
Notes on probability distributions and their interpretation
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I. DISCRETISATION AND PROBABILITIES

A. Discretisation of the one-particle Schrödinger equation

To help reasoning about probabilities it is convenient to think about discretisations of the Schrödinger equation. We consider
a one-dimensional one-particle system with Schrödinger equation:

(

−1
2
𝑑2

𝑑𝑥2
+ 𝑣(𝑥)

)

𝜑(𝑥) = 𝜖𝜑(𝑥) (1)

where 𝑥 is a one-dimensional real coordinate and where we impose the boundary condition 𝜑(0) = 𝜑(𝐿) = 0. We can write this
as

(𝐻̂𝜑)(𝑥) = 𝜖𝜑(𝑥) (2)

where 𝐻̂ = 𝑇̂ + 𝑉 is the Hamilton operator and where the kinetic and potential energy operator are defined as:

(𝑇̂ 𝜑)(𝑥) = −1
2
𝑑2𝜑
𝑑𝑥2

(𝑉 𝜑)(𝑥) = 𝑣(𝑥)𝜑(𝑥) (3)

Suppose we want to solve this problem on a computer, then we need to find a numerical procedure to solve the differential
equation. An obvious approach is to use discretisation where we evaluate 𝜑 in a discrete number 𝑛 of points 𝑥𝑖 for which we
would like to evaluate the values 𝜑𝑖 = 𝜑(𝑥𝑖). We take

𝑥𝑖 = 𝑖Δ𝐿 Δ𝐿 = 𝐿
𝑛 + 1

(4)

such that 𝑥0 = 0 and 𝑥𝑛+1 = 𝐿 such that with our boundary conditions 𝜑(𝑥0) = 0 and 𝜑(𝑥𝑛+1) = 0. We now want to evaluate
𝜑(𝑥) in the 𝑛 remaining points (𝑥1,… , 𝑥𝑛). We denote by 𝜑 the 𝑛-dimenional vector:

𝜑 = (𝜑(𝑥1),… , 𝜑(𝑥𝑛)) = (𝜑1,… , 𝜑𝑛) (5)

The action of the operator 𝑉 in Eq.(88) is simply

(𝑉 𝜑)(𝑥𝑖) = 𝑣(𝑥𝑖)𝜑(𝑥𝑖) (6)

In our discretised version this simply maps the vector 𝜑 = (𝜑1,… , 𝜑𝑛) to

(𝑉 𝜑) = (𝑣1𝜑1,… , 𝑣𝑛𝜑𝑛) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑣1 0 … … 0
0 𝑣2 0 … ⋮
⋮ 0 ⋱ … ⋮
⋮ 𝑣𝑛−1 0
0 … … 0 𝑣𝑛

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝜑1
𝜑2
⋮
⋮
𝜑𝑛

⎞

⎟

⎟

⎟

⎟

⎠

(7)
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where we defined the diagonal matrix 𝑉 by

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑣1 0 … … 0
0 𝑣2 0 … ⋮
⋮ 0 ⋱ … ⋮
⋮ 𝑣𝑛−1 0
0 … … 0 𝑣𝑛

⎞

⎟

⎟

⎟

⎟

⎠

(8)

So the potential operator acting on the discretised version of the wavefunction 𝜑 is simply represented by the diagonal matrix 𝑉 .
We now want to derive a matrix representation of the kinetic energy operator 𝑇̂ . To do this we consider the following to Taylor
series

𝜑(𝑥𝑖+1) = 𝜑(𝑥𝑖 + Δ𝐿) = 𝜑(𝑥𝑖) + Δ𝐿
𝑑𝜑
𝑑𝑥

(𝑥𝑖) +
(Δ𝐿)2

2
𝑑2𝜑
𝑑𝑥2

(𝑥𝑖) +… (9)

𝜑(𝑥𝑖−1) = 𝜑(𝑥𝑖 − Δ𝐿) = 𝜑(𝑥𝑖) − Δ𝐿
𝑑𝜑
𝑑𝑥

(𝑥𝑖) +
(Δ𝐿)2

2
𝑑2𝜑
𝑑𝑥2

(𝑥𝑖) +… (10)

Adding both expansions and neglecting higher order terms than (Δ𝐿)2 give the equation

𝜑(𝑥𝑖−1) + 𝜑(𝑥𝑖+1) = 2𝜑(𝑥𝑖) + (Δ𝐿)2
𝑑2𝜑
𝑑𝑥2

(𝑥𝑖) (11)

and we thus obtain

𝑑2𝜑
𝑑𝑥2

(𝑥𝑖) =
1

(Δ𝐿)2
(𝜑(𝑥𝑖−1) − 2𝜑(𝑥𝑖) + 𝜑(𝑥𝑖+1)) (12)

an equation which becomes more accurate when 𝑛 → ∞ and Δ𝐿 = 𝐿∕(𝑛 + 1) → 0 (in fact you can check from the Taylor
expansion that the error is of order (Δ𝐿)2 since odd powers cancel in the addition we used above). Taking into account the
boundary conditions 𝜑(𝑥0) = 𝜑(𝑥𝑛+1) = 0 we see that we can write Eq.(12) as

⎛

⎜

⎜

⎜

⎜

⎝

𝑑2𝜑
𝑑𝑥2 (𝑥1)

⋮
⋮

𝑑2𝜑
𝑑𝑥2 (𝑥𝑛)

⎞

⎟

⎟

⎟

⎟

⎠

= 1
(Δ𝐿)2

⎛

⎜

⎜

⎜

⎜

⎝

−2 1 0 … 0
1 −2 1 0 ⋮
0 1 ⋱ ⋱ 0
⋮ ⋱ −2 1
0 … 0 1 −2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝜑1
𝜑2
⋮

𝜑𝑛−1
𝜑𝑛

⎞

⎟

⎟

⎟

⎟

⎠

(13)

and therefore we can represented the kinetic energy operator as

⎛

⎜

⎜

⎜

⎝

(𝑇̂ 𝜑)(𝑥1)
⋮
⋮

(𝑇̂ 𝜑)(𝑥𝑛)

⎞

⎟

⎟

⎟

⎠

= −1
2

⎛

⎜

⎜

⎜

⎜

⎝

𝑑2𝜑
𝑑𝑥2 (𝑥1)

⋮
⋮

𝑑2𝜑
𝑑𝑥2 (𝑥𝑛)

⎞

⎟

⎟

⎟

⎟

⎠

= − 1
2(Δ𝐿)2

⎛

⎜

⎜

⎜

⎜

⎝

−2 1 0 … 0
1 −2 1 0 ⋮
0 1 ⋱ ⋱ 0
⋮ ⋱ −2 1
0 … 0 1 −2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝜑1
𝜑2
⋮

