Department of Physics

Research

Nuclear and accelerator based physics

- Centre of Excellence in Nuclear and Accelerator Based Physics
- Accelerator facilities
- Exotic nuclei and beams
- In-beam spectroscopy
- The JYFL gas-filled recoil separator RITU
- Nuclear reactions and ALICE
- Accelerator based materials physics
- Industrial applications
- Nuclear structure, nuclear decays, rare and exotic processes

Materials physics

- Nanophysics and nanotechnology
- Nanoelectronics and nanotechnology
- Computational nanosciences
- Soft condensed matter and statistical physics

High energy physics

- Ultrarelativistic heavy ion collisions
- Theoretical particle physics and cosmology

Industrial collaboration
Education
Personnel
Boards and committees
Peer reviewed articles
Theses and degrees
Theses
Degrees
Preface

The Department of Physics published its first Annual Report in 1976, thirty years ago. Not only has the appearance of the report changed over the past three decades, but also the Department itself is dramatically different from what it was in those pioneering years of the mid-seventies. This applies to both the size and versatility of the Department and to the profile and appreciation of the Department on the national and international scale. The total number of personnel in 1976 was about 40, which should be compared with the present number of 166. The number of doctoral degrees awarded has increased from 2 to 14, and that of refereed scientific publications from 13 to 136. In 1976 the Department had of the order of 10 foreign visitors, in 2006 this figure rose to more than 200. Only one thing has remained unchanged, namely the number of administrative personnel (4) – and of course the good spirit and unity of the Department.

This annual report describes the activity of the Department of Physics in 2006. Some highlights of the year are collected in this preface, and the future outlook is also considered.
Research

The research activity of the Department focuses on three main fields, nuclear and accelerator based physics, materials physics and high-energy physics. In all these fields the Department has good visibility and renowned status on the international level. Evidence of this is provided by the Center of Excellence (CoE) status of our nuclear and accelerator based physics research group awarded for 2006–2011. The other two major research areas were short-listed for 2006 CoE selection (as they were in 2005) but unfortunately they did not receive funding, in spite of excellent reports from the international panels of experts. As a result of the successful University Research Evaluation in 2005, extra annual funding of 60 000 euros for three years has been allocated to the Department by the University. This has allowed us to announce two post doctoral positions for young foreign researchers for 2007–2009.

Nuclear and accelerator based physics. One of the highlights of nuclear physics research was the front-page Nature article on detailed spectroscopic measurements of the nobelium isotope 254No carried out in the accelerator laboratory. Paul Greenlees and Rolf-Dietmar Herzberg (University of Liverpool) were the spokespersons for the experiment. The results of this study allow the location of the so-called island of stability far outside the normal periodic table of elements to be tentatively pinpointed. The result is of extreme value to nuclear theorists who have predicted the existence of such an island but have been unable to localize it.

With regard to theoretical nuclear physics, a piece of excellent news was the funding obtained for professor Jacek Dobaczewski under the Finland Distinguished Professor Programme. His five-year half-time term in the Department will start in 2007. Professor Dobaczewski will found a research group whose main research subject will be physics of exotic nuclei, which nicely fits with

Thirty years of the Annual Report of JYFL. See more on the inside covers...
the interests of our experimental nuclear physics groups. A welcome addition to the facilities of the accelerator laboratory was the 1.7 MV Pelletron electrostatic accelerator donated to the Department by the VTT Technical Research Center of Finland. A low-energy accelerator for the needs of materials physics research was on the Department shopping list, but thanks to this arrangement with VTT and to the activity of Professor Harry Whitlow and Senior Assistant Timo Sajavaara, it luckily materialized much sooner and with dramatically less fund-hunting than expected. The Pelletron will strengthen the capabilities of the accelerator laboratory and allow widened activity in nanotechnology and biomedical sciences.

As far as the facilities of the accelerator laboratory are concerned, a further piece of good news was confirmation that the Department will get a new cyclotron as part of the debt conversion program between Russia and Finland. The new cyclotron, which is expected to be ready for operation three years from now, will undertake some of the tasks of the overloaded old cyclotron. Plans also exist to use the new cyclotron for production of medical isotopes. The required space will be built next to the present cyclotron cave. The project has been managed in an exemplary manner by Chief Engineer Pauli Heikkinen.

Nanoresearch. Research in nanophysics takes place in the multidisciplinary NanoScience Center, NSC. The NSC is one of the leading nanoresearch units in Finland, which has been evidenced in the excellent success in getting funding from different nationwide funding programs, such as the Research Programme on Nanoscience (FinNano) of the Academy of Finland.

The Faculty will get substantial budget funding for nanoresearch, which has allowed departments to allocate money for new positions in this field. The Department of Physics and the Department of Chemistry founded a new professorship in computational nanoscience on a fifty-fifty basis, a chair to which Hannu Häkkinen was invited. Häkkinen and his group study the physics and chemistry of nanoscale objects, such as atomic clusters, nanoparticles, nanowires, -bridges and point contacts. In 2007 the Department of Physics will open a new professorship in low-temperature physics with the responsibility of conducting the experimental research in this field at the NSC.

