Llama identified 
files as potentially malicious activities. By combining the other evidence of malicious traffic, it 
concluded that the uploaded file was probably malicious. 
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Examples 14-17 in Table 3.1 illustrate Llama 3.1’s ability to identify used tools as evidence of 
malicious activities. Not only did Llama recognize tools, but it could also tell the suspicious purpose 
of the tool or vulnerabilities related to the tool (example 18 in Table 3.1). 

As shown above, Llama 3.1 was able to detect different attacks using various hints of malicious 
activities. However, according to our experiments, we cannot yet trust Llama 3.1 as a cyberattack 
detector because it does not notice the attack every time and it also has other weaknesses. Next, 
we go through our findings regarding the issues that need to be solved before using them in real-life 
solutions. 

Some of our experiments were quite challenging. Sometimes, it was difficult even for the researchers 
to show properly that a single packet contains malicious activities. There might have been only some 
weak signs about anomalies in the data, such as ransomware should be detected mainly based on 
large amounts of encrypted data. These experiments provided us an interesting view of LLM’s 
behavior. If LLM was not able to answer the question, it hallucinated additional information to the 
prompted data. The most significant thing was that LLM did not only add hallucinated values, such 
as additional transport layers, but it usually also hallucinated existing parameters, such as IP 
addresses and port numbers. For example, it said that “The packet is an Ethernet II frame with a 
source MAC address of 
`a5:54:27:39:4d:8d:59:51:c2:19:95:ee:44:45:31:f4:69:2a:15:60:45:d3:05:c2:35:c8:09:9b:b2:2f:2f:21:
4d:7c:82:0d:de:8a:c9:20:3b:c3:e3:49:0b:7b:20:fe:24:96:42:d9:24:27:09:0d:95:78:45:80:59:1e:f1:a3:
a6:bf:81:48:65:af:49:99:f4:0f:fa:fb:ef:a2:71:99:fe:d5:35:40:4c:96:9d:d7:14:aa:60:9f:9c:bb:c8:7f:23:7
9:93:65:23:d9:be:61:63:a4:0b:98:cd:5b:ed:9b:e7:0e:53:32:7b:f2:70:dc:dc:10:3a:ab:5a:53:a4:05:be:
9d:89:c3:9e:86:c0:61:5a`.” In this case, the string was a part of the payload. IP and MAC addresses 
were also often strings other than those appearing in the data. In future research, it would be 
interesting to experiment with whether it is possible to detect hallucinated answers of LLM by 
checking the correctness of parameters existing in the provided data.  

Llama 3.1 had challenges with data that Wireshark had added to the traffic data. Often, it did not 
consider the relative sequence and acknowledge numbers that could have given clues about the 
attack, instead, it only mentioned raw numbers. Sometimes, it also confuses TCP flags and 
conversation completeness flags. In the case of DNS spoofing, Llama 3.1 did not find short TTL 
values (TTL=1) or the lack of DNS response as suspicious things even if the data contained a note 
or warning by Wireshark. More context of the network data or context-learning would be valuable for 
LLM to understand better the data added by Wireshark. Overall, Llama 3.1 had a high variation in 
identifying attacks across attack types and packets. 

3.4 Discussion 

Based on our analysis, Llama 3.1 understands what different attack types mean and what traffic 
should be transferred with various protocols. It also has many advantages compared to other models, 
such as traditional ML and DL models. Llama 3.1 was able to understand the context of data, has 
knowledge about cyber-attacks, protocols, and tools, understood human-readable language and 
even ASCII characters, and made logical conclusions. In addition, Llama could explain what 
happened in the data and what could be signs of malicious activity. With such a response, a cyber 
specialist can quickly verify whether the findings and conclusions are true. Llama 3.1 may also help 
professionals to focus quickly on suspicious things though it is not yet reliable enough to operate 
alone. Thus, LLMs are a promising technology in IIoT network traffic analysis in the future. In 
particular, LLMs may be a valuable tool in explaining the content of network traffic packets. 

In this study, we also could use our LLM without fine-tuning or context-learning and analyze data 
without preprocessing. Our method allowed us to observe how Llama 3.1 works with unfamiliar 
datasets and various protocols. Our study showed that Llama 3.1 did not require information about 
normal traffic to analyze network traffic data. Thus, LLMs may be valuable tools when handling 
heterogeneous data, because it does not need to define all the network’s characteristics. However, 
providing a smaller amount of information can still be useful. More research is needed to determine 
the necessary information, but we see promising signals here. LLMs must be made to recognize 
cyber-attacks with sufficient credibility. 

