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I. INTRODUCTION

II. THE MANY-PARTICLE SCHRÖDINGER EQUATION

A. General properties

The Schrödinger equation for a general many-electron system with N electrons is given
by

i
∂ψ

∂t
= Ĥ(r1, . . . , rN )Ψ (1)

The Hamiltonian in this equation

Ĥ(r1, . . . , rN ) =
N

∑

i=1

h(ri) +
1

2

∑

i6=j

1

|ri − rj |
(2)

where h(r) is the one-body part of the Hamiltonian and where the last term describes the
Coulombic repulsion between the electrons. The one-body part has the form

h(r) = −1

2
∇2 + v(r) (3)

where the external potential v(r) for a molecule is given by the sum of nuclear potentials

v(r) = −
M
∑

m=1

Zm

|r − Rm| (4)

where the nuclei have charge Zm and are located at positions Rm. The many-electron wave
function depends onboth space and spin coordinates

Ψ ≡ Ψ(r1σ1, . . . , rNσN , t) (5)

where the spin variable σ can have only two values σ = +1,−1 or σ =↑, ↓ (up/down).
According to the Pauli principle the wave function must be anti-symmetric for the case of
fermions i.e.

Ψ(. . . riσi . . . rjσj . . .) = −Ψ(. . . rjσj . . . riσi . . .) (6)

In particular this means that no two electrons can have the same space-spin variables:

Ψ(. . . riσi . . . riσi . . .) = 0 (7)

The anti-symmetry of the many-electron wavefunction means that electrons are fundamen-
tally indistinguishable. We have the following probability interpretation. the quantity

|Ψ(r1σ1, . . . , rNσN , t)|2 d3r1d
3r2 . . . d

3rN (8)

is the probability to find an electron in volume element d3r1 around r1 with spin σ1, and
to find an electron in volume element d3r2 around r2 with spin σ2, etc... Since the total
probability must integrate to one we have the condition

∑

σ1...σN

∫

d3r1d
3r2 . . . d

3rN |Ψ(r1σ1, . . . , rNσN , t)|2 = 1 (9)
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B. Ground state and Rayleigh-Ritz principle

Let us first consider stationary systems in which the Hamiltonian is time-independent.
For such systems we can write

Ψ(r1σ1, . . . , rNσN , t) = eiEjtΨj(r1σ1, . . . , rNσN ) (10)

where the Ψj are the eigenfunctions of the time-independent Schrödinger equation.

Ĥ(r1, . . . , rN )Ψj(r1σ1, . . . , rNσN ) = EjΨj(r1σ1, . . . , rNσN ) (11)

We define a ground state Ψ0 to be a state with the lowest possible energy, i.e.

E0 ≤ Ej ∀ j (12)

There could be several linearly independent wave functions with the lowest energy. If this
is the case the ground state is called degenerate. This happens for instance in open shell
atoms. When the ground state is unique ( up to a trivial phase factor eiα ) the ground state
is called nondegenerate.

The many-body wave functions are part of a many-body Hilbert space (normed, complete
space) with inner product

〈Ψ|Φ〉 =
∑

σ1...σN

∫

d3r1d
3r2 . . . d

3rN Ψ∗(r1σ1, . . . , rNσN )Φ(r1σ1, . . . , rNσN ) (13)

The Hamiltonian is a hermitian operator

〈Φ|Ĥ |Ψ〉 = 〈Ψ|Ĥ |Φ〉∗ (14)

and consequently the eigenfunctions Ψi of the Hamiltonian form a complete othornormal
set with respect to Hilbert space inner prduct. This means that any state Ψ in the Hilbert
space can be expressed as a linear combination of them, i.e. for any Ψ we can write

Ψ =
∑

i

ci Ψi (15)

where, since 〈Ψi|Ψj〉 = δij , it is easy to see that when Ψ is normalized to one that
∑

i

|ci|2 = 1 (16)

Then we also see that

〈Ψ|Ĥ |Ψ〉 =
∑

i,j

c∗i cj 〈Φi|Ĥ |Ψj〉 =
∑

i,j

Ei|ci|2 ≥ E0

∑

i

|ci|2 = E0 (17)

where we used that Ei ≥ E0. So we obtain that the expectation value of the Hamiltonian
of any normalized state, 〈Ψ|Ψ〉 = 1, has a lower bound given by the ground state energy of
the Hamiltonian, i.e.

〈Ψ|Ĥ|Ψ〉 ≥ E0 (18)

This is the Rayleigh-Ritz principle. We can make this statement more precise. Suppose the
ground state is degenerate and we have q degenerate states {Ψ1 . . .Ψq}. Then we see that

〈Ψ|Ĥ|Ψ〉 = E0

q
∑

i=1

|ci|2 +
∑

i>q

|ci|2Ei = E0 +
∑

i>q

|ci|2(Ei − E0) (19)

Since Ei > E0 for i > q we see that 〈Ψ|Ĥ |Ψ〉 = E0 only when ci = 0 for i > q. So only a
linear combination of ground states can give expectation value equal to E0.
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C. Densities and density matrices

To calculate the energy of a many-particle system with two-body interactions we do not
need to know the full many-body wave function. We can get along with reduced quantities.
As an example we start with the one-body potential energy

V̂ =
N

∑

i=1

v(ri) (20)

Its expectation value is given by

〈Ψ|V̂ |Ψ〉 =

N
∑

i=1

∑

σ1...σN

∫

d3r1d
3r2 . . . d

3rNv(ri)|Ψ(r1σ1, . . . , rNσN )|2

= N
∑

σ1...σN

∫

d3r1d
3r2 . . . d

3rNv(r1)|Ψ(r1σ1, . . . , rNσN )|2

=

∫

d3r1 n(r1)v(r1) (21)

where in the second line we used the symmetry of |Ψ|2 under permutation of spin-space
variables and in the last line defined the electron density n(r) by the equation

n(r1) = N
∑

σ1...σN

∫

d3r2 . . . d
3rN |Ψ(r1σ1, . . . , rNσN )|2 (22)

In this expression we integrate over all spatial variables except coordinate r1. So we obtained
the result that the potential energy can be calculated from the knowledge of the density
alone:

〈Ψ|V̂ |Ψ〉 =

∫

d3rn(r)v(r) (23)

Taking the special case v(r) = δ(r0 − r) we see from Eq.(20) and Eq.(23)that

〈Ψ|
N

∑

i=1

δ(r0 − ri)|Ψ〉 = n(r0) (24)

We can therefore define the density operator as

n̂(r) =

N
∑

i=1

δ(r − ri) (25)

The expectation value of this operator then gives the density

n(r) = 〈Ψ|n̂(r)|Ψ〉 (26)

We can also now rewrite Eq.(20) as

V̂ =

∫

d3r n̂(r)v(r) =
N

∑

i=1

v(ri) (27)

We can go through a similar procedure for the kinetic energy

T̂ =
N

∑

i

−1

2
∇2

i (28)
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The result of this calculation is

〈Ψ|T̂ |Ψ〉 = −1

2

∫

d3r′
[

∇′2γ(r, r′)
]

r=r′
(29)

where we defined the one-particle density matrix as

γ(r, r′) = N
∑

σ1...σN

∫

d3r2 . . . d
3rNΨ∗(rσ1, . . . , rNσN )Ψ(r′σ1, . . . , rNσN ) (30)

Exercise: Prove relation (29).

The one-particle density matrix is dependent of two coordinates and therefore a more
nonlocal object than the density. From the density can be calculated as

n(r) = γ(r, r) (31)

as follows directly from the definition of γ. finally, for two-particle interactions of the form

Ŵ =
1

2

∑

i6=j

w(ri, rj) (32)

(the Coulomb potential corresponds to w(r, r′) = 1/|r− r′| one has

〈Ψ|Ŵ |Ψ〉 =
1

2

∫

d3rd3r′ Γ(r, r′)w(r, r′) (33)

where we defined the diagonal two-particle density matrix as

Γ(r, r′) = N(N − 1)
∑

σ1...σN

∫

d3r3 . . . d
3rN |Ψ(rσ1, r

′σ2, r3σ3, . . . , rNσN )|2 (34)

i.e. we integrate over all coordinates except the first two arguments.

Exercise: Prove relation (33).

If we take the special case w(r, r′) = δ(x− r)δ(y− r′) then we see from Eq.(32) and (33)
that we have

〈Ψ|
∑

i6=j

δ(x − ri)δ(y − rj)|Ψ〉 = Γ(x,y) (35)

We can therefore define the operator Γ̂(r, r′)

Γ̂(r, r′) =
∑

i6=j

δ(r − ri)δ(r
′ − rj) (36)

which has the property that

Γ(r, r′) = 〈Ψ|Γ̂(r, r′)|Ψ〉 (37)

If we now combine our results then we see that the total energy of the system is given by
the expression

E = −1

2

∫

d3r′
[

∇′2γ(r, r′)
]

r=r′
+

∫

d3rn(r)v(r) +
1

2

∫

d3rd3r′ Γ(r, r′)w(r, r′) (38)
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Therefore to calculate the total energy we only need to know γ(r, r′) and Γ(r, r′) (since the
density is obtained as n(r) = γ(r, r)). All the objects that we defined sofar are special case
of the p-particle density matrix Γ(p) defined as

Γ(p)(r1 . . . rp; r
′
1 . . . r

′
p) =

N !

(N − p)!
(39)

×
∑

σ1...σN

∫

d3rp+1 . . . d
3rNΨ∗(r1σ1, . . . rpσp, rp+1σp+1 . . . rNσN )Ψ(r′1σ1, . . . r

′
pσp, rp+1σp+1 . . . rNσN )

In particular we have

n(r) = Γ(1)(r, r) (40)

γ(r, r′) = Γ(1)(r, r′) (41)

Γ(r, r′) = Γ(2)(r, r′; r, r′) (42)

In fact all objects can be calculated from the two-particle density matrix since

(N − 1)γ(r, r′) =

∫

d3r′′ Γ(2)(r, r′′; r, r′′) (43)

So we can conclude that to calculate the energy of a many-body system with two-particle
interactions we do not need the full many-body wave function. All we need is the two-
particle density matrix. We finally note a special case of Eq.(43) that will be useful later.
If we take r = r′ in Eq.(43) we obtain the relation

(N − 1)n(r) =

∫

d3r′ Γ(r, r′) (44)

where Γ is the diagonal two-particle density matrix.

D. Noninteracting particles

To get some insight into the structure of many-particle wave functions and density ma-
trices we consider the case of noninteracting particles. The Hamiltonian is then given by

Ĥ = T̂ + V̂ =

N
∑

i=1

h(ri) (45)

where

h(r) = −1

2
∇2 + v(r) (46)

Let us start with the case of one particle. Then the Schrödinger equation is simply given by

h(r)ψi(rσ) = ǫiψi(rσ) (47)

Since the Hamiltonian does not depend on spin we can separate space and spin coordinates
and write ψi(r) = φi(r)ζi(σ) where ζi(σ) is a spin function and φ(r) is a spatial wave
function that satisfies the equation

h(r)φi(r) = ǫiφi(r) (48)
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Since the spin coordinate can attain only two values every spin function ζ(σ) can be written
as a linear combination of an up and a down spin function, i.e.

ζ(σ) = c1α(σ) + c2β(σ) (49)

with |c1|2 + |c2|2 = 1 and where α(σ) and β(σ) are defined as

α(σ) = δσ,↑ (50)

β(σ) = δσ,↓ (51)

Let us now consider the case of two particles. The Hamiltonian is given by

Ĥ = h(r1) + h(r2) (52)

If we now introduce the short notation x = (rσ) for a space-spin coordinate then we need
to find an anti-symmetric two-particle wave function :

Ψ(x1,x2) = −Ψ(x2,x1) (53)

One can check that a possible normalized solution is

Ψ(x1,x2) =
1√
2
(φi(x1)φj(x2) − φj(x1)φi(x2)) (54)

where the orbitals φi(x) are eigenstates to the one-particle Schrödinger equation

h(r)φi(x) = ǫiφi(x) (55)

This is readily verified. We have that

(h(r1) + h(r2))φi(x1)φj(x2) = (h(r1)φi(x1))φj(x2) + φi(x1)(h(r2)φj(x2))

= ǫiφi(x1)φj(x2) + ǫjφi(x1)φj(x2)

= (ǫi + ǫj)φi(x1)φj(x2) (56)

and of course similarly for the product with i and j interchanged. We therefore indeed see
that

(h(r1) + h(r2))Ψ(x1,x2) = EΨ(x1,x2) (57)

where E = ǫi + ǫj . This wave function is a so-called Slater determinant and can be written
as

Ψ(x1,x2) =
1√
2

∣

∣

∣

∣

φi(x1) φi(x2)
φj(x1) φj(x2)

∣

∣

∣

∣

(58)

It describes a configuration of two particles in which in particle is in level i and another one
in level j. The ground state is obtained by putting both particles in the lowest energy level.
But then the orbitals cannot have the same spin functions. We can choose

φ1(x) = ϕ0(r)δσ,↑ (59)

φ2(x) = ϕ0(r)δσ,↓ (60)

where ϕ0(r) is the lowest state of the hamiltonian h(r), i.e.

h(r)ϕ0(r) = ǫ0ϕ0(r) (61)
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Then the Slater determinant wave function has the form

Ψ(x1,x2) =
1√
2

∣

∣

∣

∣

ϕ0(r1)δσ1,↑ ϕ0(r2)δσ2,↑

ϕ0(r1)δσ1,↓ ϕ0(r2)δσ2,↓

∣

∣

∣

∣

= ϕ0(r1)ϕ0(r2)
1√
2
(δσ1,↑δσ1,↓ − δσ1,↓δσ1,↑)

= ϕ0(r1)ϕ0(r2)θ(σ1, σ2) (62)

where we defined the spin function

θ(σ1, σ2) =
1√
2
(δσ1,↑δσ1,↓ − δσ1,↓δσ1,↑) (63)

which corresponds to a two-particle spin function (corresponding to a singlet state with
S = Sz = 0). The ground state energy of this two-particle system is E = 2ǫ0.