These two new positions will considerably strengthen our research and teaching force in nanophysics.

High-energy physics. In high-energy physics a field of growing activity has been ultra-relativistic heavy ion collisions (URHIC), with both our experimentalists and theorists preparing for the ALICE experiment starting in two years’ time at the CERN LHC accelerator. Senior Assistant Jan Rak (half of whose salary is paid by the Helsinki Institute of Physics, HIP) has a central role in preparing everything for the forthcoming physics analysis of ALICE data. On the theoretical side, a noteworthy change in personnel took place with the succession of Kari J. Eskola (in 2007) to Vesa Ruuskanen as a professor of theoretical physics. Kari will take full responsibility for the URHIC theory program.

In theoretical particle physics and cosmology, collaboration with the HIP theory program has been close. Senior Assistant Kimmo Kainulainen spent the spring semester in Helsinki as acting professor of cosmology. The HIP theory program will renew its projects in 2008, and we hope that our Department will play an important role in the new projects in order to benefit from the collaboration with HIP in the best possible way.

In 2006, our Department took scientific responsibility for the underground cosmic ray experiment EMMA, un-
der construction in the Pyhäsalmi mine and managed by the University of Oulu with EU-funding. Senior scientist Wladyslaw Trzaska is in charge of this activity. We consider it to belong to the duties of the accelerator laboratory as a national laboratory to promote and offer its expertise to support this kind of research. The Pyhäsalmi mine has attracted a lot of interest in the European particle and astroparticle physics community as a possible location of the very large underground neutrino experiment which is planned to be built in the distant future.

Industrial physics. The Department of Physics serves the general community, not only with basic research and education, but by collaborating with industry and industry-related research institutions. Work in the physics of paper production has a well-established track record in our Department, and we have educated plenty of specialists in this field. To continue such activities and to strengthen the teaching and research of applied physics in the Department a permanent professorship was established and Markku Kataja was nominated to this position. The University has allocated funding for a new senior assistantship in the field of industrial physics to start in 2007.

Education

In teaching the year 2006 was quite satisfactory. The number of MSc degrees was 38, a little short of the official goal but a good result after the record-breaking previous year. The number of PhD degrees was 14, a new record. It is worth noticing that one of the awarded PhD degrees belonged to the field of physics didactics, a new opening in our doctoral education.
Our Department participates in seven national graduate schools and coordinates two of them, the Graduate Schools in Particle and Nuclear Physics and in Nanoscience.

The decreasing trend in the number of applications and new students enrolled needs attention. With one quarter less applicants and one fifth lower enrollment than in the previous year, the figures for 2006 are worrisome. They may be fluctuations but may also reflect the changes made in the national student matriculation examination, physics being now a test subject of its own. One should believe, on the other hand, that the new matriculation system will guarantee us well motivated and qualified students for the future.

One should also hope that the new nationwide unique candidate’s curriculum in nanoscience, currently being planned and expected to start in 2007, will attract a considerable number of new students to the Faculty and the Department. According to the plans, students can apply directly to this multidisciplinary study program when entering the University. A similar arrangement in physics teacher’s education has turned out to be quite successful.

Administration

In recent years, the financial situation of the Department has not been as good as one would have hoped. The deficit of running-cost funds has worsened the conditions of research, particularly in experimental groups. The main reason for the unfortunate developments is the allocation model for budget funding launched by the University in 2004, which has turned out to be unfavorable to our Department in comparison with the previous situation. One must say that the marginal changes made to the model in 2006 did not improve the situation in any essential respect, and therefore we cannot look forward to the future with any great confidence as far as basic funding is concerned.

Transition to the new salary system UPJ took place in 2006 and the transition was quite smooth in our Department. It will take some time to see the possible benefits along with the shortcomings of the new system. Hopefully more benefits than shortcomings will appear.

The www-pages of the Department were renewed in 2006. This project was initiated and organized by Timo Sajavaara and other central persons in the team were Soili Leskinen and Juha Merikoski. Most of the groups renewed or updated their pages during this process.

Events

On 20th of December Professor Vesa Ruuskanen gave his farewell lecture. Vesa has been one of the cornerstones of the Department from the early seventies. Apart from his contributions in research and administration, his role in teaching and its development has been crucial for the Department. Also two other cornerstones of the Department, Laboratory Engineer Teuvo Poikolainen and Research Technician Erkki Kosola achieved their retirement age. Erkki, Teuvo and Vesa have all serviced the Department in an excellent manner for decades, and one can find the names of all of them in the Annual Report 1976.
Centre of Excellence in Nuclear and Accelerator Based Physics

Rauno Julin

The Finnish Centre of Excellence (CoE) in Nuclear and Accelerator Based Physics was nominated by the Academy of Finland for the period of 2006–2011. It involves research carried out by eight teams of JYFL. Most of the teams utilize the large variety of ion beams available at the Accelerator Laboratory of JYFL.

The accelerator technology team is responsible for the development of ion beams from the accelerator facility (see “Accelerator Facilities” in the present Annual Report).