𝜑𝑛−1
𝜑𝑛

⎞

⎟

⎟

⎟

⎟

⎠

= 𝑇𝜑 (14)

where we defined the matrix

𝑇 = − 1
2(Δ𝐿)2

⎛

⎜

⎜

⎜

⎜

⎝

−2 1 0 … 0
1 −2 1 0 ⋮
0 1 ⋱ ⋱ 0
⋮ ⋱ −2 1
0 … 0 1 −2

⎞

⎟

⎟

⎟

⎟

⎠

(15)

We this find that the Hamiltonian of our system can be described by the matrix

𝐻 = 𝑇 + 𝑉 = − 1
2(Δ𝐿)2

⎛

⎜

⎜

⎜

⎜

⎝

−2 1 0 … 0
1 −2 1 0 ⋮
0 1 ⋱ ⋱ 0
⋮ ⋱ −2 1
0 … 0 1 −2

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

𝑣1 0 … … 0
0 𝑣2 0 … ⋮
⋮ 0 ⋱ … ⋮
⋮ 𝑣𝑛−1 0
0 … … 0 𝑣𝑛

⎞

⎟

⎟

⎟

⎟

⎠

(16)
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Diagonalising this matrix then gives the desired eigenvectors 𝜑 and their eigenenergies. We can also give a formula for the matrix
elements of this matrix in terms of Kronecker delta functions:

𝐻𝑖𝑗 = − 1
2(Δ𝐿)2

(𝛿𝑖,𝑗+1 − 2 𝛿𝑖𝑗 + 𝛿𝑖,𝑗−1) + 𝑣𝑖𝛿𝑖𝑗 (17)

where 𝑖, 𝑗 ∈ {1,… , 𝑛}. We can readily check that indeed
𝑛
∑

𝑗=1
𝐻𝑖𝑗𝜑𝑗 = − 1

2(Δ𝐿)2
(𝜑𝑖−1 − 2𝜑𝑖 + 𝜑𝑖+1) + 𝑣𝑖𝜑𝑖 (18)

as desired, so that the Schrödinger equation is transformed into the matrix equation
𝑛
∑

𝑗=1
𝐻𝑖𝑗𝜑𝑗 = 𝜖𝜑𝑖 (19)

Since the Hamilton matrix 𝐻 is real we can choose the corresponding eigenfunctions to be real as well. We also have to choose
a normalisation of the eigenfunctions. ’ If we replace the norm integral of the continuum case by a Riemann sum we have

1 = ∫

𝐿

0
𝑑𝑥𝜑2(𝑥) ≈ Δ𝐿

𝑛
∑

𝑖=1
𝜑(𝑥𝑖)2 (20)

and therefore we require the vector 𝜑 to be normalised according to
𝑛
∑

𝑖=1
𝜑2
𝑖 =

1
Δ𝐿

(21)

We can thus always write

(𝜑1,… , 𝜑𝑛) =
1

√

Δ𝐿
(𝜓1,… , 𝜓𝑛) (22)

where
𝑛
∑

𝑗=1
𝐻𝑖𝑗𝜓𝑗 = 𝜖𝜓𝑖

𝑛
∑

𝑖=1
𝜓2
𝑖 = 1 (23)

which is a useful expression since practical diagonalisation routines use this normalisation. As an example we solve numerically
the harmonic oscillator

(

−1
2
𝑑2

𝑑𝑥2
+ 1

2
𝜔2(𝑥 − 𝐿

2
)2
)

𝜑(𝑥) = 𝜖𝜑(𝑥) (24)

on the interval [0, 𝐿] for 𝐿 = 1. We choose 𝜔 = 100 so that the wavefunctions fit nicely in the interval and we take 𝑛 = 400.
The result and the comparison to the analytic normalised solution

𝜓𝑚(𝑥) =
1

√

2𝑚𝑚!
(𝜔
𝜋
)
1
4 𝑒−

𝜔
2 (𝑥−

𝐿
2 )

2
𝐻𝑚(

√

𝜔(𝑥 − 𝐿
2
)) (25)

for the 𝑚-th excited state (where 𝐻𝑚 is the 𝑚-th Hermite polynomial) is given in the short Mathematica code attached to the end
of these notes. You can play around with this code to solve the Schrödinger equation for other potentials.

B. A finite Hilbert space perspective: one particle

For the generalisation to more particles and for getting a deeper insight in general it is useful to view the expansion in the
previous section from the viewpoint of a basis set expansion. For the points 𝑥𝑖 = 𝑖Δ𝐿 with 𝑖 ∈ {1,… , 𝑛} and Δ𝐿 = 𝐿∕(𝑛 + 1)
we let

𝑖 = [ 𝑥𝑖 −
Δ𝐿
2
, 𝑥𝑖 +

Δ𝐿
2

[ = [ (𝑖 − 1
2
)Δ𝐿, (𝑖 + 1

2
)Δ𝐿 [ (26)
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be an half-open interval of length Δ𝐿 centred around 𝑥𝑖 (where we remind that 𝑥 ∈ [𝑎, 𝑏 [ means 𝑎 ≤ 𝑥 < 𝑏). We define the
normalised functions

𝑒𝑖(𝑥) =

{

1
√

Δ𝐿
𝑥 ∈ 𝑖

0 𝑥 ∉ 𝑖
(27)

so that 𝑒𝑖(𝑥) represents a state in which there is a particle in interval 𝑖 with certainty. The functions 𝑒𝑖(𝑥) have the properties

𝑒𝑖(𝑥)𝑒𝑗(𝑥) = 𝛿𝑖𝑗𝑒
2
𝑖 (𝑥) ∫

𝐿

0
𝑑𝑥 𝑒𝑖(𝑥)∗𝑒𝑗(𝑥) = 𝛿𝑖𝑗 (28)

and so the functions 𝑒𝑖(𝑥) for 𝑖 ∈ {1,… , 𝑛} form an 𝑛-dimensional orthonormal basis. We now consider the 𝑛-dimensional
complex Hilbert space 𝑛 spanned by the functions 𝑒𝑖(𝑥). An arbitrary function in 𝑛 is thus of the form

Ψ(𝑥) =
𝑛
∑

𝑖=1
𝜓𝑖 𝑒𝑖(𝑥) (29)

for some coefficients 𝜓𝑖. If Ψ is normalised then we have

1 = ⟨Ψ|Ψ⟩ =
𝑛
∑

𝑖,𝑗=1
𝜓∗
𝑖 𝜓𝑗⟨𝑒𝑖|𝑒𝑗⟩ =

𝑛
∑

𝑖=1
|𝜓𝑖|

2 (30)