With all these preparations it should now be easy to guess a form for the wave function
of N particles. It is given by

Ψ(x1 . . .xN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

φi1(x1) . . . φi1(xN )
...

...
φiN

(x1) . . . φiN
(xN )

∣

∣

∣

∣

∣

∣

∣

=
1√
N !

∑

π

(sgnπ)φiπ(1)
(x1) . . . φiπ(N)

(xN ) (64)

where π runs over all permutations of the variables (1 . . .N) and sgnπ is the sign of the
permutation. For this wave function the eigenenergy is given by

E = ǫi1 + ǫi2 + . . .+ ǫiN
(65)

The Slater determinant with orbitals φi1 . . . φiN
is often written as

Ψ = |i1 . . . iN 〉 (66)

One can easily show that the Slater determinants are orthonormal

〈i1 . . . iN |j1 . . . jN 〉 = δi1j1δi2j2 . . . δiN jN
(67)

Exercise: Find explicit expressions for γ(r, r′), n(r), and Γ(r, r′) in terms of the orbitals
φi1 . . . φiN

for the case that Ψ is a Slater determinant Ψ = |i1 . . . iN〉.

III. THE HOHENBERG-KOHN THEOREM

A. The Hohenberg-Kohn mappings

We have seen that the energy of a many-particle system can be calculated from knowledge
of the two-particle density matrix. We are now going to prove a stronger statement. The
ground state observables (like the total energy) of a many-particle system with a nonde-
generate ground state are determined by the ground state density n(r) alone. How can we
show this? If we have a general external potential

V̂ =
N

∑

i=1

v(ri) (68)
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then clearly the ground state wave function (for fixed kinetic energy T̂ and interaction Ŵ )
is a functional of the external potential v by means of solution of the Schrödinger equation

(T̂ + V̂ + Ŵ )Ψ[v] = E[v]Ψ[v] (69)

The square brackets here denote that we are dealing with objects depending on a function,
i.e. functionals. For instance, the ground state energy E[v] is a number depending on the
function v(r) and thereby a functional of the potential.
We will now prove that the potential (apart from an arbitrary constant or gauge) is
completely determined by the ground state density. This theorem is known as the
Hohenberg-Kohn theorem and forms the foundation of density functional theory. We will
for the moment consider only nondegenerate ground states. The proof of this statement
proceeds in two steps. For this we consider two mappings. We consider a mapping
C : V → Ψ from the set of potentials V to the set of ground state wavefunctions Ψ and we
consider a mapping D : Ψ → N from the set of ground state wave functions to the set of
ground state densities N to belong to it. The the proof proceeds in two steps. In step 1 we
prove that C is invertible and in step 2 we prove that D is invertible.

Step 1 : There is a 1-1 correspondence between potentials and ground state wavefunc-
tions, i.e. map C is invertible.

Proof. We first establish some nomenclature. We will call two potentials different if they
differ more than a constant, i.e. v1 6= v2 + C. It is clear that two potentials that differ
only by an overall constant give identical ground state wave functions. We will also call two
wavefunctions different if they differ more than a trivial phase factor Ψ1 6= eiαΨ2 (α ∈ R).
The proof proceeds by reductio ad absurdum. Suppose that map C is not invertible. Then
there are two different (v1 6= v2 + C) potentials that yield the same ground state Ψ and
consequently we have

Ĥ1Ψ = (T̂ + V̂1 + Ŵ )Ψ = E1Ψ (70)

Ĥ2Ψ = (T̂ + V̂2 + Ŵ )Ψ = E2Ψ (71)

Subtraction of both equations then gives

(V̂1 − V̂2)Ψ = (E1 − E2)Ψ = CΨ (72)

where C is a constant. If Ψ does not vanish on a set of measure zero (which it does
not for potentials that do not contain infinite barriers) then we can divide out the wave

functions and we obtain V̂1 = V̂2 +C, in contradiction with our assumption. Therefore our
assumption must have been wrong and the map C must be invertible.

Step 2 : There is a 1-1 correspondence between nondegenerate ground state wave
functions and ground state densities, i.e. the map D is invertible.

Proof. The proof proceeds again by the same reductio ad absurdum procedure. Suppose
that map D is not invertible. Then there are two different wavefunctions that produce the
same ground state density. Then

E1 = 〈Ψ1|Ĥ1|Ψ1〉 = 〈Ψ1|Ĥ2 + V̂1 − V̂2|Ψ1〉 = 〈Ψ1|Ĥ2|Ψ1〉 +

∫

d3rn(r)(v1(r) − v2(r))

> E2 +

∫

d3rn(r)(v1(r) − v2(r)) (73)

Similarly, by interchanging indices 1 and 2 we obtain

E2 > E1 +

∫

d3rn(r)(v2(r) − v1(r)) (74)



10

Adding these two equations then leads to the contradiction E1 + E2 > E1 + E2. Therefore
our assumption must have been wrong and the map D must be invertible.

We have therefore proven that maps C and D are invertible. Consequently the combined
map D ◦ C is invertible. This implies that there is a 1-1 correspondence between densities
and potentials.

B. The Hohenberg-Kohn variational principle

So we established that the potential v[n](r) is a functional of the ground state density
n(r). But then, by solution of the Schrödinger equation, also the ground state wavefunction

is a functional Ψ[n] and therefore the expectation value of any ground state observable Ô

O[n] = 〈Ψ[n]|Ô|Ψ[n]〉 (75)

is a functional of of the density. In particular we have that (for a fixed potential v0) the
ground state energy is a functional of the density:

Ev0 [n] = 〈Ψ[n]|T̂ + V̂0 + Ŵ |Ψ[n]〉 = 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉 +

∫

d3rn(r)v0(r)

= FHK[n] +

∫

d3rn(r)v0(r) (76)

Here we defined the Hohenberg-Kohn functional FHK[n] by the equation

FHK[n] = 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉 (77)

This functional is independent of the external potential and therefore the same for all systems
with Coulombic interparticle interactions, i.e. in this sense it is a universal functional. Let
E0 be the ground state energy and n0 be the ground state potential of a system with external
potential v0 the obviously

Ev0 [n] = 〈Ψ[n]|T̂ + V̂0 + Ŵ |Ψ[n]〉 > E0 if n 6= n0 (78)

Therefore the ground state density n0 is obtained by minimizing the functional Ev0 [n] over
all densities for a fixed v0. The minimum is obtained for the density that satisfies

δEv0 [n]

δn(r)
= 0 (79)

or equivalently from the equation

δFHK[n]

δn(r)
= −v0(r) (80)

In this equation the density potential maping becomes clear. On the right hand side we
specify the external potential v0 of the system of interest and on the left hand side we have
a determining equation that yields a density as an output.

IV. THE KOHN-SHAM CONSTRUCTION

A. Derivation of the Kohn-Sham equations

According to the Hohenberg-Kohn theorem there is a 1-1 relation between potentials and
ground state densities. In particular, since the proof of the Hohenberg-Kohn theorem did
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not involve any special properties of the two-particle interaction, the proof is valid for non-
interacting systems. Let us therefore consider a noninteracting systems with Hamiltonian
Ĥs (s=single particle) and ground state density n(r). We denote the external potential with

V̂s which we know , by the HK theorem, to be a functional of the density. We have

Ĥs = T̂ + V̂s[n] (81)

with grounds state wave function Φs[n] that satisfies

ĤsΦs[n] = EsΦs[n] (82)

n(r) = 〈Φs[n]|n̂(r)|Φs[n]〉 (83)

The ground state wave function can be written as a Slater determinant

Φs[n](x1 . . .xN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

φ1(x1) . . . φ1(xN )
...

...
φN (x1) . . . φN (xN )

∣

∣

∣

∣

∣

∣

∣

=
1√
N !

∑

π

(sgnπ)φπ(1)(x1) . . . φπ(N)(xN ) (84)

This noninteracting system with density n and Hamiltonian Ĥs is called the Kohn-Sham
(KS) system. The determinant Φs is called the Kohn-Sham wave function and the orbitals
φi(x) are called the Kohn-Sham orbitals. The equations for the Kohn-Sham system can also
be written as single-particle equations

(

− 1

2
∇2 + vs(r)

)

φi(rσ) = ǫiφi(rσ) (85)

n(r) =
∑

σ

N
∑

i=1

|φi(rσ)|2 (86)

For a spin-compensated systems, i.e. a system for which

φ1(x) . . . φN (x) = ϕ1(r)δσ,↑, ϕ1(r)δσ,↓, . . . ϕN/2(r)δσ,↑, ϕN/2(r)δσ,↓ (87)

we can write the KS equations as

(

− 1

2
∇2 + vs(r)

)

ϕi(r) = ǫiϕi(r) (88)

n(r) = 2

N/2
∑

i=1

|ϕi(r)|2 (89)

The total energy of the KS is given by

Es[n] = 〈Φs[n]|T̂ + V̂s|Φs[n]〉 = Ts[n] +

∫

d3rn(r)vs(r) =

N
∑

i=1

ǫi (90)

Here we defined the kinetic energy of a noninteracting system of density n as

Ts[n] = 〈Φs[n]|T̂ |Φs[n]〉 =
∑

σ

N
∑

i=1

−1

2

∫

d3rφ∗i (rσ)∇2φi(rσ)

=
∑

σ

N
∑

i=1

1

2

∫

d3r |∇φi(rσ)|2 (91)
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Since Ts[n] is a well-defined functional we can now define the exchange-correlation functional
by the expression

Exc[n] ≡ FHK[n] − EH[n] − Ts[n] (92)

where EH[n] is the Hartree energy defined as

EH[n] =
1

2

∫

d3rd3r′ n(r)n(r′)w(r, r′) (93)

With this definition the functional FHK[n] can be split as

FHK[n] = Ts[n] +
1

2

∫

d3rd3r′ n(r)n(r′)w(r, r′) + Exc[n] (94)

If we insert this expression into the variational equation Eq.(80) we obtain

δTs[n]

δn(r)
+ vH[n](r) + vxc[n](r) = −v0(r) (95)

where we defined the Hartree and exchange-correlation potentials by the equations

vH[n](r) =

∫

d3r′ n(r′)w(r, r′) (96)

vxc[n](r) =
δExc[n]

δn(r)
(97)

To make Eq.(95) more explicit we have to calculate the derivative δTs/δn(r). This is readily
done as follows:

δTs

δn(r)
=

δ

δn(r)
〈Φs|T̂ |Φs〉 = 〈 δΦs

δn(r)
|T̂ |Φs〉 + 〈Φs|T̂ |

δΦs

δn(r)
〉

= 〈 δΦs

δn(r)
|Ĥs − V̂s|Φs〉 + 〈Φs|Ĥs − V̂s|

δΦs

δn(r)
〉

= Es

(

〈 δΦs

δn(r)
|Φs〉 + 〈Φs|

δΦs

δn(r)
〉
)

−
∫

d3r′ vs(r
′)

(

〈 δΦs

δn(r)
|n̂(r′)|Φs〉 + 〈Φs|n̂(r′)| δΦs

δn(r)
〉
)

= Es
δ

δn(r)
〈Φs|Φs〉 −

∫

d3r′vs(r
′)

δ

δn(r)
〈Φs|n̂(r′)|Φs〉

= −vs(r) (98)

where in the second line we used ĤsΦs = EsΦs. So we obtain

δTs

δn(r)
= −vs[n](r) (99)

Therefore the variational equation Eq.(95) becomes

vs[n](r) = v0(r) + vH[n](r) + vxc[n](r) (100)

The functionals vs[n] is implicitly defined by the KS equations. Therefore combining this
expression with the KS equations leads to a determining equation for the density that is
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equivalent to Eq.(80):

(

− 1

2
∇2 + vs[n](r)

)

φi(rσ) = ǫiφi(rσ) (101)

n(r) =
∑

σ

N
∑

i=1

|φi(rσ)|2 (102)

vs[n](r) = v0(r) + vH[n](r) + vxc[n](r) (103)

vxc[n](r) =
δExc[n]

δn(r)
(104)

So, given an approximation to Exc[n] or vxc[n](r) this set of equations can be solved to
self-consistency, whihc then yields density n. If we insert this into the energy functional
this then yields the total energy of the system. The main task that remains now is to find
a good approximation for the xc-energy and the xc-potential.

B. The Hellman-Feynman theorem

The Hellman-Feynman theorem is a simple result regarding the derivative of the energy
with respect to a parameter in the Hamiltonian. Let Ĥλ be a Hamiltonian depending on a
parameter λ. Then by the solution of the Schrödinger equation also the ground state energy
Eλ and the grounds state wave function Ψλ depend on λ, i.e.