The research work of the IGISOL team is focused on the decay- and groundstate properties of exotic nuclei by employing novel instrumentation including JYFLTRAP and laser systems (see “Exotic Nuclei and Beams”).

The heavy element team uses the upgraded gas-filled recoil separator to investigate the structure of nuclei at the extreme of the nuclear chart (see “The JYFL Gas-filled Separator RITU”).

Several types of tagging methods are used by the in-beam spectroscopy team in studies of excited structures in proton drip-line and very heavy nuclei (see “In-beam Spectroscopy”).

The nuclear reaction team is responsible for participation in the ALICE experiment at CERN and for the nuclear reaction research at JYFL (see “Alice and Nuclear Reactions”).

Centre of Excellence in Nuclear and Accelerator Based Physics

- 8 Research teams
- 23 PhD level researchers
- 26 Post graduate students
- 9 Technicians

Facilities

- K130 cyclotron delivering a large variety of low- and high-energy ion beams
- IGISOL facility for low-energy radioactive ion beams, laser systems and ion traps
- Recoil separator with detector systems for tagging experiments
- Experimental facilities for reaction studies and applications
- Pelletron accelerator for materials research

Scientific Advisory Board of the Centre of Excellence in Nuclear and Accelerator Based Physics

Witold Nazarewicz, professor, University of Tennessee, USA
William Gelletly, professor, University of Surrey, UK
Timo Tiihonen, vice-rector, University of Jyväskylä
Timo Jääskeläinen, professor, Academy of Finland
Pasi Sihvonen, secretary general, Academy of Finland

Members of the Programme Advisory Committee of the JYFL Accelerator Laboratory

Christian Beck, Dr, IRES, Stasbourg, France
Thomas Dossing, Dr., NBI, Copenhagen, Denmark
Zenon Janas, Dr., University of Warsaw, Poland
Juhani Keinonen, Prof., University of Helsinki, Finland
Juergen Kluge, Prof., GSI, Darmstadt, Germany
John Simpson, Prof., CCLRC, Daresbury, UK (chairman)
Collaboration with the European Space Agency (ESA) and the aviation and space industries on radiation hardness testing along with technological applications are dealt with by the industrial applications team (see “Industrial Applications”).

New research directions of ion-beam applications in materials research are the responsibility of the accelerator based materials physics team. (see “Accelerator-Based Materials Physics”).

Theoretical support for nuclear structure studies is provided by the theory team, which also studies weak interaction, cold dark-matter and neutrino physics (see “Nuclear Structure, Nuclear Decay, Rare and Exotic Processes”).

The JYFL-CoE programme has a strong collaborative international character. Individual research contacts form the backbone of collaborations creating exchange programmes with a significant transfer of scientists and equipment to the Department of Physics.

The JYFL-CoE activities at CERN including ISOLDE and ALICE form the Nuclear Matter Programme of the Helsinki Institute of Physics (HIP). The activities in the FAIR project at GSI are also coordinated via HIP. The activities of the JYFL-CoE teams in the HISPEC/DESPEC, LASPEC and MATS projects at the NUSTAR facility will form the major Finnish contribution at FAIR.

The JYFL Accelerator Laboratory is one of the eight major European nuclear physics infrastructures, whose action is concerted through the EU-Integrated Infrastructure Initiative project (EURONS) and it also has the status of an ESA-coordinated irradiation facility. In addition to the Transnational Access Activity (TNA) of EURONS, the JYFL Accelerator Laboratory is a partner in 6 different Joint Research Activities (JRA) of EURONS.

Physicists from the JYFL-CoE participate in different EURISOL-DS tasks dealing with physics and instrumentation, beam intensities and beam preparation issues. The latter task is coordinated by JYFL.

The comprehensive education programme in physics at JYFL and continuous development and construction work by the teams at the Accelerator Laboratory makes the JYFL-CoE an ideal training site for young researchers. PhD education within the JYFL-CoE is an essential part of the national Graduate School in Particle and Nuclear Physics (GRASPANP), which is coordinated by the Department of Physics.

In 2006, the total operating time of the JYFL cyclotron was 7629 hours, which is a new record in the history of the JYFL Accelerator Laboratory. The beam-on-target time was 6200 hours. A total of 31 different isotopes from protons to 136Xe were accelerated for experiments and applications. The number of scheduled experiments was 60.
The year 2006 was successful in general for the JYFL-CoE. The number of peer reviewed articles in scientific journals was 75, including a Letter report in Nature based on the \(^{254}\text{No}\) experiment at RITU and 12 other Letter reports.

The number of PhD thesis defended within the CoE at JYFL was 7. In addition, several thesis based on the experiments at JYFL were defended in UK universities.

Two issues of Vol.14 of the JYFL Accelerator News were published in 2006.

The annual users meeting for the users of the JYFL Accelerator Laboratory was held on 24–26 April in Saariselkä, Finnish Lapland.

In 2007, commissioning of the 1.7MeV Pelletron accelerator at JYFL will open up new possibilities in the research programme of the materials physics team. This accelerator was donated by the Technical Research Centre of Finland (VTT) –Espoo to JYFL in September 2006.