We thus see that we can interpret the coefficients 𝜓𝑖 in Eq.(29) as probability amplitudes. Since 𝑒𝑖(𝑥) described a state in which
there is a particle in interval 𝑖 with certainty we see that:

|𝜓𝑖|
2 = the probability that the particle is located in interval 𝑖 (31)

If we want Ψ(𝑥) to approximate a continuum solution for a single particle in a potential 𝑣(𝑥) then we can take 𝜓𝑖 to satisfy
Eq.(23) for the Hamilton matrix with the matrix elements of Eq.(17). If we take always real eigenvectors, then in every point 𝑥𝑗
the function Ψ(𝑥) agrees with 𝜑(𝑥𝑗) of the previous section since

Ψ(𝑥𝑗) =
𝑛
∑

𝑖=1
𝜓𝑖 𝑒𝑖(𝑥𝑗) =

𝑛
∑

𝑖=1
𝜓𝑖

𝛿𝑖𝑗
√

Δ𝐿
=

𝜓𝑗
√

Δ𝐿
= 𝜑𝑗 (32)

where we used Eq.(22). From Eq.(31) we thus see that

|Ψ(𝑥𝑗)|2 Δ𝐿 = |𝜓𝑖|
2 = the probability that the particle is located in interval 𝑖 (33)

In the limit 𝑛 → ∞ or Δ𝐿 = 𝐿∕(𝑛 + 1) → 0 the function Ψ(𝑥) then converges to the normalised continuum solution 𝜑(𝑥) of
Eq.(24).

C. A finite Hilbert space perspective: many particles

Now we turn our attention to the case of 𝑁 fermionic particles in one spatial dimension, where all particles are located in the
interval [0, 𝐿]. For simplicity we neglect spin so we are dealing with so-called spinless fermions which are described by purely
spatial anti-symmetric wavefunctions. We start by defining the Slater determinants out of the one-particle functions 𝑒𝑖(𝑥), i.e.
we define:

𝑒𝐼 (𝑥1,… , 𝑥𝑁 ) = 1
√

𝑁!

|

|

|

|

|

|

𝑒𝑖1 (𝑥1) … 𝑒𝑖𝑁 (𝑥1)
⋮ ⋮

𝑒𝑖1 (𝑥𝑁 ) … 𝑒𝑖𝑁 (𝑥𝑁 )

|

|

|

|

|

|

= 1
√

𝑁!

∑

𝜎
(−1)|𝜎|𝑒𝜎(𝑖1)(𝑥1)… 𝑒𝜎(𝑖𝑁 )(𝑥𝑁 ) (34)

where 𝐼 = (𝑖1,… , 𝑖𝑁 ) is a multi-index in which 𝑖1 < … < 𝑖𝑁 and 𝑖𝑘 ∈ {1,… , 𝑛}, which also implies that 𝑛 ≥ 𝑁 . In the last
step 𝜎 denotes a permutation of𝑁 elements and |𝜎| denotes its parity, while the sum extends over all𝑁! permutations. Note that
here the variables 𝑥𝑗 denote continuum spatial variables for particle 𝑗 and not grid points. The states 𝑒𝐼 form an orthonormal set:

⟨𝑒𝐼 |𝑒𝐽 ⟩ = ∫

𝐿

0
𝑑𝑥1… 𝑑𝑁𝑒𝐼 (𝑥1,… , 𝑥𝑁 )∗𝑒𝐽 (𝑥1,… , 𝑥𝑁 ) = 𝛿𝐼𝐽 = 𝛿𝑖1𝑗1 … 𝛿𝑖𝑁 𝑗𝑁 (35)
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where 𝐽 = (𝑗1,… , 𝑗𝑁 ) with 𝑗1 < … < 𝑗𝑁 . The function 𝑒𝐼 describes a state in which there is a particle in the intervals
𝑖1 ,… ,𝑖𝑁 with certainty. A general 𝑁-particle state Ψ can then be expanded in these state

Ψ(𝑥1,… , 𝑥𝑁 ) =
∑

𝐼
Ψ𝐼 𝑒𝐼 (𝑥1,… , 𝑥𝑁 ) (36)

where the sum is over all ordered multi-indices 𝐼 = (𝑖1,… , 𝑖𝑁 ) with 𝑖1 < … < 𝑖𝑁 and 𝑖𝑘 ∈ {1,… , 𝑛}. If we take Ψ to be
normalised we have

1 = ⟨Ψ|Ψ⟩ =
∑

𝐼,𝐽
Ψ∗
𝐼Ψ𝐽 ⟨𝑒𝐼 |𝑒𝐽 ⟩ =

∑

𝐼,𝐽
Ψ∗
𝐼Ψ𝐽 𝛿𝐼𝐽 =

∑

𝐼
|Ψ𝐼 |

2 (37)

In view of the probability interpretation of 𝑒𝐼 , we can assign to Ψ𝐼 the following meaning:

|Ψ𝐼 |
2 = the probability to find a particle in all of the intervals 𝑖1 ,… ,𝑖𝑁 (38)

Let is now select 𝑁 coordinates 𝑥𝑘 ∈ 𝑗𝑘 with 𝑗1 <… < 𝑗𝑁 . Then

Ψ(𝑥1,… , 𝑥𝑁 ) =
∑

𝐼
Ψ𝐼 𝑒𝐼 (𝑥1,… , 𝑥𝑁 ) =

∑

𝐼
Ψ𝐼

1
√

𝑁!

1

(
√

Δ𝐿)𝑁
𝛿𝑖1𝑗1 … 𝛿𝑖𝑁 𝑗𝑁 =

Ψ𝐽
√

𝑁!(
√

Δ𝐿)𝑁
(39)

So we also find that for 𝑥𝑘 ∈ 𝑖𝑘 we have

𝑁!|Ψ(𝑥1,… , 𝑥𝑁 )|2(Δ𝐿)𝑁 = |Ψ𝐼 |
2 = the probability to find a particle in all of the intervals 𝑖1 ,… ,𝑖𝑁 (40)

In the next step we are going to look at the particle density 𝑛(𝑥) and the pair density Γ(𝑥, 𝑥′). To do that it is actually more
instructive to look at these quantities from a more general point of view. We define the diagonal 𝑘-particle density matrix as

Γ𝑘(𝑥1,… , 𝑥𝑘) =
𝑁!