ĤλΨλ = EλΨλ (105)

The energy can therefore also be written as

Eλ = 〈Ψλ|Ĥλ|Ψλ〉 (106)

If we differentiate this expression with respect to λ and use that Ψλ is an eigenstate of the
Hamiltonian Ĥλ then we obtain

dEλ

dλ
=

d

dλ
〈Ψλ|Ĥλ|Ψλ〉 = 〈dΨλ

dλ
|Ĥλ|Ψλ〉 + 〈Ψλ|

dĤλ

dλ
|Ψλ〉 + 〈Ψλ|Ĥλ|

dΨλ

dλ
〉

= Eλ

(

〈dΨλ

dλ
|Ψλ〉 + 〈Ψλ|

dΨλ

dλ
〉
)

+ 〈Ψλ|
dĤλ

dλ
|Ψλ〉

= Eλ
d

dλ
〈Ψλ|Ψλ〉 + 〈Ψλ|

dĤλ

dλ
|Ψλ〉 = 〈Ψλ|

dĤλ

dλ
|Ψλ〉 (107)

where we used that 〈Ψλ|Ψλ〉 = 1 for all λ. So we thus obtain the simple result that

dEλ

dλ
= 〈Ψλ|

dĤλ

dλ
|Ψλ〉 (108)

This is known as the Hellman-Feynman theorem. So if we need to know the change of the
energy with respect to some parameter in the Hamiltonian then we only need to evaluate the
expectation value of the of the derivative of the Hamiltonian with respect to this parameter.

C. The coupling constant integration

Now we are going to apply the Hellman-Feynman theorem to a special case which is
very useful to give the exchange-correlation energy functional a physical interpretation. We
consider a Hamiltonian of the form

Ĥλ = T̂ + V̂λ + λŴ (109)
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In this Hamiltonian we multiplied the two-particle interaction with a parameter λ and
consequently the ground state wave function Ψλ is also a a function of λ. The potential V̂λ

is now constructed in suc a way that for each value of λ the density remains the same, i.e.
is independent of λ:

n(r) = 〈Ψλ|n̂(r)|Ψλ〉 ∀λ (110)

According to the Hohenberg-Kohn theorem such a potential vλ(r) is unique up to a constant.
The endpoints λ = 1 and λ = 0 are special. At λ = 1 we take the interacting system that
we are interested in

Ĥλ=1 = T̂ + V̂ + Ŵ (111)

where V̂ = V̂λ=1 is the potential for our system of interest and Ŵ is the Coulombi replusion
between the electrons. At λ = 0 we have a noninteracting system with the same density
as the interacting system, i.e. this is simply the Kohn-Sham system corresponding to the
interacting system of interest:

Ĥλ=0 = V̂ + V̂s (112)

where V̂s = V̂λ=0. let Eλ now be the ground state energy of the system a coupling strength
λ, then from the Hellman-Feynman theorem we can write

Eλ=1 − Eλ=0 =

∫ 1

0

dλ
dEλ

dλ
=

∫ 1

0

dλ 〈Ψλ|
dĤλ

dλ
|Ψλ〉 =

∫ 1

0

dλ 〈Ψλ|
dV̂λ

dλ
+ Ŵ |Ψλ〉

=

∫ 1

0

dλ

∫

d3r
dvλ(r)

dλ
n(r) +

∫ 1

0

dλ〈Ψλ|Ŵ |Ψλ〉

=

∫

d3r(vλ=1(r) − vλ=0(r))n(r) +
1

2

∫

d3rd3r′
∫ 1

0

dλΓλ(r, r′)w(r, r′)

=

∫

d3r(v(r) − vs(r))n(r) +
1

2

∫

d3rd3r′ Γ̄(r, r′)w(r, r′) (113)

where we defined the coupling constant integrated diagonal density matrix as

Γ̄(r, r′) =

∫ 1

0

dλΓλ(r, r′) (114)

In this expression Γλ is the diagonal two-particle density matrix for a system with coupling
strenght λ and ground state density n(r). Now on the other hand we know that

Eλ=0 = 〈Φs[n]|T̂ + V̂s|Φs[n]〉 = Ts[n] +

∫

d3 n(r)vs(r) (115)

If we combine this expression with Eq.(113) and writing Eλ=1 = Ev[n] then we obtain the
result

Ev[n] = Ts[n] +

∫

d3rn(r)v(r) +
1

2

∫

d3rd3r′ Γ̄(r, r′)w(r, r′) (116)

On the other hand we already knew that from Eq.(94)

Ev[n] = FHK[n] +

∫

d3rn(r)v(r)

= Ts[n] +
1

2

∫

d3rd3r′ n(r)n(r′)w(r, r′) + Exc[n] (117)
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Combining the last two equations the gives the following result for the exchange-correlation
energy functional

Exc[n] =
1

2

∫

d3rd3r′ [Γ̄(r, r′) − n(r)n(r′)]w(r, r′) (118)

The exchange-correlation energy functional can therefore directly be expressed in terms of
a pair-correlation function. This expression has found to be very useful in the construction
of approximate density functionals, as well will see later.

D. The exchange-correlation hole

In the following we will discuss a number of two-particle correlation functions that have
played an important role in analyzing the properties of interacting many-body systems. An
important quantity is the pair-correlation function g(r, r′) defined as

g(r, r′) =
Γ(r, r′)

n(r)n(r′)
(119)

This function describes how much the density marix Γ deviates from a simple product. In an
infinite extended system, such as the electron gas the function g approaches 1 if |r−r′| → ∞
and attains values between 0 and 1 for different values. If we want to use the pair-correlation
function within density functional theory then we need to replace g by its coupling constant
average ḡ which is defined in terms of Γ̄ as

ḡ(r, r′) =
Γ̄(r, r′)

n(r)n(r′)
(120)

If we insert this into Eq.(118) then the xc-energy attains the form

Exc[n] =
1

2

∫

d3rd3r′ n(r)n(r′)[ḡ(r, r′) − 1]w(r, r′) (121)

Let us derive some useful property of ḡ. It is clear that the diagonal density matrix Γλ has
the property (see Eq.(44))

(N − 1)n(r) =

∫

d3r′ Γλ(r, r′) (122)

Since the density is independent of λ (by construction) we can intergrate both sides over λ
to obtain

(N − 1)n(r) =

∫

d3r′ Γ̄(r, r′) = n(r)

∫

d3r′ n(r′)ḡ(r, r′) (123)

We therefore see that
∫

d3r′ n(r′)ḡ(r, r′) = N − 1 (124)

and consequently since the density integrates to N we obtain the following sumrule for the
pair-correlation function

∫

d3r′ n(r′)[ḡ(r, r′) − 1] = −1 (125)
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The quantity under the integral sign is often denoted as the coupling constant integrated
exchange-correlation hole n̄xc. This is a quantity that has a clear physical interpretation.
We can write

n̄xc(r
′|r) = n(r′)[ḡ(r, r′) − 1] =

Γ̄(r, r′)

n(r)
− n(r′) (126)

The first term

ρ(r′|r) =
Γ̄(r, r′)

n(r)
(127)

describes the conditional probability density to find an electron at r′ given the fact that there
is an electron at r. This probability density integrates to the remaining N − 1 electrons
since we already know that an electron was fixed at postion r, i.e.

∫

d3r′ρ(r′|r) = N − 1 (128)

In the last term we subtract from ρ(r′|r) the unconditional density n(r′) to find an electron
at r′,i.e.

n̄xc(r
′|r) = ρ(r′|r) − n(r′) (129)

The difference between those integrates to minus one which is the charge of the reference
electron missing from the charge cloud. This is the physical interpretation of the sumrule
in Eq.(125). The exhange-correlation energy of Eq.(121) can therefore also be written as

Exc[n] =
1

2

∫

d3rd3r′n(r)n̄xc(r
′|r)w(r, r′) (130)

with
∫

d3r′ n̄xc(r
′|r) = −1 (131)

Therefore the xc-energy is complete determined by the xc-hole. In fact, it is completely
determined by its spherical average. We can write

Exc[n] =
1

2

∫

d3rn(r)

∫

d3r′
n̄xc(r

′|r)
|r − r′| =

1

2

∫

d3rn(r)

∫

d3u
n̄xc(r + u|r)

|u| (132)

where we defined the difference vector r′ = r+u. Since the two-particle interaction depends
only on the lenghth |u| of u we can write

Exc[n] =
1

2

∫

drn(r)

∫ ∞

0

du 4πun̄xc(r, u) (133)

where we defined the spherically averaged xc-hole by the relation

n̄xc(r, u) =
1

4π

∫

dΩu n̄xc(r + u|r) (134)

where dΩu denotes integration over the angular variables. The spherically averaged xc-hole
is readily seen to have the sum rule property

∫ ∞

0

du 4πu2 n̄xc(r, u) =

∫ ∞

0

du u2

∫

dΩu n̄xc(r + u|r) = −1 (135)
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E. Splitting into exchange and correlation

We can further split the exchange-correlation functional into two pieces, an exchange part
and a correlation part. We can define the exchange energy by the expression

Ex[n] = 〈Φs[n]|Ŵ |Φs[n]〉 − EH[n] (136)

where Φs[n] is the Kohn-Sham determinant and EH is the Hartree energy of Eq.(93). It
is simply the expectation value of the two-particle energy using an independent particle
wavefunction. It incorporates the anti-symmetry of the wave function (hence the name
exchange)) but does not include correlations between particles of unlike spin. The remaining
correlations are inlcude in the correlation functional

Ec[n] = Exc[n] − Ex[n] (137)

such that we have a splitup Exc = Ex + Ec of the exchange-correlation energy into an
exchange and a correlation part. We can further define the exchange part of the pair-
correlation function as

gx(r, r
′) =

〈Φs[n]|Γ̂(r, r′)|Φs[n]〉
n(r)n(r′)

(138)

which is simply the pair-correlation function of a single Slater-determinant wave function.
From the definition of the exchange energy we see that we have the expression

Ex[n] =
1

2

∫

d3rd3r′ n(r)n(r′)[gx(r, r
′) − 1]w(r, r′) (139)

If we define the correlation part ḡc of the pair-correlation function to be

ḡc(r, r
′) =

Γ̄(r, r′) − 〈Φs[n]|Γ̂(r, r′)|Φs[n]〉
n(r)n(r′)

(140)

(i.e. we split ḡ = gx + ḡc ) then the correlation energy can be written as

Ec[n] =
1

2

∫

d3rd3r′ n(r)n(r′)ḡc(r, r
′)w(r, r′) (141)

We can further split the exchange-correlation hole into an exchange and a correlation part
as n̄xc = nx + n̄c if we define the exchange and correlation holes as

nx(r
′|r) = n(r′)(gx(r, r

′) − 1) (142)

n̄c(r
′|r) = n(r′)ḡc(r, r

′) (143)

It is easliy checked that the exchange and correlation holes satisfy the properties
∫

d3r′ nx(r
′|r) = −1 (144)

∫

d3r′ n̄c(r
′|r) = 0 (145)

The functions gx and nx can be explicitly calculated in terms of the Kohn-Sham orbitals.
We find

〈Φs[n]|Γ̂(r, r′)|Φs[n]〉 =
∑

σσ′

γs(rσ, rσ)γs(r
′σ′, r′σ′) − γs(rσ, r

′σ′)γs(r
′σ′, rσ)

= n(r)n(r′) −
∑

σσ′

|γs(rσ, r
′σ′)|2 (146)
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where

γs(rσ, r
′σ′) =

N
∑

i

φ∗i (rσ)φi(rσ) (147)

is the one-particle density matrix of the Kohn-Sham system. We therefore obtain the ex-
pression for the exchange part of the pair-correlation function

gx(r, r
′) = 1 −

∑

σσ′

|γs(rσ, r
′σ′)|2

n(r)n(r′)
(148)

From Eq.(139) we then see that the exchange energy has the expression

Ex[n] = −1

2

∑

σσ′

∫

d3rd3r′
|γs(rσ, r

′σ′)|2
|r − r′| (149)

If we consider the case of a spin-compensated system with orbitals as in Eq.(87) we can
write the one-particle density matrix as

γs(rσ, r
′σ′) = (δσ,↑δσ′,↑ + δσ,↓δσ′,↓)

N/2
∑

i

ϕ∗
i (r)ϕi(r

′) = δσσ′

N/2
∑

i

ϕ∗
i (r)ϕi(r

′) (150)

We can therefore introduce a spin-integrated one-particle density matrix

γs(r, r
′) =

∑

σ

γs(rσ, r
′σ) = 2

N/2
∑

i

ϕ∗
i (r)ϕi(r

′) (151)

and therefore in terms of this density matrix the exchange energy attains the form

Ex[n] = −1

2

∑

σσ′

δσσ′

4

∫

d3rd3r′
|γs(r, r

′)|2
|r − r′| = −1

4

∫

d3rd3r′
|γs(r, r

′)|2
|r − r′| (152)

Similarly for the exchange part gx of the pair correlation function we obtain

gx(r, r′) − 1 = −
∑

σσ′

δσσ′

4

|γs(r, r
′)|2

n(r)n(r′)
= −1

2

|γs(r, r
′)|2

n(r)n(r′)
(153)

As an example we calculate gx and nx for the case of a spin compensated two-particle
system described by the Kohn-Sham equations Eq.(85) and (86). In this case we have a
single level uccupied by a an up and a down spin electron with the same spatial orbital.
The Kohn-Sham equation is given by

(

− 1

2
∇2 + vs(r)

)

ϕ(r) = ǫϕ(r) (154)

n(r) = 2|ϕ(r)|2 (155)

Then the spin-integrated one-particle density matrix is given by

γs(r, r
′) = 2ϕ∗(r)ϕ(r) (156)

We then obtain from Eq.(153) and (142) for the gx and nx the expressions

gx(r, r
′) =

1

2
(157)

nx(r
′|r) =

1

2
n(r′) (158)
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V. CONSTRAINED SEARCH AND DOMAIN QUESTIONS

A. v-representability

The functional FHK[n] is defined on the set of densities that are obtained from ground
state wave functions of interacting systems with external potential v. Such densities are
called interacting-v-representable densities. On the other hand, the functional Ts[n] was
defined for a ground state densities of noninteracting systems. Such densities are called
noninteracting-v-representable. The Kohn-Sham construction is therefore only valid when
every interacting-v-representable density is also noninteracting-v-representable. For the case
of lattice systems this known to be true (see [4]). One can further prove that the set
noninteracting-v-representable densities is dense (in Banach norm) in the set of interacting
v-representable densities. This means that a Kohn-Sham scheme can be set up that yields
a given interacting-v-representable density to arbitrary accuracy. Further exact results for
the continuum case are not known.