Llama 3.1 still has multiple weaknesses that need solutions. The general weaknesses are the 
computational requirements and its habit of hallucinating. The analysis of packets took so long that 
it is not meaningful to analyse network traffic packets one by one using LLMs. Additionally, the 
calculation requires a lot of memory and power, which can be limited in IoT networks. In our analysis, 
we noticed that Llama 3.1 got confused when it had encrypted data in the prompt, and then only in 
rare cases, was it able to answer sensibly. In addition, even if Llama 3.1 could identify various clues 
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about attacks from data, this ability was unreliable. Often, it did not identify clear signs which, 
however, it detected in another run. All in all, Llama 3.1 has the ability to detect malicious activities. 
There is still a relatively long way to go to detect malicious activities every time and based on weak 
signals. Data preprocessing, and model fine-tuning or context learning are still needed. The future 
research question is to determine how much LLMs need preprocessing and fine-tuning. 

Some of our experiments were difficult to identify as an attack based on only one packet, especially 
ARP spoofing. Thus, we tested how Llama 3.1 can detect ARP spoofing if we prompted the model 
using two packets so that the detection is possible. We used the same prompt as earlier, except the 
text “The file contains a single packet” was replaced with the real number of packets. A part of Llama 
3.1’s analysis is added to Table 3.2 and it shows that Llama 3.1 can utilize multiple packets while 
analyzing network traffic data. The usage of larger amounts of data would enable a wider analysis of 
network traffic. 

Table 3.2: Llama 3.1's analysis using multiple packets 

Attack type Example of Llama’s response 

ARP spoofing After analyzing the packets, I can see that: 
* Both packets are ARP responses with opcode 2. 
* The source MAC address in both packets is the same ('d8:f2:ca:8e:17:69'). 
* The destination MAC address in both packets is the same ('dc:a6:32:fb:69:b5'). 
* However, the source IP addresses in the two packets are different ('192.168.0.152' and 
'192.168.0.101'). 
This behavior is indicative of an ARP spoofing attack, where an attacker sends fake ARP 
responses to associate their MAC address with multiple IP addresses on the network. 

  

Based on the results of this study, we decided to test whether we could reduce the hallucination of 
Llama 3.1. We removed the encrypted payloads from the data and replaced this information with 
information about what kind of data is removed and how much. Early results show that Llama 3.1 
hallucinated significantly less when the data did not contain non-human-readable data. 

3.5 Limitations and Future Research 

Our study examines only one dataset and one LLM, albeit in depth. In the future, we are going to 
study more datasets and models. More experiments with normal network traffic are also needed. 
Large language models are rapidly evolving technology and may require research such as this on a 
regular basis to detect when models are advanced enough for reliable analysis.  

Based on our results we also identified other future research questions. In our study, we did not 
provide any information about the IIoT network for the model. It would be important to research what 
kind of information would be most valuable for LLMs and still retain the model’s ability to generalize. 
Llama 3.1 considers ports, IP, and MAC addresses carefully, so we are going to do more experiments 
by providing information about used ports and trusted IP and MAC addresses for the model. 

Data preprocessing also appears to be required. Handling encrypted strings seems to be the most 
significant challenge. Is it necessary to delete encrypted data or can the matter be handled with 
prompt engineering? The usage of a larger amount of data in one prompt is also one future research 
direction as well as finding out the effect of model fine-tuning or other ways to help LLM with analysis.  

First, we intend to prioritize the research on handling encrypted data and the information provided to 
the model. Based on the results of these tests, we plan the order of the next steps. 