(𝑁 − 𝑘)! ∫
𝑑𝑥𝑘+1… 𝑑𝑥𝑁 |Ψ(𝑥1,… , 𝑥𝑁 )|2 (41)

Then Γ𝑁 = 𝑁!|Ψ|2 and Eq.(40), for 𝑥𝑘 ∈ 𝑖𝑘 , becomes

Γ𝑁 (𝑥1,… , 𝑥𝑁 )|2(Δ𝐿)𝑁 = |Ψ𝐼 |
2 = the probability to find a particle in all of the intervals 𝑖1 ,… ,𝑖𝑁 (42)

The density is then given by 𝑛(𝑥) = Γ1(𝑥) and the pair-density by Γ(𝑥, 𝑥′) = Γ2(𝑥, 𝑥′). Since Ψ is normalised the diagonal density
matrix satisfies

∫ 𝑑𝑥1… 𝑑𝑥𝑘 Γ𝑘(𝑥1,… , 𝑥𝑘) =
𝑁!

(𝑁 − 𝑘)!
(43)

so that, in particular:

∫ 𝑑𝑥 𝑛(𝑥) = 𝑁 ∫ 𝑑𝑥𝑑𝑥′ Γ(𝑥, 𝑥′) = 𝑁(𝑁 − 1) (44)

Another useful relation is

∫ 𝑑𝑥𝑘 Γ𝑘(𝑥1,… , 𝑥𝑘) =
𝑁!

(𝑁 − 𝑘)! ∫
𝑑𝑥𝑘… 𝑑𝑥𝑁 |Ψ(𝑥1,… , 𝑥𝑁 )|2

= 𝑁!
(𝑁 − 𝑘)!

(𝑁 − (𝑘 − 1))!
𝑁!

Γ𝑘−1(𝑥1,… , 𝑥𝑘−1) = (𝑁 − 𝑘 + 1)Γ𝑘−1(𝑥1,… , 𝑥𝑘−1) (45)

Let us now calculate Γ𝑘 for an arbitrary state of the form of Eq.(36) in our finite Hilbert space. Before doing that let us first derive
an equation that we will use in that calculation. We have

𝑒𝐼 (𝑥1,… , 𝑥𝑁 )∗𝑒𝐽 (𝑥1,… , 𝑥𝑁 ) = 1
𝑁!

∑

𝜎,𝜋
(−1)|𝜎|+|𝜋|𝑒𝜎(𝑖1)(𝑥1)… 𝑒𝜎(𝑖𝑁 )(𝑥𝑁 )𝑒𝜋(𝑖1)(𝑥1)… 𝑒𝜋(𝑖𝑁 )(𝑥𝑁 )

= 1
𝑁!

∑

𝜎,𝜋
(−1)|𝜎|+|𝜋|(−1)|𝜎|+|𝜋|𝛿𝜎(𝑖1)𝜋(𝑗1)… 𝛿𝜎(𝑖𝑁 )𝜋(𝑗𝑁 )𝑒

2
𝜎(𝑖1)

(𝑥1)… 𝑒2𝜎(𝑖𝑁 )(𝑥𝑁 ) (46)
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where we used the first property in Eq.(28) and 𝜎 and 𝜋 denote permutations of 𝑁 elements. We see that if 𝐼 and 𝐽 are not the
same sets then at least one of the Kronecker delta functions must vanish and therefore we have only a nonzero result when 𝐼 = 𝐽 .
In that case we also must have that 𝜋 = 𝜎 to avoid zero terms and we thus obtain

𝑒𝐼 (𝑥1,… , 𝑥𝑁 )∗𝑒𝐽 (𝑥1,… , 𝑥𝑁 ) =
𝛿𝐼𝐽
𝑁!

∑

𝜎
𝑒2𝜎(𝑖1)(𝑥1)… 𝑒2𝜎(𝑖𝑁 )(𝑥𝑁 ) (47)

If we use this expression then we can readily calculate the diagonal 𝑘-particle density matrix to be:

Γ𝑘(𝑥1,… , 𝑥𝑘) =
∑

𝐼,𝐽
Ψ∗
𝐼Ψ𝐽

𝑁!
(𝑁 − 𝑘)! ∫

𝑑𝑥𝑘+1… 𝑑𝑥𝑁𝑒𝐼 (𝑥1,… , 𝑥𝑁 )∗𝑒𝐽 (𝑥1,… , 𝑥𝑁 )

= 1
(𝑁 − 𝑘)!

∑

𝐼,𝐽
Ψ∗
𝐼Ψ𝐽 𝛿𝐼𝐽

∑

𝜎 ∫ 𝑑𝑥𝑘+1… 𝑑𝑥𝑁𝑒
2
𝜎(𝑖1)

(𝑥1)… 𝑒2𝜎(𝑖𝑁 )(𝑥𝑁 )

= 1
(𝑁 − 𝑘)!

∑

𝐼
|Ψ𝐼 |

2
∑

𝜎
𝑒2𝜎(𝑖1)(𝑥1)… 𝑒2𝜎(𝑖𝑘)(𝑥𝑘)

(48)

We can write this as

Γ𝑘(𝑥1,… , 𝑥𝑘) =
𝑛
∑

𝑗1,…,𝑗𝑘=1
Γ𝑗1…𝑗𝑘 𝑒

2
𝑗1
(𝑥1)… 𝑒2𝑗𝑘 (𝑥𝑘) (49)

where we defined

Γ𝑗1…𝑗𝑘 =
1

(𝑁 − 𝑘)!
∑

𝐼
|Ψ𝐼 |

2
∑

𝜎
𝛿𝑗1𝜎(𝑖1)… 𝛿𝑗𝑘𝜎(𝑖𝑘) (50)

This expression also implies that

Γ𝑗1…𝑗𝑘 = Γ𝜏(𝑗1)…𝜏(𝑗𝑘) (51)

for any permutation 𝜏 of 𝑘 elements. Now for any permutation of𝑁 elements there are (𝑁−𝑘)! permutations that map (𝑖1,… , 𝑖𝑘)
to (𝑗1,… , 𝑗𝑘) and this only gives a nonzero contribution when the elements {𝑗1,… , 𝑗𝑘} are contained in the multi-index 𝐼 ,
typically in a reordered fashion, which we denote by 𝐼 ∋ {𝑗1,… , 𝑗𝑘}. So it therefore follows that

Γ𝑗1…𝑗𝑘 =
∑

𝐼∋{𝑗1,…,𝑗𝑘}
|Ψ𝐼 |

2 (52)

where we sum over all ordered multi-indices 𝐼 containing the integers {𝑗1,… , 𝑗𝑘}. Note that the set {𝑗1,… , 𝑗𝑘} is not necessarily
ordered and that the labels typically occur in a reordered fashion in the multi-index 𝐼 . Clearly from Eq.(52) it follows that Γ𝑗1…𝑗𝑘
is zero when the labels {𝑗1,… , 𝑗𝑘} are not distinct. From the probability interpretation in Eq.(53) it then follows

Γ𝑗1…𝑗𝑘 = the probability to find a particle in all of the intervals 𝑖1 ,… ,𝑖𝑘 (53)