B. Domain extensions

The domains of the functionals Ts[n] and FHK[n] can be extended by means of the con-
strained search construction. We can write for the ground state energy

E0 = Min
Ψ

〈Ψ|Ĥ |Ψ〉 = Min
n

(

Min
Ψ→n

〈Ψ|Ĥ |Ψ〉
)

= Min
n
ELL,v[n] (159)

where we defined the Levy-Lieb functional ELL,v[n] by

ELL,v[n] = Min
Ψ→n

〈Ψ|Ĥ |Ψ〉 (160)

in which we minimize the energy for all wavefunctions Ψ that yield density n. The Levy-Lieb
functional can be written as

ELL,v[n] = FLL[n] +

∫

d3 n(r)v(r) (161)

where we defined

FLL[n] = Min
Ψ→n

〈Ψ|T̂ + Ŵ |Ψ〉 (162)

So in this case we minimize over all wave functions for which

n(r) = 〈Ψ|n̂(r)|Ψ〉 (163)

and we do not care if Ψ is the ground state of some Hamiltonian. We only require Ψ to
be anti-symmetric and normalized such that the densities integrate to N particles. The
set of densities that come from normalized anti-symmetric wave functions are called N -
representable. One can show that any continuous density that satisfies n(r) ≥ 0 and that
integrates to N particles is N -representable. This set is larger than the set of v-representable
densities. The functional FLL[n] is an extension of the functional HHK[n] in the sense that

FLL[n] = FHK[n] (164)

whenever n is v-representable. This follows immediately because

FHK[n] +

∫

d3rn(r)v(r) = 〈Ψ[n]|T̂ + V̂ + Ŵ |Ψ[n]〉 = Min
Ψ→n

〈Ψ|T̂ + V̂ + Ŵ |Ψ〉

= FLL[n] +

∫

d3rn(r)v(r) (165)
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Since we have

E0 ≤ FLL[n] +

∫

d3rn(r)v(r) (166)

we need to minimize over the N -representable densities to obtain the ground state density
n0. This leads to the variation equation

δFLL[n]

δn(r)
= −v(r) (167)

However, using this derivative there is an important point to take into account. One can
show that the functional derivative of FLL only exists for the v-representable densities. This
means that for the study of the variational equations of density functional theory we anyway
have to consider the question of v-representability.

In the remainder of these notes we will not go into the domain questions anymore and
instead focus on the construction of approximate density functionals.

VI. THE LOCAL DENSITY APPROXIMATION

A. The homogeneous electron gas

We will now study a system that has been used as the basis of many density functional
approximations. The system consists of a box of N interacting electrons. The volume of
the box is given by V = L3 where L is the lenght of the box. Eventually we will take the
limit L → ∞ while keeping the number of electrons per volume unit N/V constant. The
system will then have (apart from boundary effects) a constant density given by n = N/V .
The electrons in the box repel each other by the Coulomb repulsion. Therefore the system
is only stable if we add a homogeneous postive background charge. If we think of this as
a simple model of a solid we may imagine that the positive nuclei are smeared out into a
’jelly’. This model is therefore also known as the jellium model.

B. The Kohn-System for the homogeneous electron gas

The Kohn-Sham system representing the homogeneous electron gas is rather simple. It
consists of noninteracting electrons in a box with density n = N/V where we take the limit
L → ∞ while keeping the density the same. Since the density is constant also the Kohn-
Sham potential vs(n) will be a constant and therefore we can simply put vs = 0 such that
the Kohn-Sham equations only contain the kinetic energy operator. We thus have

−1

2
∇2φi(r) = ǫiφi(r) (168)

If we use periodic boundary conditions φi(x+L, y, z) = φi(x, y, z) (and similar in the other
two directions) for the orbitals then they have the form

ψk(rσ) =
1√
V
eik·rχ(σ) (169)

where χ(σ) is a spin function and we defined the k-vector

k =
2π

L
(n1, n2, n2) (170)
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with ni integers. The Kohn-Sham eigenvalues are simply given by ǫk = |k|2/2 as one can
check immediately by inserting the form of the orbitals (169) into the Kohn-Sham equations
(168). We consider a spin-compendated case in which we occupy all levels up to a certain
levels ǫF (which we will call the Fermi level) with one up spin and one down spin electron.
We therefore have to consider all k-vectors such that

1

2
|k|2 ≤ ǫF (171)

This represents a sphere in momentum space, also known as the Fermi sphere. We further
define a Fermi wave vector by the equation

k2
F = 2ǫF (172)

Then the number of electrons in the system is given by the equation

N = 2
∑

|k|≤kF

∑

1 = 2
V

(2π)3

∫

|k|≤kF

d3k =
2V

(2π)3
4

3
πk3

F (173)

Here we used that

∑

n1,n2,n3

≃
∫

dn1dn2dn3 =
V

(2π)3

∫

d3k (174)

which is valid if have have many states in the Fermi sphere (i.e. for L→ ∞). From Eq.(173)
we see that

k3
F = 3π2N

V
(175)

or equivalently

kF = (3π2 n)1/3 (176)

We can now calculated the kinetic energy of the Kohn-Sham system (which is also the total
energy). We have

Ts[n] = 2
∑

|k|≤kF

ǫk =
V

(2π)3

∫

|k|≤kF

d3k |k|2 =
V

(2π)3
4π

∫ kF

0

dk k4 =
V

2π2

1

5
k5
F

=
V

10

(3π2)5/3

π2
n5/3 = V

3

10
(3π2)2/3 n5/3 (177)

The kinetic energy per volume unit is therefore given by

T[n]

V
=

3

10
(3π2)2/3 n5/3 (178)

If we then would consider a weakly inhomogeneous system then we may argue that we could
locally at point rregard the system as a homogeneous electron gas with energy density of
Eq. (178). In that case we have

Ts[n] =
3

10
(3π2)2/3

∫

d3rn(r)5/3 (179)

This is the Thomas-Fermi approximation for the kinetic energy. The approximation is
not very good for very inhomogeneous systems as atoms, molecules and solids. It does,
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among other things, not reproduce the proper electronic shell structure of atomic densities.
However, since Ts[n] is treated exactly within the Kohn-Sham scheme we can try a similar
approximation for the exchange-correlation energy. Let us calculate the exchange energy
first. We start by evaluating the one-particle density matrix. If we define u = |r − r′| and
t = KFu then we can write

γs(r, r
′) = 2

∑

|k|≤kF

1

V
eik·(r−r′) =

2

(2π)3

∫

|k|≤kF

d3k eik·(r−r′)

=
1

4π3
2π

∫ kF

0

dk k2

∫ π

0

dθ sin θ eiku cos θ

=
1

2π2

∫ kF

0

dk k2
[

− 1

iku
eiku cos θ

]π

0

=
1

2π2

∫ kF

0

dk k2
(eiku − e−iku

iku

)

=
1

π2u

∫ kF

0

dk k sin(ku)

= − 1

π2u

∂

∂u

∫ kF

0

dk cos(ku) = − 1

π2u

∂

∂u

( sinkFu

u

)

=
k3
F

π2

sin t− t cos t

t3
= 3n

sin t− t cos t

t3
(180)

We therefore obtain for gx(r, r′) the expression

gx(r, r′) − 1 = −1

2

|γs(r, r
′)|2

n(r)n(r′)
= −9

2

( sin t− t cos t

t3
)2

(181)

Summarizing

gx(r, r′) = 1 − 9

2

( sin t− t cos t

t3
)2

t = kF|r − r′| (182)

having obtained the pair-correlation function we can further calculate the exchange energy
density:

ǫx =
1

2

∫

d3r′
nx(r

′|r)
|r − r′|

=
1

2

∫

d3r′
n

|r − r′| (gx(r, r
′) − 1) = −9n

4

∫

d3u
1

u

( sin kFu− kFu cos kFu

(kFu)3
)2

= −9nπ

∫ ∞

0

du u
(sin kFu− kFu coskFu

(kFu)3
)2

= −9πn

k2
F

∫ ∞

0

dt
(sin t− t cos t)2

t5

= −9πn

4k2
F

= −3

4

(

3

π

)1/3

n1/3 (183)

Here we used that
∫ ∞

0

dt
(sin t− t cos t)2

t5
=

1

4
(184)

The exchange energy is then given by

Ex =

∫

d3rnǫx = −V 3

4

(

3

π

)1/3

n4/3 (185)
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Then the energy density per volume unit is given by

εx =
Ex

V
= −3

4

(

3

π

)1/3

n4/3 (186)

If we now make the local density approximation for a weakly inhomogeneous system, then

ELDA
x [n] = −3

4

(

3

π

)1/3 ∫

d3rn(r)4/3 (187)

The same expression is obtained if for the exchange-hole we use the expression

nLDA
x (r′|r) = n(r)(gx(kF(r)|r − r′|) − 1) (188)

where kF = (3π2n(r))1/3. This follows immediately form the fact that the derivation of
Eq.(183) would go through if we would have give the density a spatial dependence on the
coordinate r. Let us check that the exchange-hole properly integrates to −1. We have that

∫

d3r′ nLDA
x (r′|r) = n(r)

∫

d3r′ (gx(kF(r)|r − r′|) − 1)

= −9n(r)

2

∫

d3r′
( sin t− t cos t

t3
)2

= −18πn(r)

∫ ∞

0

du u2
( sin t− t cos t

t3
)2

= −18πn(r)

k3
F(r)

∫ ∞

0

dt
( sin t− t cos t

t2
)2

= −18πn(r)

3π2n(r)

π

6
= −1 (189)

where we used that
∫ ∞

0

dt
( sin t− t cos t

t2
)2

=
π

6
(190)

It is now clear that we can apply the local density approximation to the correlation energy
as well. Then we have

ELDA
c [n] =

∫

d3r εc(n(r)) (191)

where εc(n) is the correlation energy per volume unit of the homogeneous electron gas. The
corresponding approximation for the correlation hole is

n̄LDA
c (r′|r) = n(r)ḡc(n(r), |r − r′|) (192)

where ḡc is the coupling constant integrated pair-correlation function of the homogeneous
electron gas [5]. So in total the LDA expression for the exchange-correlation energy becomes

ELDA
xc [n] =

∫

d3r εxc(n(r)) (193)

where εxc(n) = εx(n) + εc(n) is the exchange-correlation energy per volume unit of the
homogeneous electron gas. The corresponding xc-potential is given by

vLDA
xc [n](r) =

dεxc

dn

∣

∣

n=n(r)
= −

(

3

π

)1/3

n(r)1/3 (194)
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In a finite system, like an atom or molecule, this densitydecays exponentially since the
density decays exponentially. This is a violation of the exact condition vx ∼ −1/|r| for
|r| → ∞ (we will come to this point later).
In view of the assumptions made in the derivation one may think that the LDA does not
work well in systems with strong density variations, as is present in atoms and molecules.
However, for these systems the approximation works much better than one would expect.
For an extensive discussion of the performance of the LDA we refer to the review paper by
von Barth [1]. An explanation for the success of the LDA can be given from a comparison
of the exact and LDA hole functions [3]. In this paper it is shown that the LDA and exact
hole functions are not very close but that their spherical averages are close. As we have seen
the xc-energy is completely determined by these spherical averages.

VII. THE STRAIGHTFORWARD GRADIENT EXPANSION

A. The functional Taylor expansion of the xc-energy

In this section we will show how to systematically derive corrections to the LDA. In
fact the LDA will appear naturally from our theory. We consider a general density profile
n(r) = n0 + δn(r) where n0 is a constant density and where

∫

d3r δn(r) = 0 (195)

so we consider a density modulation around a fixed background density n0. Later we will
assume that δn(r) is slowly varying such that an expansion in density derivatives is possible.
However, for the moment we can keep δn(r) to be rather general. The xc-energy functional
can then be expanded around n0 using the following functional Taylor expansion

Exc[n] = Exc[n0] +

∞
∑

m=1

1

m!