3.6 Conclusions 

In this work, we analysed Llama 3.1’s ability to detect IoT-targeting cyber-attacks from IIoT network 
traffic data. We prompted Llama 3.1 with combinations of single network packet captures and 
possible attack types. Based on our results, Llama 3.1 has multiple advantages compared to other 
machine learning models, such as its ability to understand the context of data and knowledge about 
network traffic and cyber-attacks. In addition, our study showed the possibility of using LLM with an 
unusually low amount of data preprocessing. However, before LLMs can be used in real-life 
solutions, there are multiple research questions to be solved, such as handling encrypted data, 
hallucinations, resource intensiveness, and utilizing more input data in prompts. 
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4 Generative AI for Generating Cybersecurity Data 

4.1 Introduction 

The generation and application of synthetic data through advanced generative artificial intelligence 
(AI) models have emerged as transformative solutions in the domain of cybersecurity. Real-world 
cybersecurity data collection faces significant challenges, including stringent privacy regulations, 
logistical constraints, and the inherent difficulty of obtaining representative datasets encompassing 
both normal and attack scenarios. Synthetic data provides a promising alternative by replicating real-
world data characteristics without violating privacy boundaries. However, creating synthetic data that 
achieves the necessary balance among utility, fidelity, and integrity remains a formidable challenge. 
Poorly generated synthetic data may lack realism or introduce vulnerabilities, compromising its 
effectiveness for training and testing cybersecurity tools. 

4.1.1 The Role and Importance of Synthetic Data in Cybersecurity 

Synthetic data serves as a cornerstone for advancing cybersecurity research and application. Its 
ability to preserve privacy while enabling comprehensive data analysis makes it a critical resource. 
The scarcity of cybersecurity data, particularly for rare and evolving malicious events, underscores 
the importance of synthetic data in addressing class imbalances and enhancing IDS capabilities. 
Synthetic datasets can be tailored to simulate diverse and uncommon attack scenarios, allowing 
developers to rigorously test and optimize IDS tools. Moreover, high-quality synthetic datasets 
provide a broader and more diverse training pool for AI models, significantly improving IDS 
performance and adaptability. 

4.1.2 Challenges in Synthetic Data Generation for IDS 

Despite its advantages, synthetic data generation faces several challenges. The foremost is ensuring 
realism: synthetic data must closely emulate real-world conditions, including network behaviour and 
malicious activity patterns. Insufficient variability limits the capacity to capture the full spectrum of 
potential threats, making models trained on such data less effective. Addressing class imbalances is 
another critical challenge, as malicious traffic is often underrepresented in real-world datasets. 
Privacy concerns remain paramount, as synthetic data might inadvertently expose sensitive details 
through replication of underlying data structures. Furthermore, standardizing the processes for 
generating, validating, and integrating synthetic data is complex, creating inconsistencies and 
reliability issues. Finally, evaluating the performance of synthetic datasets is challenging; high 
similarity to real data does not always translate to real-world applicability, necessitating advanced 
and nuanced validation metrics. 

4.2 Objectives of the Study 

The primary aim of this study is to evaluate synthetic data generation methods based on their utility, 
fidelity, integrity, and capacity to address class imbalances. Key research questions include: 
 

• Which methods preserve utility and  effectively train IDS models? 

• How well do these methods maintain the statistical properties of original datasets? 

• Can these methods balance class distributions while preserving data integrity? 

• Which generative adversarial network (GAN) models are most effective for synthesizing 
cybersecurity network traffic data? 

4.3 Techniques for Synthetic Data Generation 

Synthetic data generation methods can be broadly categorized into non-AI-based and AI-based 
approaches. Each approach offers unique strengths and limitations, as outlined below: 

4.3.1 Non-AI-Based Methods 

Random Oversampling (ROS): This method duplicates minority class samples to balance class 
distributions, making it suitable for addressing simple class imbalances in smaller datasets. However, 
its reliance on duplication can lead to overfitting and a lack of data diversity. 
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SMOTE (Synthetic Minority Oversampling Technique): SMOTE generates new minority class 
samples by interpolating between existing samples, thereby enhancing the dataset's diversity. While 
effective for structured datasets, SMOTE struggles with complex data interdependencies. 

ADASYN (Adaptive Synthetic Sampling): Building upon SMOTE, ADASYN focuses on hard-to-
learn instances within the minority class, creating synthetic samples in areas with sparse data. This 
method prioritizes adaptability but may introduce noise in high-dimensional datasets. 

Cluster Centroids: This technique reduces majority class samples by clustering and averaging 
them, preserving overall data structure while addressing imbalances. However, it is less effective for 
datasets with highly complex or overlapping class distributions. 

Gaussian Mixture Models (GMM): GMM represents data as a mixture of Gaussian distributions, 
effectively modeling sub-populations within datasets. While it excels in capturing statistical 
properties, its utility for IDS training is limited by computational complexity and scalability issues. 