Further, choosing 𝑥𝑙 ∈ 𝑖𝑙 gives

Γ𝑘(𝑥1,… , 𝑥𝑘) =
𝑛
∑

𝑗1,…,𝑗𝑘=1
Γ𝑗1…𝑗𝑘 𝑒

2
𝑗1
(𝑥1)… 𝑒2𝑗𝑘 (𝑥𝑘) =

𝑛
∑

𝑗1,…,𝑗𝑘=1
Γ𝑗1…𝑗𝑘

1
(Δ𝐿)𝑘

𝛿𝑖1𝑗1 … 𝛿𝑖𝑘𝑗𝑘 =
Γ𝑖1…𝑖𝑘

(Δ𝐿)𝑘
(54)

such that Eq.(53) implies that, for 𝑥𝑙 ∈ 𝑖𝑙 :

Γ𝑘(𝑥1,… , 𝑥𝑘)(Δ𝐿)𝑘 = Γ𝑗1…𝑗𝑘 = the probability to find a particle in all of the intervals 𝑖1 ,… ,𝑖𝑘 (55)

which clearly illustrates the physical meaning of the diagonal 𝑘-particle density matrix. We continue by deriving a few useful
relations. We have

Γ𝑗1…𝑗𝑘 =
∑

𝐼∋{𝑗1,…,𝑗𝑘}
|Ψ𝐼 |

2 ≤
∑

𝐼
|Ψ𝐼 |

2 = 1 (56)
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and therefore

0 ≤ Γ𝑗1…𝑗𝑘 ≤ 1 (57)

The expression (52) also implies that

Γ𝑗1…𝑗𝑘 =
∑

𝐼∋{𝑗1,…,𝑗𝑘}
|Ψ𝐼 |

2 ≤
∑

𝐼∋{𝑗1,…,𝑗𝑘−1}
|Ψ𝐼 |

2 = Γ𝑗1…𝑗𝑘−1 (58)

From Eq.(43) it follows further that

𝑁!
(𝑁 − 𝑘)!

=
𝑛
∑

𝑗1,…,𝑗𝑘=1
Γ𝑗1…𝑗𝑘 ∫ 𝑑𝑥1… 𝑑𝑥𝑘𝑒

2
𝑗1
(𝑥1)… 𝑒2𝑗𝑁 (𝑥𝑁 ) =

𝑛
∑

𝑗1,…,𝑗𝑘=1
Γ𝑗1…𝑗𝑘 (59)

while Eq.(45) tells us that
𝑛
∑

𝑗𝑘=1
Γ𝑗1…𝑗𝑘 = (𝑁 − 𝑘 + 1) Γ𝑗1…𝑗𝑘−1 (60)

The probabilities in Eq.(59) do not add up to one because the probability events we consider are not exclusive; we will address
this issue in detail below. In particular for the density, 𝑛 = Γ1, we have the relations

𝑛(𝑥) =
𝑛
∑

𝑖=1
𝑛𝑖 𝑒

2
𝑖 (𝑥) 𝑛𝑖 =

∑

𝐼∋𝑖
|Ψ𝐼 |

2
𝑛
∑

𝑖=1
𝑛𝑖 = 𝑁 (61)

Let 𝑦𝑗 ∈ 𝑗 be a coordinates in interval 𝑗 , then we see that

𝑛(𝑦𝑗) =
𝑛
∑

𝑖=1
𝑛𝑖 𝑒

2
𝑖 (𝑦𝑗) =

𝑛
∑

𝑖=1
𝑛𝑖
𝛿𝑖𝑗
Δ𝐿

=
𝑛𝑗
Δ𝐿

(62)

We therefore see that

𝑛(𝑦𝑗)Δ𝐿 = 𝑛𝑗 = the probability to find a particle in the interval 𝑗 (63)

which therefore assigns a clear probability interpretation to the density (and which is a special case of Eq.(55) for 𝑘 = 1). We
can derive analogous formulas for the pair density Γ = Γ2:

Γ(𝑥, 𝑥′) =
𝑛
∑

𝑖,𝑗=1
Γ𝑖𝑗 𝑒2𝑖 (𝑥)𝑒

2
𝑗 (𝑥

′) Γ𝑖𝑗 =
∑

𝐼∋{𝑖,𝑗}
|Ψ𝐼 |

2
𝑛
∑

𝑖,𝑗=1
Γ𝑖𝑗 = 𝑁(𝑁 − 1) (64)

while Eqs.(58) and (60) imply that

Γ𝑗𝑖 = Γ𝑖𝑗 ≤ 𝑛𝑖
𝑛
∑

𝑗=1
Γ𝑖𝑗 = (𝑁 − 1)𝑛𝑖 (65)

Let 𝑦𝑘 and 𝑦𝑙 be coordinates in the intervals 𝑘 and 𝑙, then we see that

Γ(𝑦𝑘, 𝑦𝑙) =
𝑛
∑

𝑖,𝑗=1
Γ𝑖𝑗 𝑒2𝑖 (𝑦𝑘)𝑒

2
𝑗 (𝑦𝑙) =

𝑛
∑

𝑖,𝑗=1
Γ𝑖𝑗

𝛿𝑖𝑘𝛿𝑗𝑙
(Δ𝐿)2

=
Γ𝑘𝑙

(Δ𝐿)2
(66)

We therefore see that

Γ(𝑦𝑘, 𝑦𝑙)(Δ𝐿)2 = Γ𝑘𝑙 = the probability to find a particle in the interval 𝑘 and another one in interval 𝑙 (67)

which again is a special case of Eq.(55) for 𝑘 = 2. We can continue calculating conditional probabilities. We have

𝑝(𝑖|𝑗) =
Γ𝑖𝑗
𝑛𝑗

= the probability to find a particle in the interval 𝑖 given that we know that there is a particle in interval 𝑗
(68)
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where the first expression in Eq.(65) tells us that 0 ≤ 𝑝(𝑖|𝑗) ≤ 1 as it should. From the equations above we see that for 𝑦𝑖 ∈ 𝑖
and 𝑦𝑗 ∈ 𝑗

𝑝(𝑖|𝑗) =
Γ𝑖𝑗
𝑛𝑗

=
Γ(𝑦𝑖, 𝑦𝑗)(Δ𝐿)2

𝑛(𝑦𝑗)Δ𝐿
=

Γ(𝑦𝑖, 𝑦𝑗)
𝑛(𝑦𝑗)

Δ𝐿 (69)

and from Eq.(65) we see that

𝑛
∑

𝑖=1
𝑝(𝑖|𝑗) = 1

𝑛𝑗

𝑛
∑

𝑖=1
Γ𝑖𝑗 = 𝑁 − 1 (70)

Again the probabilities do not sum to one in general, since the conditional probability to find a particle in interval 𝑖 do not
exclude the possibility of there being another particle in another interval, unless𝑁 = 2 in which case the sum of the probabilities
is indeed equal to one.