The theory programme will expand when the new FiDiPro professor, Jacek Dobaczewski, will start his five-year period in the beginning of 2007.

The first meeting of the Scientific Advisory Board (SAB) of the JYFL-CoE was held on 2 December, 2006.

In total, 40 proposals were evaluated by the Programme Advisory Committee (PAC) of the JYFL Accelerator Laboratory in the meetings on 25 March and 21 October, 2006.
The cyclotron made a new record in total beam time in 2006. The total operating time was 7629 hours, which includes 7255 hours as beam available for experiments and for beam tuning. The beam was on target for 6200 hours.

Protons are still the most used ions, and account for almost 30% of the total due to weekly 123I production for MAP Medical Technologies and due to IGISOL experiments. Beam cocktails, mainly for space electronics irradiations was the second-most used beam with about 10% of the beam time and 48Ca was the next most used beam (7%). Altogether 31 different isotopes from protons to 136Xe were accelerated for experiments and applications in 2006.

The Accelerator Laboratory was included in the list of goods and services of Intergovernmental Agreement between Finland and Russia on the partial compensation of the former Soviet Union debt to Finland. One of
the major items in the list was a 30 MeV H– cyclotron for producing medical radioisotopes and to be used in nuclear physics experiments. The final list was approved by the corresponding Ministries of both countries in the beginning of 2007. The contract on the cyclotron was signed in February 2007 by the University of Jyväskylä and Machinoimport together with the D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (FSUE “NIIEFA”). The cyclotron should arrive in Jyväskylä within 24 months from the signing of the contract and the installation time on site is six months. The cyclotron requires an extension attached to the existing laboratory so that one beam line will be connected to the 123-I production line and one to the IGISOL beam line. Planning of the extension of the laboratory has been started.

Successful tests with the JYFL MMPS plasma chamber have been completed. According to the tests the performance of the 6.4 GHz ECRIS improved by a factor of 3 with highly charged ions. A remarkable improvement has been obtained in the technology of evaporation ovens. New resistively heated and inductively heated ovens are being developed. In the resistively heated oven a current up to 70 A (500 W) is conducted through the 25 µm Ta foil. The crucible is heated by radiation emitted from the foil. In the experiments a temperature of around 2000°C has been measured from the crucible for a period of days. This makes it possible to produce for example titanium ion beams. A resonant circuit was designed for the inductively heated oven to be used with the signal generator. Up to now, 1800°C has reliably been reached in the crucible. Higher temperature is expected by further development of the resonant circuit.

A new concept of an ECR ion source has been designed, built and tested at JYFL during 2006. In this structure a closed B-minimum configuration is produced by using only ying-yang-type coils. The first simple prototype showed its capability of producing highly charged ion beams.
Introduction

Our activity in 2006 has followed the well-established path consisting of numerous experiments and R&D instrumentation both at JYFL and at ISOLDE, CERN. The work at ISOLDE is carried out within the Nuclear Matter Program of the Helsinki Institute of Physics (HIP). In addition, our group, with support of HIP, has actively participated in the planning of the experiments for the super fragment separator at the future Facility for Antiproton and Ion Research (FAIR) at GSI.

A major effort has been taken towards the completion of the FURIOS laser ion source, with many technical achievements. Technical developments for JYFLTRAP include a carbon cluster ion source, which will be used to provide an absolute mass standard and development of a considerably accelerated Ramsey excitation purification technique by introducing additional gas cooling. The collaboration with KVI and GSI to develop an ion catcher which is based on either liquid helium or cryogenic helium gas also continued.

The main highlights of the experiments in 2006 included the Q_{α}-value measurements of several superallowed beta decays [1], [2]. The precision mass measurements of neutron rich [3] and, in particular, neutron deficient nuclei [4] with JYFLTRAP continued. JYFLTRAP was also used for producing purified samples of very neutron rich fission products [5] and for proton-induced fission yield studies [6]. Precision lifetime measurements of excited states of fission products at $A \approx 110$ employing the triple coincidence method [7] yielded superb physics results. Additionally, a record yield of our reference isotope 112Rh, $\approx 4 \times 10^6$ atoms/µC produced in 30 MeV p-induced fission, was achieved. Radioactive isotopes produced at IGISOL were used as probe atoms in studying diffusion properties of impurities in solids [8].
Our team has significantly benefited from collaborations with several groups from Europe and the US as well as from EU-funded JRA projects LASER, TRAPSPEC and DLEP, and the Design Study projects EURISOL and DIRAC.

Technical Development

Laser Ion Source [9]

The last year has seen many new developments in the laser ion source programme. By concentrating on an element whose ion survival is very sensitive to the impurities within the buffer gas and surrounding chamber baseline pressure, the laser ion source was used to gain a detailed understanding of the processes at work within the ion guide.

Figure 1 illustrates the role of gas phase chemistry on the yttrium system. Lasers were used to selectively ionize yttrium atoms from a heated filament. Time profiles of mass separated Y⁺ and corresponding molecules illustrated the time formation sequence of the addition of hydrate molecules to YO⁺, which itself is formed via Y⁺. Data such as these can provide valuable information on the level of impurities within the ion guide.