4.3.2 AI-Based Methods 

Bayesian Networks (BNs): BNs employ probabilistic graphical models to capture dependencies 
among variables. Their ability to model complex relationships makes them valuable for feature-rich 
datasets, but they face challenges in scalability and computational efficiency. 

Tabular Variational Autoencoder (TVAE): TVAE extends traditional autoencoders to 
accommodate tabular data, ensuring that synthetic data preserves original dataset complexity and 
accuracy. It is particularly effective in maintaining fidelity and utility across diverse datasets. 

Diffusion Models (e.g., TabDDPM): Adapted for tabular data, diffusion models offer high-quality 
synthesis of mixed data types. However, their computational demands limit their scalability for large 
datasets. 

Generative Adversarial Networks (GANs): 

• CTGAN: Designed specifically  for tabular data, CTGAN effectively handles class 
imbalances and  preserves inter-variable relationships. It uses conditional  generation 
techniques to produce high-quality synthetic data. 

• CopulaGAN: By integrating  copula-based statistical modelling with GANs, CopulaGAN 
captures  intricate dependencies among variables, making it highly effective  for 
complex datasets. 

• GANBLR++: This enhanced  version of GANBLR handles mixed data types and captures 
intricate  dependencies, achieving a balance between accuracy and computational 
 efficiency. 

• CasTGAN: Leveraging a cascaded architecture, CasTGAN generates semantically valid 
data by  accurately modelling interdependencies. However, it struggles with  binary 
constraints and high-dimensional data. 

4.4 Evaluating Feature Dependencies with Mutual Information (MI) 

Mutual information (MI) provides a robust framework for evaluating dependencies between variables. 
Unlike correlation measures, MI captures both linear and nonlinear relationships, making it ideal for 
cybersecurity datasets with complex inter-variable interactions. MI is model-agnostic and unbiased, 
enabling reliable feature selection by considering relationships among features and their relevance 
to the target variable. 

In this study, MI was used to rank features based on their relevance to the target variable. The top 
25% of features were selected for modelling, ensuring computational efficiency and high information 
retention. This approach enhanced the interpretability and efficacy of IDS models, as the selected 
features accurately represented critical patterns in the data. 

4.4.1 Experimental Setup and Results 

The experiments were conducted on advanced hardware, including a 13th Gen Intel® i9 processor 
and NVIDIA GeForce RTX 4090 GPU. A comprehensive software environment incorporating Python 
3.12.4, PyTorch, SDV, and scikit-learn facilitated the evaluation. Preprocessing of datasets such as 
NSL-KDD and CICIDS-17 involved encoding, feature selection using MI, and dimensionality 
reduction, ensuring optimized inputs for synthetic data generation. 
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Statistical methods like SMOTE and Cluster Centroid demonstrated strong performance in 
preserving class balance and statistical fidelity, achieving up to 99% accuracy in classification tasks. 
However, these methods lacked the novelty required for generating realistic synthetic data. In 
contrast, GAN-based approaches, particularly CTGAN and CopulaGAN, excelled in utility and fidelity 
metrics, achieving utility accuracy rates of up to 98%. TVAE's use of latent probabilistic spaces 
further enhanced its ability to generate high-quality synthetic data. Although CastGAN showed 
promise in modelling complex dependencies, it struggled with binary constraints. Bayesian Networks 
and diffusion models exhibited potential but faced scalability and fidelity challenges. 

4.4.2 Future Directions and Implications 

Within the CISSAN framework, future research will focus on leveraging GANs to simulate evolving 
cyber threats and generate realistic attack scenarios. This includes dynamically defining thresholds 
for anomaly detection and balancing fidelity with privacy requirements. Real-time feature adaptation 
and dynamic synthetic data generation techniques will further enhance IDS robustness in IoT 
environments. 

The findings of this study highlight the trade-offs between different synthetic data generation 
methods. While statistical methods like SMOTE and Cluster Centroid effectively address class 
imbalances, advanced GANs such as CTGAN and CopulaGAN provide superior realism and utility. 
These results have significant implications for cybersecurity applications, guiding the selection of 
synthetic data generation techniques based on specific requirements. 