D. An illustrative example

We illustrate the basic probability concepts with a very basic example of three particles and four intervals, we have𝑁 = 3 and
𝑛 = 4. Then a general 3-particle state is of the form

Ψ = Ψ123 𝑒123 + Ψ124 𝑒124 + Ψ134 𝑒134 + Ψ234 𝑒234 (71)

where for compact notation we do no write the arguments of Ψ and the functions 𝑒𝑖1𝑖2𝑖3 . Since the function is normalised we have

1 = |Ψ123|
2 + |Ψ124|

2 + |Ψ134|
2 + |Ψ234|

2 (72)

The density coefficients 𝑛𝑖 are readily calculated from the second expression in Eq.(61) to be

𝑛1 = |Ψ123|
2 + |Ψ124|

2 + |Ψ134|
2 (73)

𝑛2 = |Ψ123|
2 + |Ψ124|

2 + |Ψ234|
2 (74)

𝑛3 = |Ψ123|
2 + |Ψ134|

2 + |Ψ234|
2 (75)

𝑛4 = |Ψ124|
2 + |Ψ134|

2 + |Ψ234|
2 (76)

Summing the densities we find

𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 = 3(|Ψ123|
2 + |Ψ124|

2 + |Ψ134|
2 + |Ψ234|

2) = 3 (77)

so the density indeed sums up to three. The reason that the densities do not sum to one is that the finding a particle in interval
𝑖 does not exclude that we can find another particle in another interval 𝑗 , so these probabilities are not exclusive. This is clear
since for any index 𝑖 ∈ 𝐼 in our example there are two indices referring to particles in other intervals. Only for a one-particle
system this is not the case and indeed in that case the density coefficients 𝑛𝑖 sum up to 𝑁 = 1. For the pair densities we have
from the second expression in Eq.(64):

Γ12 = |Ψ123|
2 + |Ψ124|

2 Γ23 = |Ψ123|
2 + |Ψ234|

2 (78)
Γ13 = |Ψ123|

2 + |Ψ134|
2 Γ24 = |Ψ124|

2 + |Ψ234|
2 (79)

Γ14 = |Ψ124|
2 + |Ψ134|

2 Γ34 = |Ψ134|
2 + |Ψ234|

2 (80)

and Γ𝑗𝑖 = Γ𝑖𝑗 . From this we can confirm the last expression in Eq.(64):
∑

𝑖𝑗
Γ𝑖𝑗 = 2

∑

𝑖<𝑗
Γ𝑖𝑗 = 6 (|Ψ123|

2 + |Ψ124|
2 + |Ψ134|

2 + |Ψ234|
2) = 6 (81)

Finally we can consider conditional probabilities, for example

𝑝(1|2) =
Γ12
𝑛2

=
|Ψ123|

2 + |Ψ124|
2

|Ψ123|
2 + |Ψ124|

2 + |Ψ234|
2

(82)
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We can further calculate the probability 𝑝(1 ∪ 2) that there is a particle in 1 or in 2. From the probability rule (see Eq.(A8) in
the Appendix)

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵) (83)

we see that

𝑝(1 ∪ 2) = 𝑛1 + 𝑛2 − Γ12
= (|Ψ123|

2 + |Ψ124|
2 + |Ψ134|

2) + (|Ψ123|
2 + |Ψ124|

2 + |Ψ234|
2) − (|Ψ123|

2 + |Ψ124|
2)

= |Ψ123|
2 + |Ψ124|

2 + |Ψ134|
2 + |Ψ234|

2 = 1 (84)

This was to be expected since there is no multi-index 𝐼 in which both labels 1 and 2 are missing, so we are sure to find a particle
in either interval 1 or in 2.

E. Finite differencing for the many-particle Schrödinger equation

The finite differencing for the many-particle Schrödinger equation proceeds along similar lines as that for the one-particle case.
We have an anti-symmetric wavefunction Ψ(𝑥1,… , 𝑥𝑁 ) satisfying the Schrödinger equation

[

−1
2

𝑁
∑

𝑘=1

𝑑2

𝑑𝑥2𝑘
+ 𝑢(𝑥1,… , 𝑥𝑁 )

]

Ψ(𝑥1,… , 𝑥𝑁 ) = 𝐸Ψ(𝑥1,… , 𝑥𝑁 ) (85)

where the potential 𝑢 can be of general form in following, but is typically of the form

𝑢(𝑥1,… , 𝑥𝑁 ) =
𝑁
∑

𝑘=1
𝑣(𝑥𝑘) +

𝑁
∑

𝑘<𝑙
𝑤(𝑥𝑘, 𝑥𝑙) (86)

for some external potential 𝑣(𝑥) and two-body interaction 𝑤(𝑥, 𝑥′). We can write the Schrödinger equation as

(𝐻̂Ψ)(𝑥1,… , 𝑥𝑁 ) = 𝐸Ψ(𝑥1,… , 𝑥𝑁 ) (87)

where 𝐻̂ = 𝑇̂ + 𝑈̂ is the Hamilton operator and where the kinetic and potential energy operator are defined as:

(𝑇̂ 𝜑)(𝑥1,… , 𝑥𝑁 ) = −1
2

𝑁
∑

𝑘=1

𝑑2Ψ
𝑑𝑥2𝑘

(𝑈̂𝜑)(𝑥1,… , 𝑥𝑁 ) = 𝑢(𝑥1,… , 𝑥𝑁 )Ψ(𝑥1,… , 𝑥𝑁 ) (88)

We following the same consideration as of the one-particle case. We employ for each of the coordinates 𝑥𝑘 the boundary condi-
tions

Ψ(𝑥1,… , 𝑥𝑘−1, 0, 𝑥𝑘+1,… , 𝑥𝑁 ) = 0 Ψ(𝑥1,… , 𝑥𝑘−1, 𝐿, 𝑥𝑘+1,… , 𝑥𝑁 ) = 0 (89)

We take Δ𝐿 = 𝐿∕(𝑛+ 1) and discretise coordinate 𝑥𝑘 by defining the lattice points 𝑥𝑖𝑘 = 𝑖𝑘 Δ𝐿 for 𝑖𝑘 ∈ {1,… , 𝑁}. Let us now
define

Φ𝐼 = Ψ(𝑥𝑖1 ,… , 𝑥𝑖𝑁 ) 𝐼 = (𝑖1,… , 𝑖𝑁 ) (90)

where at this point we do not require an ordering of the 𝑖𝑘 yet. The action of the potential is simple as before