Most importantly, the role of the presence of beam-related plasma within the ion guide was studied, again...
using an yttrium filament. Once the creation of Y$^+$ was in equilibrium with recombination the addition of the lasers probed the neutral fraction, which was found to be in a rather small volume close to the exit hole of the ion guide. A more recent development has been the first production of a beam of yttrium from the ECR ion source. A 623 MeV $^{89}\text{Y}^{21+}$ beam of 100 enA intensity was degraded in energy using a rotating nickel target and stopped in the IGISOL ion guide. The ratio of the stopped Y$^+$ to YO$^+$ mass-separated yield was studied as a function of both helium and argon buffer gas pressure. A saturation level of between 60-70% was achieved, and laser ionization was successfully performed.

In addition to yttrium other elements of interest were studied. In collaboration with the Universities of Manchester and Birmingham, resonance ionization spectroscopy in the ion guide was performed on bismuth. The University of Mainz provided filaments of ^{99}Tc, which has a half-life of 2.1 10^5 years. Only 10^{14} atoms of the isotope were used to confirm a three-step ionization scheme and produce the mass scan shown in figure 2.

Towards the development of the laser ion source trap (LIST) technique, extensive studies have been performed off-line to improve the spatial properties of the gas jet exiting the ion guide. This is imperative for a good laser-atom overlap within a sextupole ion beam guide located after the exit nozzle of the gas cell. A Laval-type nozzle, more commonly associated with supersonic jet engines, has been chosen for use in the ion guide. Figure 3 illustrates the ability to visualize the gas jet via the decay of metastable helium atoms excited from a

![Fig 2. A mass scan in the region of ^{99}Tc. The surface-ionized isotopes ^{85}Rb and ^{87}Rb as well as the laser ionized ^{99}Tc appear in the spectrum. The mass scan was repeated over a narrower range with the lasers off, as indicated by the black line.](image)

![Fig 3. By increasing the helium pressure within the ion guide the visible narrowing of the gas jet is identified in this picture.](image)
DC discharge source. In addition, gas flow simulations have been performed to study the effects of different types of nozzle. The next step will be to laser ionize atoms within the gas jet and directly compare the Laval nozzle with a more standard exit hole.

Carbon Cluster Ion Source

A carbon cluster ion source based on laser ablation has been built for the JYFLTRAP. It will be firstly used for systematic studies of the JYFLTRAP setup and, secondly, as a reference ion source for the mass measurements. The carbon cluster ion source is an ideal reference source because it provides ions whose masses are multiples of the atomic mass standard ^{12}C. Thus far, the controlled production of carbon cluster ions and the capability of the radiofrequency cooler trap (RFQ) to select a size range of clusters have been established (Fig 4.). We wish to proceed to the customary utilisation of C-cluster ions in the near future.

Dipolar Ramsey Cleaning

JYFLTRAP is a double Penning trap, consisting of a purification trap and a precision trap. The purification trap is used to make a clean sample of ions that is required to perform a proper mass measurement with the precision trap. A typical mass resolution achieved with the purification trap alone is 10 Hz (corresponding to 1 MeV/c^2 for mass $A = 100$ ions). Unfortunately, in many cases it is not enough to separate contaminating isomers or isobars.

A more refined separation can be attained in the precision trap by using a mass selective dipole excitation to remove the unwanted ions. Conventionally this has been accomplished by driving the unwanted ions to orbits beyond the detection window with a gaussian modulated dipolar excitation. This so called Ramsey excitation method, however, has not been applicable to the most short-lived nuclei. For example, to achieve 5 Hz resolution, about 800 ms in the precision trap is needed. We have succeeded to develop a faster cleaning procedure by employing an additional buffer gas cooling after the
Ramsey excitation. In our method the ions are Ramsey excited in the precision trap and returned to the purification trap for further cooling. The purification is much faster: to reach 5 Hz resolution, only 120 ms is needed for excitation and 60 ms for cooling (Fig 5.).

Experimental Highlights

Q\textsubscript{ec} Values of Superallowed Beta Decays

Several Q-values were measured during the year 2006. The Q-values of \(^{26}\text{Al}\), \(^{42}\text{Sc}\) and \(^{46}\text{V}\) were published. When the Penning trap value of \(^{46}\text{V}\) appeared to significantly deviate from the previous measurements, as shown also by G. Savard et al. (Phys. Rev. Lett. 95 (2005)102501) it became necessary to remeasure the reaction based Q-values of \(^{26}\text{Al}\) and \(^{42}\text{Sc}\). Our new results appeared to be in agreement with the old values. The Conserved Vector Current (CVC) hypothesis holds for all superallowed emitters except \(^{46}\text{V}\), which seems to hold a small anomaly in its \(F_t\)-value (Fig 6.).