∫

d3mrK(m)
xc (n0; r1 . . . rm)δn(r1) . . . δn(rm) (196)

where we defined

d3mr = d3r1 . . . d
3rm (197)

and

K(m)
xc (n0; r1 . . . rm) =

δmExc

δn(r1) . . . δn(rm)

∣

∣

n=n0
(198)

Since the homogeneous electron gas is invariant under translations, rotations and inversion,

the functions K
(m)
xc (which are evaluated at a constant density n0) satisfy the following

symmetry properties:

K(m)
xc (n0; r1 . . . rm) = K(m)

xc (n0; r1 + a . . . rm + a) (199)

K(m)
xc (n0; r1 . . . rm) = K(m)

xc (n0;Rr1 . . . Rrm) (200)

K(m)
xc (n0; r1 . . . rm) = K(m)

xc (n0;−r1, . . . ,−rm) (201)

for all tranlation vectors a and all rotation matrices R. Moreover, because of the definition
of the response functions they are invariant under permutations, i.e.

K(m)
xc (n0; r1 . . . rm) = K(m)

xc (n0; rπ(1) . . . rπ(m)) (202)
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for all permutations π of the numbers (1, . . . ,m). From translational invariance property of
Eq.(199) we see by taking a = −r1 that

K(m)
xc (n0; r1 . . . rm) = K(m)

xc (n0;0, r2 − r1, . . . , rm − r1) (203)

and therefore K
(m)
xc only depends on m − 1 difference vectors. We therefore define the

functions

L(m)(n0; r2 − r1, . . . , rm − r1) = K(m)
xc (n0; r1 . . . rm) (204)

of m− 1 variables. Let us give a few examples for the functions K
(m)
xc and L(m) :

K(1)
xc (n0; r1) =

δExc

δn(r1)

∣

∣

n=n0
= vxc(n0) = Constant (205)

K(2)
xc (n0; r1, r2) =

δ2Exc

δn(r1)δn(r2)

∣

∣

n=n0
= L(2)(n0; r2 − r1) (206)

If we insert these terms in the expansion Eq.(196) we have

Exc[n] = Exc[n0] +

∫

d3 vxc(n0)δn(r)

+
1

2

∫

d3r1

∫

d3r1 L
(2)(n0; r2 − r1)δn(r1)δn(r2) + . . .

= Exc[n0] +
1

2

∫

d3r1

∫

d3r1 L
(2)(n0; r2 − r1)δn(r1)δn(r2) + . . . (207)

where the term which is first order in δn(r) disappears due to the condition of Eq.(195).
The strategy that we are going to follow to obtain the gradient expansion is to expand the

functions K
(m)
xc into Fourier vectors which when transformed back to real space leads to an

expansion in density gradients. This procedure will become more clear when we proceed.
We first define the Fourier transform of an m-point function and its inverse as as

f(q1 . . .qm) =

∫

d3mr f(r1 . . . rm)e−iq1·r1−...−iqm·rm (208)

f(r1 . . . rm) =

∫

d3mq

(2π)3m
f(q1 . . .qm)eiq1·r1+...+iqm·rm (209)

Using Eq.(209) we can now write the functional Taylor expansion of Eq.(196) in Fourier
space as

Exc[n] = Exc[n0]

+

∞
∑

m=1

1

m!

∫

d3mr

∫

d3mq

(2π)3m
K(m)

xc (n0;q1 . . .qm)eiq1·r1+...+iqm·rmδn(r1) . . . δn(rm)

= Exc[n0] +

∞
∑

m=1

1

m!

∫

d3mq

(2π)3m
K(m)

xc (n0;q1 . . .qm)δn(−q1) . . . δn(−qm) (210)
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We now can express the Fourier transform of K
(m)
xc in terms of the functions L(m). The

Fourier transform of K
(m)
xc is given by

K(m)
xc (n0;q1 . . .qm) =

∫

d3mrK(m)
xc (n0; r1 . . . rm)e−iq1·r1−...−iqm·rm

=

∫

d3mrL(m)(n0; r2 − r1 . . . rm − r1)e
−iq1·r1−...−iqm·rm

=

∫

d3r1

∫

d3r′2 . . .

∫

d3r′m L(m)(n0; r
′
2 . . . r

′
m)e−iq1·r

′

2−...−iqm·r′me−i(q1+...+qm)·r1

= (2π)3 δ(q1 + . . .+ qm)L(m)(n0;q2 . . .qm) (211)

where in the third line of this equation we used the substitution r′i = ri − r1 (i = 2 . . .m)
and we further used the identity

∫

d3r e−iq·r = (2π)3 δ(q) (212)

If we further insert the expression of Eq.(211) into the Taylor expansion Eq.(210), and
remember from Eq.(207) that the term with m = 1 does not contribute, then we obtain the
expansion

Exc[n] = Exc[n0]

+

∞
∑

m=2

1

m!

∫

d3q2

(2π)3
. . .

d3qm

(2π)3
L(m)(n0;q2 . . .qm)δn(q2 + . . .+ qm)δ(−q2) . . . δn(−qm)

(213)

This is the Taylor expansion that we will use to derive the gradient expansion. The first
terms from Eq.(213) are given by

Exc[n] = Exc[n0] +
1

2

∫

d3q

(2π)3
L(2)(n0;q)δn(q)δn(−q)

+
1

6

∫

d3q

(2π)3
d3q′

(2π)3
L(3)(n0;q,q

′)δn(q + q′)δn(−q)δn(−q′) + . . . . . . (214)

The gradient expansion is derived by expanding the functions L(m) into powers of the vectors
qi and then Fourier transforming back to real space.

B. A consistency condition

Before we continue to discuss the expansion of the functions L(m) we first discuss a
consistency condition that is crucial for the existence of the gradient expansion [6]. It

follows from the definition of the functions K
(m)
xc that

δK(m)
xc (n0; r1 . . . rm) =

∫

d3rK(m+1)
xc (n0; r, r1 . . . rm)δn(r) (215)

If we now take δ(r) = δ0 = Constant, then we obtain the condition

∂K
(m)
xc

∂n0
(n0; r1 . . . rm) =

∫

d3rK(m+1)
xc (n0; r, r1 . . . rm) (216)



27

We have, for example, using Eq.(205)

∂vxc

∂n0
=

K
(1)
xc

∂n0
=

∫

d3r1K
(2)
xc (n0; r1, r2) =

∫

d3r1 L
(2)(n0; r2 − r1)

=

∫

d3r′L(2)(n0; r
′) = L(2)(n0;q = 0) (217)

This property is quite general: the zero q-limit of the functions L(m+1) can be determined
from the a derivative of the function L(m) with respect to n0. Let us present the derivation.
We first write condition Eq.(216) in terms of the functions L(m). From the definition of
L(m) of Eq.(204) we see immediately that

∂L(m)

∂n0
(n0; r2 − r1 . . . rm − r1) =

∫

d3rL(m+1)(n0; r1 − r . . . rm − r) (218)

If we write both sides of this equation in terms of their Fourier transforms we find

∫

d3q2

(2π)3
. . .

d3qm

(2π)3
∂L(m)

∂n0
(n0;q1 . . .qm)eiq2·(r2−r1)+...+iqm·(rm−r1)

=

∫

d3r

∫

d3mq

(2π)3m
L(m+1)(n0;q1 . . .qm)eiq1·(r1−r)+...+iqm·(rm−r)

=

∫

d3mq

(2π)3m
(2π)3δ(q1 + . . .+ qm)L(m+1)(n0;q1 . . .qm)eiq1·r1+...+iqm·rm

=

∫

d3q2

(2π)3
. . .

d3qm

(2π)3
L(m+1)(n0;−q2 . . .− qm,q2 . . .qm)eiq2·(r2−r1)+...+iqm·(rm−r1)

where in the last step we used q1 = −q2 . . . − qm. By comparing the Fourier components
on both sides of this equation we obtain the result

∂L(m)

∂n0
(n0;q2 . . .qm) = L(m+1)(n0;−q2 . . .− qm,q2 . . .qm) (219)

This is an important relation that we will use to eliminate the n0-dependence in the gradient
expansion.

C. Polynomial structure of the response functions

We are now ready for the discussion of the expansion of the functions K
(m)
xc and L(m)

in terms of q-vectors. If we assume that a Taylor-expansion in powers of qi exists We can
write

K(m)
xc (n0;q1 . . .qm) = (2π)3δ(q1 + . . .+ qm)

×
[

K
(m)
0 (n0) +K

(m)
1 (n0)P

(m)
1 (q1 . . .qm) +K

(m)
2 (n0)P

(m)
2 (q1 . . .qm) + . . .

]

(220)

where P
(m)
i are polynomials in q1 . . .qm and K

(m)
i (n0) coefficients depending on n0. It

follows directly from Eqs.(200) and (201) that the function K
(m)
xc satisfies the relations

(check for yourself!)

K(m)
xc (n0;q1 . . .qm) = K(m)

xc (n0;Rq1 . . . Rqm) (221)

K(m)
xc (n0;q1 . . .qm) = K(m)

xc (n0;−q1 . . .− qm) (222)

for any rotation matrix R. The main question to answer therefore is:
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• What polynomials in q1 . . .qm are invariant under rotations and inversions?

This is a purely mathematical question, that relates to group theory. The answer can be
found in the classic book by H.Weyl [7]. The answer is:

• Every polynomial that is invariant under rotations and inversions can be expressed as
a polynomials in the variables Qij = qi · qj .

If we had not insisted on inversion then (in three dimensions, or general odd dimensions)
there would be another odd invariant, namely the determinant |qiqjqk| of any three vectors
qi. The product of such determinants would give an even invariant but this is readily seen
to be a polynomial in Qij as well and does not give new invariants [7]. It is clear that the
variables Qij themselves are invariant under rotations and inversions

Qij = qi · qj = (Rqi) · (Rqj) (223)

Qij = qi · qj = (−qi) · (−qj) (224)

so every polynomial in these variables is invariant as well. The functions K
(m)
xc also exhibit

permutational symmetry

K(m)
xc (n0;q1 . . .qm) = K(m)

xc (n0;qπ(1) . . .qπ(m)) (225)

for any permutaion π of the numbers 1 . . .m and therefore we only need to consider sym-
metric polynomials (this fact also excludes polynomial invariants that contain terms linear
in determinants of q-vectors are these terms are anti-symmetric rather than symmetric). So

we conclude that the polynomials P
(m)
i (q1 . . .qm) of Eq.(220) are symmetric polynomials

in the variables Qij = qi · qj . Let us give a few examples. The lowest order polynomials
(apart from a trivial constant) are the symmetric polynomials that are linear in Qij . There
are just two of them

P
(m)
1 (q1 . . .qm) =

m
∑

i=1

Qii = q2
1 + . . .+ q2

m (226)

P
(m)
2 (q1 . . .qm) =

m
∑

i>j

Qij = q2 · q1 + q3 · q2 + q3 · q1 + . . . (227)

To second order in Qij there are more possibilities:

P
(m)
3 (q1 . . .qm) =

m
∑

i

Q2
ii (228)

P
(m)
4 (q1 . . .qm) =

m
∑

i>j

QiiQjj (229)

P
(m)
5 (q1 . . .qm) =

m
∑

i,k>l

QiiQkl (230)

P
(m)
6 (q1 . . .qm) =

m
∑

i>j, k>l

QijQkl (231)

P
(m)
7 (q1 . . .qm) =

m
∑

i>j

Q2
ij (232)
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However, since in the expansion for K
(m)
xc we have the additional condition that q1 + . . .+

qm = 0 these polynomials are not independent. For instance from

0 = (q1 + . . .+ qm)2 =

m
∑

i

q2
i + 2

m
∑

i>j

qi · qj

= P
(m)
1 (q1 . . .qm) + 2P

(m)
2 (q1 . . .qm) (233)

we find P
(m)
2 = −P (m)

1 /2. It then also immediatley follows that P
(m)
5 and P

(m)
6 can be

expressed in P
(m)
3 and P

(m)
4 . By taking another square of Eq.(233) we then see that also

P
(m)
7 can be expressed in P

(m)
3 and P

(m)
4 . For this reason the expansion of Eq.(220) can be

written as

K(m)
xc (n0;q1 . . .qm) = (2π)3δ(q1 + . . .+ qm)

×
[

L
(m)
0 (n0) + L

(m)
1 (n0)Π

(m)
1 (q1 . . .qm) + L

(m)
2 (n0)Π

(m)
2 (q1 . . .qm) + . . .