(𝑈̂Ψ)(𝑥𝑖1 ,… , 𝑥𝑖𝑁 ) = 𝑢(𝑥𝑖1 ,… , 𝑥𝑖𝑁 )Ψ(𝑥𝑖1 ,… , 𝑥𝑖𝑁 ) (91)

Its action as a matrix on the vector Φ𝐼 is then again given by a diagonal matrix of the form

𝑈𝐼𝐽 = 𝛿𝐼𝐽𝑢𝐼 (92)

where we denoted 𝑢𝐼 = 𝑢(𝑥𝑖1 ,… , 𝑥𝑖𝑁 ). To determine the action of the kinetic energy operators we again do the Taylor expansions:

Ψ(… 𝑥𝑖𝑘+1…) = Ψ(… 𝑥𝑖𝑘 + Δ𝐿…) = Ψ(… 𝑥𝑖𝑘 …) + Δ𝐿 𝑑Ψ
𝑑𝑥𝑘

(… 𝑥𝑖𝑘 …) +
(Δ𝐿)2

2
𝑑2Ψ
𝑑𝑥2𝑘

(… 𝑥𝑖𝑘 …) +… (93)

Ψ(… 𝑥𝑖𝑘−1…) = Ψ(… 𝑥𝑖𝑘 − Δ𝐿…) = Ψ(… 𝑥𝑖𝑘 …) − Δ𝐿 𝑑Ψ
𝑑𝑥𝑘

(… 𝑥𝑖𝑘 …) +
(Δ𝐿)2

2
𝑑2Ψ
𝑑𝑥2𝑘

(… 𝑥𝑖𝑘 …) +… (94)
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where the dots denote the other coordinates that are kept fixed. As before we add both equations and neglect higher order terms
and re-arrange to obtain

𝑑2Ψ
𝑑𝑥2𝑘

(… 𝑥𝑖𝑘 …) = 1
(Δ𝐿)2

[

Ψ(… 𝑥𝑖𝑘−1…) − 2Ψ(… 𝑥𝑖𝑘 …) + Ψ(… 𝑥𝑖𝑘+1…)
]

= 1
(Δ𝐿)2

(Φ𝑖1…𝑖𝑘−1,𝑖𝑘−1,𝑖𝑘+1…𝑖𝑁 − 2Φ𝑖1…𝑖𝑘−1,𝑖𝑘,𝑖𝑘+1…𝑖𝑁 + Φ𝑖1…𝑖𝑘−1,𝑖𝑘+1,𝑖𝑘+1…𝑖𝑁 ) (95)

It then follows that

−1
2
𝑑2Ψ
𝑑𝑥2𝑘

(… 𝑥𝑖𝑘 …) =
𝑛
∑

𝑗𝑘=1
𝑇𝑖𝑘𝑗𝑘Φ𝑖1…𝑖𝑘−1,𝑗𝑘,𝑖𝑘+1…𝑖𝑁 (96)

where 𝑇𝑖𝑗 is the matrix of Eq.(15). The kinetic energy is then given by

(𝑇̂ 𝜑)(𝑥𝑖1 … , 𝑥𝑖𝑁 ) =
𝑁
∑

𝑘=1

𝑛
∑

𝑗𝑘=1
𝑇𝑖𝑘𝑗𝑘Φ𝑖1…𝑖𝑘−1,𝑗𝑘,𝑖𝑘+1…𝑖𝑁 (97)

such that the discretised Schrödinger equation becomes

𝑁
∑

𝑘=1

𝑛
∑

𝑗𝑘=1
𝑇𝑖𝑘𝑗𝑘Φ𝑖1…𝑖𝑘−1,𝑗𝑘,𝑖𝑘+1…𝑖𝑁 + 𝑢𝑖1…𝑖𝑁Φ𝑖1…𝑖𝑁 = 𝐸Φ𝑖1…𝑖𝑁 (98)

This can be written as
∑

𝐽
𝐻𝐼𝐽Φ𝐽 = 𝐸Φ𝐼 (99)

where here the sum goes over all indices 𝐽 and not only over the ordered ones. If we define the matrix

𝐻𝐼𝐽 = 𝑇𝐼𝐽 + 𝑈𝐼𝐽 (100)

where

𝑇𝐼𝐽 =
𝑁
∑

𝑘=1
𝛿𝑖1𝑗1 … 𝛿𝑖𝑘−1𝑗𝑘−1𝑇𝑖𝑘𝑗𝑘𝛿𝑖𝑘+1𝑗𝑘+1 … 𝛿𝑖𝑁 𝑗𝑁 (101)

The expression (99) is the many-particle generalisation of the one-particle finite difference equation (19).

We will say a bit more later, but it is late on Friday now and I would also like to enjoy the weekend :-)

Appendix A: Probabilities

Here we give some basic relations related to the calculation of probabilities. A simple probabilistic experiment is given by a
total set of outcomes Ω, like the numbers Ω = {1, 2, 3, 4, 5, 6} that occurs as all possible outcomes from throwing a dice, and
the set of events 𝐴 of interest, like the set 𝐴 = {4, 5, 6} for throwing a number larger than 3 with a dice. For any given set 𝑆 we
denote by |𝑆| its number of elements. Then the probability 𝑃 (𝐴) for an outcome in 𝐴 is defined as

𝑃 (𝐴) =
|𝐴|
|Ω|

(A1)

This probability model is sometimes referred to as Laplace’s rule for equiprobable events since the elementary events, i.e. sets
containing a single element of Ω, are equally probable with probability 1∕|Ω|. This models well the throw of a dice in which all
single outcomes are equally likely with probability 1∕6. From Eq.(A1) we see that the probability of throwing larger than 3 is
𝑃 (𝐴) = 3∕6 = 1∕2. If we are given a second outcome set, like the set 𝐵 of prime number in Ω, i.e. 𝐵 = {2, 3, 5}, then we can
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ask for the probability of throwing a prime number larger than 3, i.e. the probability that an event is both in 𝐴 and in 𝐵. Since
we have 𝐴 ∩ 𝐵 = {4, 5, 6} ∩ {2, 3, 5} = {5} we find

𝑃 (𝐴 ∩ 𝐵) =
|𝐴 ∩ 𝐵|
|Ω|

= 1
6

(A2)

For two disjoint sets 𝐴 and 𝐶 with an empty intersection 𝐴 ∩ 𝐶 = ∅, we have that the number of elements in their union 𝐴 ∪ 𝐶
is the sum of the number of elements in the separate sets, i.e.

|𝐴 ∪ 𝐶| = |𝐴| + |𝐶| (A3)