In addition, the Q-values of \(^{26}\text{Si}\), \(^{42}\text{Ti}\), \(^{50}\text{Mn}\) and \(^{54}\text{Co}\) were measured. In the experiments aimed to determine the Q-values of \(^{50}\text{Mn}\) and \(^{54}\text{Co}\), the Ramsey cleaning method, as discussed in the technical development section, was applied to remove the contaminating isomeric states.

Mass Measurements for Nuclear Structure and Astrophysics

Extensive program of mass measurements has continued at JYFLTRAP. In 2006, a few more neutron rich isotopes...
were studied, though the main progress has occurred in the neutron deficient side of the nuclide chart. Figure 7 summarizes the JYFLTRAP harvest since the project commenced. All in all approximately two hundred atomic masses have been determined. The following two sections summarize the progress for nuclear structure and astrophysics related measurements of atomic masses.

Masses of Neutron-Rich Light Fission Fragments Close to the N=50 Shell Gap

An interesting region on the neutron-rich side of the nuclide chart is the vicinity of the magic neutron number 50. In recent experiments at JYFLTRAP the masses of over 20 neutron-rich isotopes of Ga, Ge, As and Se were measured with greatly improved precision compared to previously reported values. Some of the masses were measured for the first time. Obtained new mass values provide data for calculating the two-neutron separation energies S_{2n} with improved precision and for extending the S_{2n} systematics towards more neutron-rich systems. In figure 8 the S_{2n} values for even N isotones are plotted as a function of Z. The distance between the S_{2n} ($N=50$) and S_{2n} ($N=52$) values is proportional to the N = 50 shell gap. This shell gap is widest for nuclei in the vicinity of 90Zr with magic N = 50 and semimagic Z = 40. At lower Z the shell gap gets narrower. The new precise data exclude the possibility of a constant shell gap within the quoted uncertainty of the S_{2n} values, thus suggesting the gap may eventually become weaker for highly neutron-rich nuclei.

Masses of rp-Process Nuclei

The rapid proton capture process (rp-process) is a sequence of proton captures and beta decays proceeding along the Z = N line where nuclides on the neutron deficient side of the valley of stability are produced. The process can happen in many different astrophysical sites that have high enough hydrogen density and temperature. These sites can be, for example, supermassive stars, x-ray bursters and supernova outbursts. To study the reaction pathways one needs to know the beta-decay lifetimes, proton capture and photodisintegration rates and the Q-values of the reactions. The JYFLTRAP has successfully been used to study the masses

![Fig 8. S_{2n} values for even N isotones as a function of Z. The solid symbols represent the 2006 measurements. The symbol size is larger than the error of the values.](image)

![Fig 9. A difference of compiled (AME2003) and experimental proton separation energies for neutron-deficient Y, Zr and Nb-isotopes.](image)
(which lead to the Q-values) of neutron-deficient elements between $Z = 40$ – 50 with uncertainties better than $\delta m = 10$ keV. This improves considerably the mass values in this region, which were with few exceptions previously obtained from the beta end-point measurements or by estimating the systematic trends in neighboring nuclides. Therefore the mass surface of this region was previously rather poorly determined. Our mass data implies that n-deficient nuclei in the studied mass region are significantly less bound than implied by the newest atomic mass compilation indicates. This may impact the estimated position of the proton drip-line (see figure 9).

Trap Assisted Spectroscopy

The utilization of the purification trap of the JYFLTRAP facility in spectroscopy experiments has proceeded from the commissioning phase to the standard operation phase. The purification trap is used as a high resolution mass separator to provide clean samples of selected isotopes for beta-gamma decay-spectroscopy experiments. The first experiment exploiting this mode was the decay study of 100,102,104Zr. The superior purity of the source enabled a determination of absolute gamma intensities and improved decay schemes. Comparison of the experimental Gamow-Teller strength distributions with theoretical calculations suggests a prolate deformation for the studied Zr isotopes. Trap purification was also used in a study of 115Ru decay [5]. Both studies were carried out with germanium detector setups, with a plastic ΔE detector for the beta decay gate. For the total absorption spectroscopy (TAS) technique the clean source is even more essential. The trap assisted TAS at JYFLTRAP is foreseen to be used to study isotopes relevant for nuclear reactor heat production.
The effect of isobaric purification can be seen from the above gamma spectra. The upper spectrum is collected from a trap purified 100Zr source and the lower one from a similarly purified 100Nb source. The gamma peaks identified by arrows are from 100Zr decay. The 535 keV transition depopulates the lowest 2^+ state in 100Mo and it is seen in both spectra, while the 600 keV transition comes from the 4^+ state in 100Mo. This state is fed only by the decay of the high-spin isomer of 100Nb and is therefore not seen in the upper spectrum.

Laser Spectroscopy [10]

The work of the laser-IGISOL group on the study of proton-rich light nuclei, undertaken in collaboration with JINR Dubna, has been greatly extended by the measurement of a series of scandium isotopes and isomers. In the work, ionic hyperfine structures associated with the nuclear ground states of N = Z 42Sc to 46Sc were observed along with isomeric structures from 44Sc and 45Sc.