]

(234)

where relabeled K
(m)
0 = L

(m)
0 and where the first three lowest order polynomials have the

form

Π
(m)
1 (q1 . . .qm) =

m
∑

i

Qii (235)

Π
(m)
2 (q1 . . .qm) =

m
∑

i

Q2
ii (236)

Π
(m)
3 (q1 . . .qm) =

m
∑

i>j

QiiQjj (237)

From the relation Eq.(211)

K(m)
xc (n0;q1 . . .qm) = (2π)3δ(q1 + . . .+ qm)L(m)(n0;q2 . . .qm) (238)

Therefore the function L(m) has the expansion

L(m)(n0;q2 . . .qm) = L
(m)
0 (n0) + L

(m)
1 (n0)π

(m)
1 (q2 . . .qm)

+L
(m)
2 (n0)π

(m)
2 (q2 . . .qm) + . . . (239)

where we defined the polynomials

π
(m)
j (q2 . . .qm) = Π

(m)
j (−q2 − . . .− qm,q2 . . .qm) (240)

From Eq.(235) we see that the polynomial π
(m)
1 has the explicit form

π
(m)
1 (q2 . . .qm) = (−q2 − . . .− qm)2 + q2

2 + . . .+ q2
m

= 2(q2
2 + . . .+ q2

m) + 2

m
∑

i>j≥2

qi · qj (241)

Now we are going to derive a relation between the coefficients L
(m)
j (n0) and L

(m+1)
j (n0). To

do this we use the consistency relation (219). If we insert Eq.(239) into Eq.(219) then on
the lefthand side of this equation we have

∂L(m)

∂n0
(n0;q2 . . .qm) =

∂L
(m)
0

∂n0
(n0) +

∂L
(m)
1

∂n0
(n0)π

(m)
1 (q2 . . .qm)

+
∂L

(m)
2

∂n0
(n0)π

(m)
2 (q2 . . .qm) + . . . (242)
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whereas on the righthand side we have

L(m+1)(n0;−q2 − . . .− qm,q2 . . .qm)

= L
(m+1)
0 (n0) + L

(m+1)
1 (n0)π

(m+1)
1 (−q2 − . . .− qm,q2 . . .qm)

+L
(m+1)
2 (n0)π

(m+1)
2 (−q2 − . . .− qm,q2 . . .qm) + . . . (243)

Let us look more closely at the polynomials in Eq.(243). From Eq.(241) we see that

π
(m+1)
1 (−q2 − . . .− qm,q2 . . .qm) = (−(−q2 − . . .− qm) − q2 − . . .− qm)2

+(−q2 − . . .− qm)2 + q2
2 + . . .+ q2

m

= π
(m)
1 (q2 . . .qm) (244)

This is not a coincidence. The polynomials in Eqs.(235)-(237) have the property that

Π
(m+1)
j (0,q1 . . .qm) = Π

(m)
j (q1 . . .qm) (245)

but then it follows from the definition of π
(m)
j of Eq.(240) that

π
(m+1)
j (−q2 − . . .− qm,q2 . . .qm) = Π

(m+1)
j (0,−q2 − . . .− qm,q2 . . .qm)

= Π
(m)
j (−q2 − . . .− qm,q2 . . .qm)

= π
(m)
j (q2 . . .qm) (246)

Therefore the expansion of Eq.(243) attains the form

L(m+1)(n0;−q2 − . . .− qm,q2 . . .qm) = L
(m+1)
0 (n0) + L

(m+1)
1 (n0)π

(m)
1 (q2 . . .qm)

+L
(m+1)
2 (n0)π

(m)
2 (q2 . . .qm) + . . . (247)

If we compare this equation to the Eq.(242) we see that we obtain the following relations
between the coefficients

L
(m+1)
j (n0) =

∂L
(m)
j

∂n0
(n0) (248)

These are the key equations that will allow us to construct the gradient expansion. If we
compare Eq.(217) to the expansion (239) we see that

L
(2)
0 (n0) =

∂vxc

∂n0
=
∂2ǫxc

∂n2
0

(n0) (249)

From the relations Eq.(248) we then see that

L
(3)
0 (n0) =

∂L
(2)
0

∂n0
(n0) =

∂3ǫxc

∂n3
0

(n0) (250)

and subsequent use of Eq.(248)) leads to the general result

L
(m)
0 (n0) =

∂mǫxc

∂nm
0

(n0) (251)

Similarly we find that

L
(3)
1 (n0) =

∂L
(2)
1

∂n0
(n0) (252)
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and in general

L
(m)
1 (n0) =

∂m−2L
(2)
1

∂nm−2
0

(n0) (253)

We are now ready to discuss the gradient expansion.

D. The gradient expansion

After all the preliminary work the gradient expansion is derived relatively easily. We
insert the expansion of the function L(m) of eq.(239) in Eq.(213). This yields

Exc[n] = Exc[n0]

+
∞
∑

m=2

1

m!

∫

d3q2

(2π)3
. . .

d3qm

(2π)3
(L

(m)
0 (n0) + L

(m)
1 (n0)π

(m)
1 (q2 . . .qm)

+L
(m)
2 (n0)π

(m)
2 (q2 . . .qm) + . . .)δn(q2 + . . .+ qm)δ(−q2) . . . δn(−qm)

= Exc[n0] +

∞
∑

m=2

1

m!
(L

(m)
0 (n0)A

(m)
0 + L

(m)
1 (n0)A

(m)
1 + L

(m)
2 (n0)A

(m)
2 + . . .) (254)

where we defined

A
(m)
0 =

∫

d3q2

(2π)3
. . .

d3qm

(2π)3
δn(q2 + . . .+ qm)δ(−q2) . . . δn(−qm) (255)

and

A
(m)
j =

∫

d3q2

(2π)3
. . .

d3qm

(2π)3
π

(m)
j (q2 . . .qm)δn(q2 + . . .+ qm)δ(−q2) . . . δn(−qm) (256)

for j = 1, 2, . . .. The coefficient A
(m)
0 is readily calculated to be

A
(m)
0 =

∫

d3q2

(2π)3
. . .

d3qm

(2π)3

∫

d3mr δn(r1)e
i(q2+...qm)ṙ1δn(r2)e

−iq2·r2 . . . δn(rm)e−iqm·rm

=

∫

d3mr δ(r1 − r2) . . . δ(r1 − rm)δn(r1) . . . δn(rm)

=

∫

d3r1(δn(r1))
m (257)

With this expression the first part of the expansion of Eq.(254) becomes

Exc[n0] +

∞
∑

m=2

1

m!
L

(m)
0 (n0)A

(m)
0 = Exc[n0] +

∞
∑

m=2

1

m!
L

(m)
0 (n0)

∫

d3r(δn(r))m (258)

If we now further use the explicit form of L
(m)
0 (n0) from Eq.(251) as well as the equations

Exc[n0] =

∫

d3r ǫxc(n0) (259)

0 =

∫

d3r
∂ǫxc

∂n0
(n0) δn(r) (260)
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then we see that

Exc[n0] +
∞
∑

m=2

1

m!
L

(m)
0 (n0)A

(m)
0 =

∫

d3r ǫxc(n0) +
∞
∑

m=1

1

m!

∂mǫxc

∂nm
0

(n0)

∫

d3r(δn(r))m

=

∫

d3r ǫxc(n0 + δn(r)) =

∫

d3r ǫxc(n(r))

= ELDA
xc [n] (261)

So we have recovered the LDA from an infinite summation over response functions! Note
that in this way we also have got rid of the explicit appearance of n0. Now the general
expansion for the exchange-correlation energy of Eq.(254) can be written as

Exc[n] = ELDA
xc [n] +

∞
∑

m=2

1

m!
(L

(m)
1 (n0)A

(m)
1 + L

(m)
2 (n0)A

(m)
2 + . . .) (262)

The remaining terms lead to gradient corrections to the LDA. To evaluate these corrections

we have to study the coefficients A
(m)
j for j > 0. To do this it the following idensity is useful

∫

d3mq

(2π)3m
(2π)3δ(q1 + . . .qm)f1(−q1) . . . fm(−qm) =

∫

d3r f1(r) . . . fm(r) (263)

This is shown in exactly the same way as in the calculation of A
(m)
0 , In fact, the special case

fi(−qi) = δn(−qi) yields the earlier result for A
(m)
0 With this equation it is now relatively

straightforward to calculate the coefficients A
(m)
j . since they are of the form

A
(m)
j =

∫

d3mq

(2π)3m
(2π)3δ(q1 + . . .qm)Π

(m)
j (q1 . . .qm)δn(−q1) . . . δn(−qm) (264)

where we used Eq.(256) and the definition Eq.(240) The polynomials Π
(m)
1 , Π

(m)
2 and Π

(m)
3

are given in Eqs.(235)-(237). Inserting these into Eq.(264) yields the expressions

A
(m)
1 = m

∫

d3mq

(2π)3m
(2π)3δ(q1 + . . .qm)Q11δn(−q1) . . . δn(−qm) (265)

A
(m)
2 = m

∫

d3mq

(2π)3m
(2π)3δ(q1 + . . .qm)Q2

11δn(−q1) . . . δn(−qm) (266)

A
(m)
3 =

1

2
m(m− 1)

∫

d3mq

(2π)3m
(2π)3δ(q1 + . . .qm)Q11Q22δn(−q1) . . . δn(−qm)(267)

where we used that the integrands are symmetric functions. Now

Qiiδn(−qi) = q2
i

∫

d3r eiqi·rδn(r) = −
∫

d3r eiqi·r∇2δn(r) = f(−qi) (268)

Q2
iiδn(−qi) = (q2

i )
2

∫

d3r eiqi·rδn(r) =

∫

d3r eiqi·r∇2(∇2δn(r)) = g(−qi) (269)

with f(r) = −∇2δn(r) and g(r) = ∇2(∇2δn(r)). Then identity Eq.(263) tells us that

A
(m)
1 = −m

∫

d3r (∇2δn(r)) δn(r)m−1 (270)

A
(m)
2 = m

∫

d3r∇2(∇2δn(r)) δn(r)m−1 (271)

A
(m)
3 =

1

2
m(m− 1)

∫

d3r (∇2δn(r))2 δn(r)m−2 (272)
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By partial integration the coefficients Am
1 and A

(m)
2 can be rewritten as

A
(m)
1 = m(m− 1)

∫

d3r (∇δn(r))2 δn(r)m−2 (273)

A
(m)
2 = −m(m− 1)

∫

d3r∇(∇2δn(r)) · (∇δn(r)) δn(r)m−2

= m(m− 1)

∫

d3r (∇2δn(r))2 δn(r)m−2

+m(m− 1)(m− 2)

∫

d3r (∇2δn(r))(∇δn(r))2 δn(r)m−3 (274)

If we now insert Eqs.(272),(273) and (274) into the expansion of Eq.(262) we obtain the
expansion

Exc[n] = ELDA
xc [n] +

∞
∑

m=2

1

(m− 2)!
L

(m)
1 (n0)

∫

d3r (∇δn(r))2 δn(r)m−2

+

∞
∑

m=2

1

(m− 2)!
L

(m)
2 (n0)

∫

d3r (∇2δn(r))2 δn(r)m−2

+

∞
∑

m=3

1

(m− 3)!
L

(m)
2 (n0)

∫

d3r (∇2δn(r))(∇δn(r))2 δn(r)m−3

+
1

2

∞
∑

m=2

1

(m− 2)!
L

(m)
3 (n0)

∫

d3r (∇2δn(r))2 δn(r)m−2 + . . . (275)

where the summation in the third line starts from m = 3 since the second term in Eq.(274)
is zero for m = 2. Now from the relations Eq.(248) we deduce that

L
(m)
1 (n0) =

∂m−2L
(2)
1

∂nm−2
0

(n0) (276)

L
(m)
2 (n0) =

∂m−2L
(2)
2

∂nm−2
0

(n0) (277)

L
(m)
2 (n0) =

∂m−3L
(3)
2

∂nm−3
0

(n0) (278)

L
(m)
3 (n0) =

∂m−2L
(2)
3

∂nm−2
0

(n0) (279)

If we further use that ∇n(r) = ∇(n0 + δn(r)) = ∇δn(r) and relabel the summation indices
then expansion Eq.(275) becomes:

Exc[n] = ELDA
xc [n] +

∞
∑

l=0

1

l!

∂lL
(2)
1

∂nl
0

(n0)

∫

d3r (∇n(r))2 δn(r)l

+

∞
∑

l=0

1

l!

∂lL
(2)
2

∂nl
0

(n0)

∫

d3r (∇2n(r))2 δn(r)l

+

∞
∑

l=0

1

l!

∂lL
(3)
2

∂nl
0

(n0)

∫

d3r (∇2n(r))(∇n(r))2 δn(r)l

+
1

2

∞
∑

l=0

1

l!

∂lL
(2)
3

∂nl
0

(n0)

∫

d3r (∇2n(r))2 δn(r)l + . . . (280)
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Now we see that all the summations simply represent the Taylor expansions of the coefficients
around n0. We can therefore write

Exc[n] = ELDA
xc [n] +

∫

d3r (L
(2)
1 (n0 + δn(r))(∇n(r))2

+

∫

d3r (L
(2)
2 (n0 + δn(r)) +

1

2
L

(3)
2 (n0 + δn(r)))(∇2n(r))2

+

∫

d3rL
(3)
2 (n0 + δn(r))(∇2n(r))(∇n(r))2 + . . . (281)

So we finally obtain

Exc[n] = ELDA
xc [n] +

∫

d3rL
(2)
1 (n(r))(∇n(r))2

+

∫

d3r (L
(2)
2 (n(r)) +

1

2
L

(3)
2 (n(r)))(∇2n(r))2

+

∫

d3rL
(3)
2 (n(r))(∇2n(r))(∇n(r))2 + . . . (282)

These are the first terms in a systematic gradient expansion of the exchange-correlation
energy. We see that we managed to eliminate the n0-dependence by a complete summation
over all response functions L(m) of order m. The first few coefficients are determined by a
q-expansion of the response functions L(2) and L(3) to fourth order in the q-vectors. Let us
look at these functions in more detail. We have according to Eq.(234)

K(2)
xc (n0;q1,q2) = (2π)3δ(q1 + q2)

[

L
(2)
0 (n0) + L

(2)
1 (n0)(Q11 +Q22)

+L
(2)
2 (n0)(Q

2
11 +Q2

22) + L
(2)
3 (n0)Q11Q22 + . . .