This describes mutually exclusive events, and in that case we have

𝑃 (𝐴 ∪ 𝐶) =
|𝐴 ∪ 𝐶|
|Ω|

=
|𝐴| + |𝐶|

|Ω|
= 𝑃 (𝐴) + 𝑃 (𝐶) (A4)

and this is easily extended to any number of disjoint sets. For example let 𝐶 = {1, 2} describe the events of throwing less than 3
with a dice. Then 𝑃 (𝐶) = 2∕6 = 1∕3 and for our other example set𝐴 = {4, 5, 6} we have𝐴∩𝐶 = ∅ and therefore the probability
for throwing a number that is either larger than three or lesser than three is given by 𝑃 (𝐴) +𝑃 (𝐶) = 1∕2+1∕3 = 5∕6. The main
question now is how to calculate 𝑃 (𝐴∪𝐵) when𝐴 and 𝐵 are not disjoint. We derive this now and we start with some definitions.
We let 𝐴 ⧵ 𝐵 the set of elements of 𝐴 that are not in 𝐵. Since 𝐴 = (𝐴 ⧵ 𝐵) ∪ (𝐴 ∩ 𝐵), where 𝐴 ⧵ 𝐵 and 𝐴 ∩ 𝐵 are disjoint, it
follows from Eq.(A4) that

𝑃 (𝐴) = 𝑃 (𝐴 ⧵ 𝐵) + 𝑃 (𝐴 ∩ 𝐵) ⇒ 𝑃 (𝐴 ⧵ 𝐵) = 𝑃 (𝐴) − 𝑃 (𝐴 ∩ 𝐵) (A5)

Now we have

𝐴 ∪ 𝐵 = (𝐴 ⧵ 𝐵) ∪ (𝐴 ∩ 𝐵) ∪ (𝐵 ⧵ 𝐴) (A6)

where all the sets within round brackets on the right hand side are disjoint. It thus follows that

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴 ⧵ 𝐵) + 𝑃 (𝐴 ∩ 𝐵) + 𝑃 (𝐵 ⧵ 𝐴) = (𝑃 (𝐴) − 𝑃 (𝐴 ∩ 𝐵)) + 𝑃 (𝐴 ∩ 𝐵) + (𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵))
= 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵) (A7)

where in the last step we used Eq.(A5) as well as that equation with 𝐴 and 𝐵 interchanged. For overlapping sets 𝐴 and 𝐵
expression (A4) is thus generalised to

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵) (A8)

We can apply this to our example sets 𝐴 and 𝐵; the probability to throw a prime number or a number larger than three with a
dice is given by

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵) = 1
2
+ 1

2
− 1

6
= 5

6
(A9)

which we also could have calculated directly from the union 𝐴 ∪ 𝐵 = {2, 3, 4, 5, 6} and which indeed gives the same result as it
should. Finally we consider conditional probabilities. We denote by 𝑃 (𝐵|𝐴) the probability of finding an outcome in 𝐵 given
that we have an outcome in 𝐴. This is clearly given by

𝑃 (𝐵|𝐴) =
|𝐴 ∩ 𝐵|
|𝐴|

=
|𝐴 ∩ 𝐵|∕|Ω|
|𝐴|∕|Ω|

=
𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐴)

(A10)

In our example the probability of throwing a prime number, given that we know we threw a number larger than three, is 𝑃 (𝐵|𝐴) =
1∕3. We finally remark that by repeated application of Eq.(A8) we can calculate probabilities of unions for three and more
overlapping sets. For example

𝑃 (𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃 (𝐴 ∪ 𝐵) + 𝑃 (𝐶) − 𝑃 ((𝐴 ∪ 𝐵) ∩ 𝐶) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵) + 𝑃 (𝐶) − 𝑃 ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶))
= 𝑃 (𝐴) + 𝑃 (𝐵) + 𝑃 (𝐶) − 𝑃 (𝐴 ∩ 𝐵) − (𝑃 (𝐴 ∩ 𝐶) + 𝑃 (𝐵 ∩ 𝐶) − 𝑃 ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)))
= 𝑃 (𝐴) + 𝑃 (𝐵) + 𝑃 (𝐶) − 𝑃 (𝐴 ∩ 𝐵) − 𝑃 (𝐴 ∩ 𝐶) − 𝑃 (𝐵 ∩ 𝐶) + 𝑃 (𝐴 ∩ 𝐵 ∩ 𝐶) (A11)



This is a very short Mathematica code that illustrates how you can solve the 1-dimensional 
Schrödinger equation using the finite difference method described in the notes.
We take the example of an harmonic oscillator as we can check the result by comparing to the 
known analytic result.
We choose the following parameters

In[234]:=

n = 400;
L = 1.0;
ΔL = L / (n + 1);
ω = 100;

The grid points are given by the expression:
In[238]:=

x[i_] = i * ΔL;

The kinetic energy matrix is given by
In[239]:=

T = -0.5 (1 / ΔL)^2 Table[KroneckerDelta[i, j + 1] -

2 KroneckerDelta[i, j] + KroneckerDelta[i, j - 1], {i, 1, n}, {j, 1, n}];

while the potential energy matrix for the case of the harmonic oscillator is given by
In[240]:=

V = 0.5 ω^2 Table[KroneckerDelta[i, j] * (x [i] - L/ 2)^2, {i, 1, n}, {j, 1, n}];

and the Hamiltonian H is simple the sum of both matrices:
In[241]:=

H = T + V;

Then we calculate the eigenvectors by diagonalisation of H and normalise them such that the 
Riemann sum of the squared wavefunctions sums to one. For the normalisation used in
Mathematica this requires division by the square root of ΔL. We store eigenvectors in a new matrix 
called Eigmat:

In[242]:=

Eigmat = Eigenvectors[H] / Sqrt[ΔL];

Now everything is done and we can plot. We plot below, as an example, the second excited state. 
Since Mathematica orders the n eigenvectors with the highest eigenvalue first, the second excited 
state
corresponds to label n-2:



In[243]:=

ListPlot[Table[{x[j], Eigmat〚n - 2, j〛}, {j, 1, n}]]
Out[243]=
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We can now compare this result to the known analytic solutions for the normalised harmonic 
oscillator eigenfunctions. The m-th normalised eigenstate is given by:

In[244]:=

ψ[m_, x_] := (ω / Pi)^(1 / 4) Exp[-0.5 ω (x - L/ 2)^2]
HermiteH[m, Sqrt[ω] (x - L / 2)] (1/ Sqrt[(2^m) Factorial[m]]);

and we plot the second excited state, i.e. we choose m=2:
In[245]:=

Plot[ψ[2, x], {x, 0, L}]
Out[245]=
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By comparing the result we see that the finite difference solution is a very good approximation to 
the analytical solution.

2     SchrodingerEqn.nb