These optical measurements, the first on radioactive scandium nuclei, are made in a region where the nuclear charge radius displays behaviour quite unlike that observed in any other part of the nuclear chart. Neighbouring isotopic chains around calcium, Z = 20, as can be seen in figure 11, show nothing of the systematic and smooth isotonic trends displayed by all heavier systems. In contrast, the isotopic chains have charge radii trends very different to those observed in calcium and very different to one another. The differences, which extend to both overall trends and details of odd-even staggering, are believed to arise as the charge radii here on the whole reflect microscopic nuclear properties as opposed to the macroscopic properties that dominate in heavier chains.

Such a possibility can be explored theoretically by comparing the measured charge radii with those predicted by microscopic shell models. Simple shell model approaches, which are rather successful in describing the calcium chain, have been shown by the collaboration to further succeed in describing the changing radius of scandium and particularly the radii of the Sc isomers.

Future work using proton and 3He reactions on 40Ca are planned for 2007. These studies will access both scandium and titanium isotopes at the N = 20 shell closer itself and explore the possibility that diffuse, large, proton structures occur at this closure.
Manchester University collaboration
Jonathan Billowes
Paul Campbell
Bradley Cheal
Malamatenina Avgoulea
Ben Tordoff
Bruce A Marsh
Ernesto Mane Junior

Birmingham University collaboration
Garry Tungate
David Forest
Matthew Gardner
Mark Bissell
Katarzyna Baczynska
Mareike Rüffer

KVI RIASH collaboration
Peter Dendooven (KVI)
Sivaji Purushothaman (KVI)
Norioki Takahashi (Osaka)

Mainz University collaboration
Klaus Wendt
Katja Wies

Experiment spokespersons and collaborating institutes in 2006
[1] T. Eronen, J. Hardy; Texas A&M University, College Station, Texas, USA.
[2] S. Kopecky, J. Szerypo; University of Munich (LMU), Garching, Germany; Texas A&M University, College Station, Texas, USA.
[4] A. Jokinen, M. Block; GSI, Darmstadt, Germany; PNPI, St. Petersburg, Russia; Giessen, Michigan State University, East Lansing, Michigan, USA.
[6] H. Penttilä, V. Ricciardi; GSI, Darmstadt, Germany; Khlopin Radium Institute, St. Petersburg, Russia.
[7] H. Mach; University of Uppsala, Nyköping, Sweden; Soltan Institute of Nuclear Studies, Swierk-Otwock, Poland; University of Warsaw, Warsaw, Poland; ILL, Grenoble, France; University of Manchester, U.K.; Oak Ridge NL, Oak Ridge, Tennessee, USA; Yale University, New Haven, USA.
[8] H.J. Whitlow; Malmö högskola, Malmö, Sweden; Lund University, Lund, Sweden; University of Helsinki, Helsinki, Finland.
[9] I.D. Moore, K.D.A.Wendt; University of Mainz, Germany; University of Manchester, UK.
[10] J. Billowes; University of Birmingham, UK; University of Manchester, UK.
[11] B. Fulton, K. Riisager; CSIC, Madrid, Spain; KVI, Groningen, Netherlands; Aarhus Universitet, Århus, Denmark; CERN, Geneva, Switzerland; University of York, Hestington, UK; Chalmers University of Technology, Göteborg, Sweden.
[14] P. Dendooven; KVI, Groningen, Netherlands; GSI, Darmstadt, Germany; Osaka Gakuin University, Japan; University of Turku, Turku, Finland.
[15] J. Billowes, J. Lee; McGill University, Montreal, Canada; University of Manchester, UK; University of Birmingham, UK; JINR, Dubna, Russia.
2006 was a record year for the number of in-beam gamma-ray spectroscopy experiments, with a total of 15 experiments covering 124 days (see the list at the end of this report). These employed the JUROGAM spectrometer coupled to the RITU gas-filled separator and the GREAT focal-plane spectrometer. Although the main theme of the experiments concentrated on Recoil-Decay-Tagging techniques, new approaches were also employed for increased channel-selectivity such as “beta-decay tagging” and the “Coulex plunger”. All campaigns were carried out in close collaboration with the RITU group.

The Gamma and RITU groups out on the town celebrating after Tuomas’ defence.
JUROGAM Status

Ending 2006, the JUROGAM spectrometer has successfully run three campaigns and totalled over 50 experiments. The array is comprised of 43 EUROGAM Phase I-type Compton-suppressed HPGe detectors supplied from the GAMMAPOOL network and the France-UK detector pool. Situated at the target position of the RITU gas-filled separator, the array is of a flexible design, allowing for standalone experiments, RDT experiments, and also used in conjunction with other target position devices, such as the Köln plunger. JUROGAM has a photo-peak efficiency of approximately 4.2% and combined with the RITU separator, the UK-funded focal plane spectrometer GREAT and associated Total Data Readout (TDR) acquisition system, it forms the world’s most powerful spectrometer system for studies of the structure of heavy proton drip-line and transfermium nuclei.