By integrating GAN-generated data into frameworks like CISSAN, cybersecurity systems can 
achieve greater resilience, privacy-conscious operation, and adaptability. This adaptability is 
particularly crucial for securing critical infrastructures, such as energy systems and IoT networks, 
against evolving threats. As synthetic data generation methods continue to advance, their role in 
shaping the future of cybersecurity becomes increasingly pivotal. 
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5 Analysis of GPS data in the public transport domain 

5.1 Introduction 

GPS interference, spoofing and jamming have become an increasing cybersecurity concern, 
affecting especially aviation but to some extent also public transport. Real-time passenger 
information and computer-aided vehicle location systems within public transport require reliable, 
frequently updated or close to real-time positioning information from vehicles.  

In most contemporary systems, positioning is based on GNSS (global navigation satellite system) 
technologies, especially on GPS (global positioning system). Alternative sources are positioning 
satellites (such as Galileo or GLONASS), Inertia measuring units in vehicles, or RFID tags along the 
pathways or tracks. These and some other solutions, which we plan to elaborate further in deliverable 
D6.1, require additional equipment and interfaces to be established in vehicles or in the traffic 
infrastructure.  

Within CISSAN, we wanted to explore software solutions in detecting possible anomalies in readily 
available GPS positioning data. Real-time position data of the buses in a Finnish city (Tampere) were 
made available to CISSAN via a data acquisition interface. In this brief note for D5.1, the initial 
discoveries of our technical experiments with the collected real-life data are presented. 

5.2 Technical Experiments with GPS Coordinates of buses 

The primary goal was to understand the properties of and anomalies in GPS data of buses via data 
analysis methods. 

5.3 Methodological Approach 

Given the large volume of GPS data collected daily (approximately 5-7 million coordinates), detecting 
anomalies requires robust and efficient approaches. Various algorithms, including statistical 
methods, machine learning, and artificial intelligence, can be applied to identify different types of 
anomalies. However, there is no gold standard delivering perfect results, necessitating manual 
assessment for quality assurance during the project. 

The data is collected from an MQTT (Message Queuing Telemetry Transport) broker and stored daily 
in SQLite before being loaded into PostgreSQL for spatial queries and analysis. Preprocessing steps 
include data cleaning, coordinate transformation, noise reduction, error detection, and spatial 
indexing. 

By applying multiple algorithms, we aim to capture a wide range of anomalies. Each algorithm may 
highlight different issues, from minor deviations to significant anomalies. The manual review process 
during the project is essential for ensuring the quality and accuracy of the detected anomalies. 

5.4 Initial Experiments and Findings (Work in progress) 

• Buses frequently outside the defined area were identified. 

• Instances where buses were more than 10 km from their path were counted. 

• Maximum distances and frequencies of buses being off path were analysed. 

• Devices frequently deviating by at least 1 km were studied. 

• Off-path percentages at different times on November 8th and 18th 2024 were compared. 

5.5 Additional Analysis 

PostGIS (a spatial database extender for PostgreSQL) functions were used to determine the 
proximity of buses to stops, updating fields to indicate whether a bus is near a stop and the current 
stop in the sequence. Distances between bus stops and routes were analysed to identify potential 
issues in stop placement or route mapping. 

5.6 Discussion 

Frequent small errors are likely due to environmental interference, device sensitivity, or route 
characteristics. Infrequent large errors may be caused by temporary signal loss, device malfunction, 
or data transmission glitches. Mixed patterns suggest variable environmental conditions or 
intermittent device issues. 
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5.7 Future Work 

The plan for future work focuses on developing and testing anomaly detection methods in public 
transportation data. It includes: 

• Preliminary Analysis and Data Preparation:  
(1) Collect and preprocess data, generate additional variables, and clean the data.  
(2) Create new variables using the existing ones.  
(3) Create proper aggregation to handle long-term datasets. 

• Algorithm Selection and Initial Testing: Select and test such algorithms as statistical 
methods, Local Outlier Factor (LOF), and Isolation Forest to find anomalies. These algorithms 
should gain from a large variable set. 

• Detailed Analysis and Optimization: Fine-tune parameters and optimize algorithms for 
better performance. 

• Validation and Final Evaluation: Validate algorithms on a separate dataset and compare 
performance. 

• Implementation and Deployment (Optional): Integrate the best-performing algorithm for real-
time anomaly detection and provide training and documentation for end-users. 

 