]

= (2π)3δ(q1 + q2)L
(2)(n0;q2) (283)

where according to the deltafunction Q11 = Q22. We thus find using Q22 = |q2|2 that

L(2)(n0;q2) = L
(2)
0 (n0) + 2L

(2)
1 (n0) |q2|2 + 2(L

(2)
2 (n0) +

1

2
L

(2)
3 (n0))|q2|4+ (284)

From this expression we see that the coefficients of the terms (∇n)2 and (∇2n)2 in the
gradient expansion (282) correspond to twice the coefficients of |q|2 and |q|4 of the function

L(2)(n0;q). To obtain the coefficent L
(3)
2 that appears as coefficient of (∇2n)(∇n)2 we need

to consider the function K
(3)
xc . This function has according to Eq.(234) the form

K(3)
xc (n0;q1,q2,q3) = (2π)3δ(q1 + q2 + q3)

[

L
(3)
0 (n0) + L

(2)
1 (n0)(Q11 +Q22 +Q33)

+L
(3)
2 (n0)(Q

2
11 +Q2

22 +Q2
33) + L

(3)
3 (n0)(Q11Q22 +Q11Q33 +Q22Q33) . . .

]

= (2π)3δ(q1 + q2 + q3)L
(3)(n0;q2,q3) (285)

To determine L(3)(n0;q2,q3) we have to eliminate q1 using Q11 = q2
1 = (q2 + q3)

2. We
then have, for instance

Q11 +Q22 +Q33 = (q2 + q3)
2 + q2

2 + q2
3 = 2(q2

2 + q2
3 + q2 · q3) (286)

The other terms can be calculated similarly. We find the expression

L(3)(n0;q2,q3) = L
(3)
0 (n0) + 2L

(3)
1 (n0)(q

2
2 + q2

3 + q2 · q3)

+(L
(3)
3 (n0) + 2L

(3)
2 (n0))(q

2
2 + q2

3 + q2 · q3)
2

+(L
(3)
3 (n0) − 2L

(3)
2 (n0))(q

2
2q

2
3 − (q2 · q3)

2) + . . . (287)

We therefore see that we can obtain L
(3)
2 (n0) from the terms that are fourth order in the

q-vectors.
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E. Example: The gradient expansion for exchange

Let us now give some explicit results for some of the gradient coefficients of the exchange

functional. For the functional Ex[n] the function L
(2)
x (we subindex L(2)(n0;q) with an x

for clarity) has the expansion:

L(2)
x (n0;q) = − π

k2
F

[

1 +
5

36

(

q

kF

)2

+
73

3600

(

q

kF

)4

+ . . .
]

(288)

(we will discuss the calculation of this function later). This gives immediately the coefficients

2L
(2)
1 (n0) = − 5π

36k4
F

= − 5

108π

1

(3π2)1/3

1

n
4/3
0

(289)

2(L
(2)
2 (n0) +

1

2
L

(2)
3 (n0)) = − 73π

3600k6
F

= − 73

32400π3

1

n2
0

(290)

From Eq.(219) we then find then using ∂kF/∂n0 = π2/k2
F that

L(3)
x (n0;−q,q) =

∂L
(2)
x

∂n0
(n0;q) =

2π3

k5
F

[

1 +
5

18

(

q

kF

)2

+
73

1200

(

q

kF

)4

+ . . .
]

(291)

Therefore from Eq.(287)

L(3)
x (n0;q2,q3) =

2π3

k5
F

[

1 +
5

18

1

k2
F

(q2
2 + q2

3 + q2 · q3)

+
73

1200

1

k4
F

(q2
2 + q2

3 + q2 · q3)
2

+L′ 1

k4
F

(q2
2q

2
3 − (q2 · q3)

2) + . . .
]

(292)

where L′ is a coefficient to be determined. Now from comparison of this equations with
Eq.(287) we see that

4L
(3)
2 (n0) =

2π3

k9
F

(

73

1200
− L′

)

=
2

27π3n3
0

(

73

1200
− L′

)

(293)

Svendsen and von Barth [6, 8] determined from a numerical calculation of the function L
(3)
x

that L′ = −1.4L = −7L/5 where L = 73/1200 is the first coefficient between brackets in
the equation above. This then yields 73/1200− L′ = 73/500 and

L
(3)
2 (n0) =

1

54π3

73

500

1

n3
0

=
73

27000π3

1

n3
0

(294)

From this we obtain by comparison to Eq.(282) the following gradient expansion for the
exchange energy

Ex[n] = ELDA
x [n] − 5

216π

1

(3π2)1/3

∫

d3r
(∇n(r))2

n(r)4/3

− 73

64800π3

∫

d3r
(∇2n(r))2

n(r)2

+
73

27000π3

∫

d3r
(∇2n(r))(∇n(r))2

n(r)3
+ . . . (295)
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VIII. GRADIENT EXPANSION OF TWO-POINT FUNCTIONS

A. The functional Taylor expansion

In the previous section we discussed the gradient expansion of the exchange-correlation
energy. However, it turns out to be very useful in the construction of new functionals to
also be able to find gradient expansions of two-point functions such as exchange-correlation
holes, or the one-particle density matrix. Let us therefore consider an arbitrary two-poinf
function f [n](r, r′). This will have the following functional Taylor expansion around a given
constant density n0:

f [n](r, r′) = f(n0, |r − r′|)+
∞
∑

m=1

1

m!

∫

d3mrM (m)(n0; r, r
′, r1 . . . rm)δ(r1) . . . δn(rm) (296)

where we defined

M (m)(n0; r, r
′, r1 . . . rm) =

δmf(r, r′)

δn(r1) . . . δn(rm)
|n0 (297)

Since the functionM (m) are evaluated at the homogeneous density n0 the have the symmetry
properties of the homogeneous electron gas. These symmetries are the same ones as for the
functions Kxc discussed before i.e.

M (m)(n0; r, r
′, r1 . . . rm) = M (m)(n0; r + a, r′ + a, r1 + a . . . rm + a) (298)

M (m)(n0; r, r
′, r1 . . . rm) = M (m)(n0;Rr, Rr′, Rr1 . . . Rrm) (299)

M (m)(n0; r, r
′, r1 . . . rm) = M (m)(n0;−r,−r′,−r1, . . . ,−rm) (300)

Since in Eq.(298) the vector a is arbitrary we can in particular choose a = −r′ and define

M (m)(n0; r, r
′, r1 . . . rm) = M (m)(n0; r − r′, 0, r1 − r′, . . . , rm − r′)

≡ N (m)(n0; r− r′, r1 − r′, . . . , rm − r′) (301)

Then, as follows directly from the definition of the functions M (m) we also have the permu-
tational symmetry

M (m)(n0; r, r
′, r1 . . . rm) = M (m)(n0; r, r

′, rπ(1) . . . rπ(m)) (302)

for all permutations π of the numbers 1 . . .m. Our interest will be in the functions N (m)

and in particular their Fourier transforms

N (m)(r − r′,q1 . . .qm) =

∫

d3r1 . . . d
3rmN (m)(n0; r − r′, r1 . . . rm) e−iq1·r1−...−iqm·rm

(303)
with Fourier inverse

N (m)(n0; r − r′, r1 . . . rm) =

∫

d3mq

(2π)3m
N (m)(r − r′,q1 . . .qm)eiq1·r1+...+iqm·rm (304)

With these definitions we obtain

f [n](r, r′) = f(n0, |r− r′|)+
∞
∑

m=1

1

m!

∫

d3mr

∫

d3mq

(2π)3m
N (m)(r − r′,q1 . . .qm)eiq1·(r1−r′)+...+iqm·(rm−r′)δn(r1) . . . δn(rm)

= f(n0, |r − r′|) +
∞
∑

m=1

1

m!

∫

d3mq

(2π)3m
N (m)(r − r′,q1 . . .qm)e−i(q1+...+qm)·r′δn(−q1) . . . δn(−qm) (305)
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This is our first result. We further derive a consistency condition that is necessary for the
existence of the gradient expansion. It follows directly from the definition of the functions
M (m) that

δM (m)(n0; r, r
′, r1 . . . rm) =

∫

d3r′′M (m+1)(r, r′, r′′, r1 . . . rm)δn(r′′) (306)

taking δn(r′′) = δn0 then yields.

∂M (m)

∂n0
(n0; r, r

′, r1 . . . rm) =

∫

d3r′′M (m+1)(r, r′, r′′, r1 . . . rm) (307)

If we translate this condition to N (m) then we obtain

∂N (m)

∂n0
(n0;y,q1 . . .qm) = N (m+1)(y, 0,q1 . . .qm) (308)

We our now ready to discuss the gradient expansion of N (m).

B. The gradient expansion

The function N (m) in Fourier space inherits the symmetry properties of M (m), i.e.

N (m)(n0;y,q1 . . .qm) = M (m)(n0;Ry, Rq1 . . . Rqm) (309)

N (m)(n0;y,q1 . . .qm) = M (m)(n0;−y,−q1 . . .− qm) (310)

N (m)(n0;y,q1 . . .qm) = M (m)(n0;y,qπ(1) . . .qπ(m)) (311)

where we denoted y = r − r′. Similarly as in the previous section this implies that the
functions N (m) can be expanded in symmetric polynomials (wrt to the q vectors) in the
variables y · y, y · qi and qi · qj . We therefore have the expansion

N (m)(n0;y,q1 . . .qm) =

N
(m)
0 (y) +N

(m)
1 (y)y ·

m
∑

i=1

qi +N
(m)
2 (y)

m
∑

i=1

q2
i +N

(m)
3 (y)

m
∑

i=1

(y · qi)
2

+N
(m)
4 (y)

m
∑

i>j

(qi · qj) +N
(m)
5 (y)

m
∑

i>j

(y · qi)(y · qj) + . . . (312)

If we now use Eq.(308) the we see that

N
(m+1)
j (y) =

∂N
(m)
j

∂n0
(y) (313)

If we insert Eq.(312) into Eq.(305) and Fourier transform back to real space we see that

f [n](r, r′) = f(n0, |r − r′|) +

∞
∑

m=1

1

m!

∞
∑

j=0

N
(m)
j A

(m)
j (314)
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where the first coefficients A
(m)
j have the explicit form

A
(m)
0 = δn(r′)m (315)

A
(m)
1 = im(δn(r′))m−1 y · ∇δn(r′) (316)

A
(m)
2 = −m(δn(r′))m−1(y · ∇)2δn(r′) (317)

A
(m)
3 = −m(δn(r′))m−1 ∇2δn(r′) (318)

A
(m)
4 = −1

2
m(m− 1)(δn(r′))m−2 (∇δn(r′))2 (319)

A
(m)
5 = −1

2
m(m− 1)(δn(r′))m−2 (y · ∇δn(r′))2 (320)

If we further use the condition Eq.(308) which tells us that

N
(m)
0 (y) =

∂(m)f

∂nm
0

(n0; y) (321)

N
(m)
i (y) =

∂m−1N
(1)
i

∂nm−1
0

(n0; y) (i = 1, 2, 3) (322)

N
(m)
i (y) =

∂m−2N
(2)
i

∂nm−2
0

(n0; y) (i = 4, 5) (323)

in Eq.(314) we obtain the expansion

f [n](r, r′) = f(n0, |r − r′|)+
∞
∑

l=1

1

l!

∂mf

∂nm
0

(n0; y)δn(r′)l +

∞
∑

l=1

1

l!
δn(r′)l

[

i
∂lN

(1)
1 )

∂nl
0

(y · ∇δn(r′)) − ∂lN
(1)
2

∂nl
0

∇2n(r′) − i
∂lN

(1)
3

∂nl
0

(y · ∇)2n(r′)
]

+

∞
∑

l=1

1

l!
δn(r′)l

[∂lN
(2)
4

∂nl
0

(∇n(r′))2 +
∂lN

(2)
5

∂nl
0

(y · ∇n(r′))2
]

+ . . . (324)

This can be resummed to finally give

f [n](r, r′) = f(n(r′), |r − r′|)+
iN

(1)
1 (n(r′), y)y · ∇n(r′) −N

(1)
2 (n(r′), y)∇2n(r′) −N

(1)
3 (n(r′), y) (y · ∇)2n(r′)

−1

2
N

(2)
4 (n(r′), y) (∇n(r′))2 − 1

2
N

(2)
5 (n(r′), y) (y · ∇n(r′))2 + . . . (325)

We see that we have completely eliminated the dependence on the reference density n0. To

calculate the coefficients N
(1)
1 , N

(1)
2 and N

(1)
3 we need to calculate the function N (1)(n0;y,q)

and expand it in powers of q:

N (1)(n0;y,q) = N
(1)
0 (n0; y)+N

(1)
1 (n0; y)y·q+N

(1)
2 (n0; y)q

2+N
(1)
3 (n0; y)(y·q)2+. . . (326)

The determination of the coefficients N
(2)
4 and N

(2)
5 requires knowledge of the function

N (2)(n0;y,q1,q2) = N
(2)
0 (n0; y) +N

(2)
1 (n0; y)y · (q1 + q2)

+N
(2)
2 (n0; y)(q

2
1 + q2

2) +N
(2)
3 (n0; y)((y · q1)

2 + (y · q1)
2)

+N
(2)
4 (n0; y)(q1 · q2) +N

(2)
5 (n0; y)(y · q1)(y · q2) + . . . (327)
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where the functions N (1) and N (1) are obtained from

δf(r, r′)

δn(r′′)
= M (1)(r, r′, r′′) = N (1)(r − r′, r′′ − r′) (328)

δf(r, r′)

δn(r′′)δn(r′′′)
= M (2)(r, r′, r′′, r′′′) = N (1)(r − r′, r′′ − r′, r′′′ − r′) (329)

If we take f(r, r′) = γs[n](r, r′), i.e. the one-particle density matix of the Kohn-Sham
system, then we find the expansion

γs[n](r, r′) =
1

4π2

[

4k3
F

j1(z)

z
+

1

6

∇2k2
F

kF
(j0(z) − zj1(z)) +

+
1

3

1

kF

(

∇ · (∇k2
F · y

y
)
)

· y

y
z2 j0(z) + ∇k2

F · y

y
zj0(z)

− 1

24

(∇k2
F)2

k3
F

(j0(z)(1 + z2) − zj1(z))

+
1

8

1

k3
F

(

∇k2
F · y

y
)
)2

(z2j0(z) − z3j1(z))
]

(330)

where kF = (3π2n(r′))1/3 and z = kF(r′)|r − r′|.

IX. GENERALIZED GRADIENT APPROXIMATIONS

A. The gradient expansion of the exchange hole

Let us now study the gradient expansion of the exchange-hole. We follow the work of
J.Perdew [9] For a spin-compenstaed system the pair-correlation function is given by

gx(r, r
′) = 1 − 1

2

|γs(r, r
′)|2

n(r)n(r′)
(331)

We therefore obtain for the exchange hole the expression

nx(r
′|r) = n(r′)(gx(r, r

′) − 1) = − 1

2n(r)
|γs(r, r

′)|2 (332)

For the special case r = r′ we obtain the following value for the on-top hole

nx(r|r) = −1

2
n(r) (333)

We can now insert in Eq.(332) the gradient expansion of the one-particle density matrix
γs of Eq.(330). This gives the so-called Gradient Expansion Approximation (GEA) of the
exchange hole. In view of Eq.(333) this is conveniently written as.

nGEA
x (r + u|r) = −1

2
n(r)y(r,u) (334)

where we defined u = r′ − r and

y(r,u) = J + Lû
∇k2

F

k2
F

+ (z2J − 4zL)
(∇k2

F)2

192k6
F

+M
(û · ∇k2

F)2

k6
F

− z2J
∇2k2

F

48k4
F

+ zL
(û · ∇)2k2

F

6kF
(335)
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where û = u/u, u = |u| and kF(r) = (3π2n(r))1/3. The functions J, L and M are functions
of z = 2kF(r)u and have the explicit form

J(z) =
72

z6
(4 − 4 cos z − 4z sin z + z2 + z2 cos z) (336)

L(z) =
9

z3
(2 − 2 cos z − z sin z) (337)

M(z) =
9

16z
(sin z − z cos z) (338)

The main observation by Perdew was that the GEA exchange hole violates the following
exact conditions

nx(r + u|r) ≤ 0 (339)
∫

d3unx(r + u|r) = −1 (340)

The main idea was therefore to enforce these constraints on the GEA hole by means of a
cutoff procedure. This leads to what is known as the Generalized Gradient Approximation
(GGA) with exchange hole

nGGA
x (r + u|r) = −1

2
n(r)y(r,u)θ(y(r,u))θ(R(r) − u) (341)

where θ is the Heaviside function θ(x) = 1 for x > 0 and θ(x) = 0 otherwise. This ensures
that the hole function is negative always. The last θ-function in Eq.(341) cuts off the hole
at a radius R(r). This radius is determined by the requirement that the sumrule Eq.(340)
for the exchange hole is satisfied:

∫

d3unGGA
x (r + u|r) = −1 (342)

This procedure led to a considerable improvement of the exchange energies without the need
of empirical parameters. The procedure was, however, somewhat complicated for actual
applications. Therefore Perdew and Wang [10] published a simplified method. The first
step in this scheme consists of the observation that the GEA expression for the exchange
energy

EGEA
x [n] =

1

2

∫

d3r

∫

d3u
n(r)nGEA

x (r + u|r)
|u| (343)

can by means of partial integration also be written as

EGEA
x [n] =

1

2

∫

d3r

∫

d3u
n(r)ñGEA

x (r + u|r)
|u| (344)

where the function ñGEA
x now only depends of first order derivatives of the density. The

explicit form is given by

ñGEA
x (r + u|r) = −1

2
n(r)ỹ(r,u) (345)

where

ỹ(r,u) = J +
4

3
Lû · s− 16

27
M(û · s)2 − 16

3
N s2 (346)
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where

s(r) =
∇n(r)

2kF(r)n(r)
(347)

and s = |s|. The function N is defined as

N(z) =
3

16z4
[8 − (8 − 4z2) cos z − (8z − z3) sin z] (348)

where z = 2kFu. The function ñGEA
x can now not be interpreted as an exchange hole.

However, the quantities

〈nGEA
x (u)〉 =

1

N

∫

d3rn(r)nGEA
x (r + u|r)

=
1

N

∫

d3rn(r)ñGEA
x (r + u|r)

= 〈ñGEA
x (u)〉 (349)

are the same. These quantities have been called the system-averaged exchange holes. The
exact system averaged exchange hole satisfies

∫

d3u〈nx(u)〉 =
1

N

∫

d3un(r)nx(r + u|r)

= − 1

N
d3rn(r) = −1 (350)

and

Ex[n] =
1

2

∫

d3u
〈nx(u)〉

|u| (351)

We see that the exchange energy only depends on the system averaged exchange hole, which
also satisfies a sumrule. The idea of Perdew and Wang was to apply the real-space cutoff
procedure to the exchange hole ñGEA

x , i.e. they write

nGGA
x (r + u|r) = −1

2
n(r)ỹ(r,u)θ(ỹ(r,u))θ(R(r) − u) (352)

The cutoff radius is again determined from the sumrule for the exchange hole. We have the
following determining equation for this radius

−1 =

∫

d3unGGA
x (r + u|r)

= −1

2
n(r)

∫

du 4πu2

∫

dΩu

4π
ỹ(r,u)θ(ỹ(r,u))θ(R(r) − u) (353)

where dΩu denotes the integration over angular variables. The latter integral can be worked
out as follows. We write

ỹ(r,u) = A+Bµ+ Cµ2 (354)

where

µ =
û · s
|s| = cos θ (355)
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where θ is the angle between vectors û and s. and we defined

A = J − 16

3
Ns2 (356)

B =
4

3
Ls (357)

C = −16

27
Ms2 (358)

Then
∫

dΩu

4π
ỹ(r,u)θ(ỹ(r,u))θ(R(r) − u) = θ(R(r) − u)

1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ ỹθ(ỹ)

=
1

2
θ(R(r) − u)

∫ 1

−1

dµ (A+Bµ+ Cµ2)θ(A+Bµ+ Cµ2)

= θ(R(r) − u)g(2kFu, s) (359)

where we defined

g(2kFu, s) =
1

2

∫ 1

−1

dµ (A+Bµ+ Cµ2)θ(A +Bµ+ Cµ2) (360)

where the coefficients A,B and C are functions of 2kFu and s. The sumrule becomes

−1 = −1

2
n(r)

∫

du 4πu2 θ(R(r) − u) g(2kFu, s)

= −1

2
n(r)

∫ R

0

du 4πu2 g(2kFu, s)

= −1

2
n(r)

4π

(2kF)3

∫ zc

0

dz z2 g(z, s)

= − n(r)π

4(3π2)n(r)

∫ zc

0

dz z2 g(z, s) = − 1

12π

∫ zc

0

dz z2 g(z, s) (361)

where we defined zc = 2kFR. This equation determines zc(s) as a function of s. The
exchange energy then becomes

EGGA
x [n] =

1

2

∫

d3rn(r)

∫

d3u
nGGA

x (r + u|r)
|u|

=
1

2

∫

d3 n(r)

∫

du 4πu2 1

u

∫

dΩu

4π
nGGA

x (r + u|r)

= −1

4

∫

d3rn(r)2
∫ R

0

du 4πu g(z, s)

= −1

4

∫

d3rn(r)2
4π

(2kF)2

∫ zc

0

dz z g(z, s)

= − π

4(3π2)2/3

∫

d3rn4/3(r)

∫ zc

0

dz z g(z, s)

= Ax

∫

d3rn4/3(r)F (s) (362)

where we defined

F (s) = − (3π2)1/3

12πAx

∫ zc(s)

0

dz z g(z, s) (363)



43

and Ax = −(3/4)(3/π)1/3 is the coefficient of the LDA exchange functional. When s → 0
then the GEA exchange hole becomes equal to the LDA exchange hole and consequently
zc → ∞ and F (s = 0) = 1. On the other hand, for s → ∞ the hole radius zc → 0. The
function F (s) can be evaluated numerically. Perdew and Wang fitted the numerical result
to the following expression

F (s) = (1 +
a

m
s2 + bs4 + cs6)m (364)

where a = 7/81, b = 14, c = 1/5 and m = 1/15. The coefficient a was chosen in order
to make sure that the GGA exchange energy functional would reduce to the GEA one for
slowly varying densities. However, Perdew and Wang based their work on a calculation of an
exchange coefficient (by Sham) that turned out to be wrong (the correct value is a = 10/81).
This has been repaired in later GGA fits derived in the same spirit.

B. Generalized gradient expansions for correlation

The generalized gradient expansion for correlation has been based on the same philosophy
as for exchange. In this case we require the sumrule for the correlation hole to be satisfied
i.e.

∫

d3u n̄c(r + u|r) = 0 (365)

and this time there is no negativity constraint. The analysis of the gradient expansion
for the correlation hole is rather involved. Details can be found in the work of Langreth
and Perdew [11] and is based on many-body Green function techniques. Wellknown GGA
functionals for correlation are the modified Langreth-Mehl expression [12] and the PW91
correlation functional [2, 13].

C. The Becke exchange functional

The starting point for the derivation of a gradient functional by Becke [? ] was quite
different from that of Perdew. He started out be writing the exchange functional as

EGGA
x [n] = ELDA

x [n] +

∫

d3r n4/3(r) f(x(r)) (366)

where

x(r) =
|∇n(r)|
n4/3(r)

(367)

(this is up to a prefactor the same quantity as Perdew’s function s(r)). The functional then
automatically satisfies the correct scaling properties of the exchange functional

Ex[nλ] = λEx[n] (368)

nλ(r) = λ3n(λr) (369)

The function f(x) is then determined to satisfy two requirements. The first requirement
that for small values of x the functional should reduce to the GEA form, i.e.

EGGA
x [n] ≈ ELDA

x [n] − β

∫

d3r
(∇n(r))2

n4/3(r)
(370)
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This implies that

f(x) ≈ −βx2 (x→ 0) (371)

The second requirement is that the correct form of exchange energy density in the outer
region of atoms and molecules should be repropduced. From the expression for Ex[n] we
see that the exchange energy functional is of the form

Ex[n] =

∫

d3r n(r)ǫx(r) (372)

where the exchange energy density is defined as

ǫx(r) =
1

2

∫

d3r′
nx(r

′|r)
|r− r′| (373)

Now for |r′| → ∞ we obtain

ǫx(r) =
1

2|r|

∫

d3r′ nx(r
′|r) = − 1

2|r| (|r| → ∞) (374)

where the last step follows from the fact that exchange hole integrates to −1. We now want
to choose the function f(x) in such a way that this behavior is reproduced. Now for a finite
system the density decays asymptotically as n(r) = Ce−αr where r = |r| → ∞. We then
have that

|∇n(r)| = | − α
r

|r|Ce
−αr| = αn(r) (r → ∞) (375)

and therefore

x(r) =
|∇n(r)|
n4/3(r)

= αn(r)−1/3 = αC−1/3eαr/3 (r → ∞) (376)

and therefore that

lnx ≈ 1

3
αr (r → ∞) (377)

From this relation we then deduce that

−1

6

x

lnx
= −αn

−1/3

2αr
= −n

−1/3

2r
(r → ∞) (378)

For exponentially decaying densities r → ∞ implies that x → ∞. We thus see that if we
require from the function f(x) that

f(x) ≈ −1

6

x

lnx
(x→ ∞) (379)

then

n4/3(r)f(x) → −n(r)

2r
(380)

and we then require the correct asymptotic form of the exchange energy density. Conditions
Eq.(216) and (218) are incorporated in the following parametrization

f(x) = − βx2

1 + 6βx sinh−1 x
(381)
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Finally Becke fitted the parameter β to obtain the exact exchange energy of the noble gas
atoms. This yielded a value of β = 0.0042. Therefore the final Becke GGA for exchange is
given by

EGGA
x [n] = ELDA

x [n] − β

∫

d3r
x2

1 + 6βx sinh−1 x
(382)

This functional [14] is also known as the B88 functional. The functional has been very
successful in improving the bond energies of molecules.

X. CLIMBING THE DENSITY-FUNCTIONAL LADDER: THE META-GGA
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