Future plans for in-beam spectroscopy include enhanced target position detectors, such as the UK funded projects SAGE and LISA. In addition design and development work on a larger and more efficient successor to JUROGAM is underway. The GAMMAPOOL network approved the extension of JUROGAM until mid 2008, and also approved thereafter the use of Clover detectors for the upgraded array.

Status of SAGE

SAGE – a Silicon And GERmanium spectrometer – is a combined electron- and gamma-ray spectrometer especially designed for heavy element research. The project, which is funded by the UK EPSRC is a collaboration of University of Liverpool, Daresbury Laboratory and JYFL. A schematic version of the SAGE spectrometer coupled to the RITU gas-filled separator is shown in figure 1. During 2006 the SAGE project has made steady progress. A full scale prototype of SAGE was constructed. The functionality and electron transport efficiency were tested successfully. The magnetic field configuration and mechanical design required to combine the solenoid magnets with the JUROGAM array are in their final stage and the infrastructure of the JYFL target hall is prepared for the implementation of SAGE. The development group is confident that the SAGE spectrometer will be operational by the end of the year 2007 and the first experiments will be conducted in early 2008.

In-beam Spectroscopy of Heavy Elements: 253No, 254No, 250Fm

2006 was an exceptional year as far as heavy element spectroscopy is concerned. A clear highlight was the...
The isomer in 254No was first reported in the 1970’s following work carried out at the Lawrence Berkeley Laboratory (Ghiorso et al., PRC7, 2032 (1973)). Also reported in the same article was a possible isomer in the alpha-decay daughter of 254No; 250Fm. In order to confirm the existence of this isomer and to obtain more systematic data on the nature of two-quasiparticle states in the region, an experiment was carried out in early 2006. To boost the focal plane sensitivity, two large volume VEGA-type Clover detectors were provided on loan from GSI. A photograph of the Clovers combined with the GREAT spectrometer is shown in figure 2.

The 204HgS(48Ca,2n)250Fm reaction was employed to produce the 250Fm nuclei. As the HgS targets are somewhat fragile, it was necessary to use relatively low beam intensities which allowed both prompt and delayed data to be obtained in a single experiment. The experiment was extremely successful, and the existence of the isomer was quickly confirmed. The high efficiencies of JUROGAM and the focal plane Clover array allowed a preliminary but extensive level scheme to be built up. Analysis is still in progress, but it is speculated the isomeric state is due to a K=8 two quasineutron configuration which decays to a K=2 octupole band. The prompt data obtained with JUROGAM shows strong evidence for a strongly-coupled rotational structure built upon the
K=8 isomer. Example focal plane spectra of gamma-rays in coincidence with conversion electrons emitted in the decay of the isomer are shown in figure 3.

Rounding off the heavy element spectroscopy studies was completion of the analysis of data on 253No which was obtained in an earlier experiment with JUGOGAM. The analysis was presented in the thesis of S. Eeckhautd (JYFL research report No.8/2006). An earlier study of 253No carried out at Argonne National Laboratory speculated that the rotational structures observed were based upon the [624]7/2+ neutron orbital, the 7/2+ band head being at an energy of 355 keV (Reiter et al., PRL95, 032501 (2005)). The high quality of the data obtained at JYFL allowed the identification of interband M1 transitions, giving a measure of the single-particle g-factor, g_K, from gamma-ray intensity ratios. The result obtained suggests that the rotational structures observed are due to the [734]9/2- configuration which is the ground state of 253No. Several high-energy transitions were also observed in the data, and it was speculated that these may be due to the decay of high-lying three quasiparticle configurations. The spectrum of prompt gamma-rays from 253No is shown in figure 4. The rotational band transition energies are marked.

Studies of heavy elements at JYFL will be boosted by development of the SAGE spectrometer (discussed above) which will allow a new level of sensitivity to be reached with the improved efficiency of JUGOGAM II and the higher throughput afforded by digital electronics.

Plunger Coulex: Xe

Recently, a new class of dynamical symmetries describing systems undergoing shape-phase transitions have been introduced; the so-called E(5) and X(5) critical point symmetries (F. Iachello, Phys. Rev. Lett. 85, 3580 (2000) and 87, 052501 (2001)). The X(5) symmetry is assumed to be well established (A. Dewald et al., Journal of Physics G, 31 (2005) s1427), while the E(5) symmetry is still an open question. The level scheme of 128Xe exhibits very promising E(5) features. Therefore, the JUGOGAM array was employed in combination with the...
Köln plunger to determine lifetimes in \(^{128}\)Xe by means of Coulomb excitation and the Recoil Distance Doppler-Shift technique (RDDS) (Figure 5). A 525 MeV \(^{128}\)Xe beam was Coulomb excited by passing first through a Fe foil serving as the “target”. The excited \(^{128}\)Xe nuclei were subsequently “retarded” by a Nb foil and then continued flying into the RITU spectrometer, where they were fully stopped. The scattered Fe nuclei were detected by an array of solar cells. The Nb nuclei were scattered at angles smaller than \(< 10^\circ\) and were, therefore, not detected by the solar cells. Particle-gamma coincidences between the Fe nuclei scattered by the Xe beam and the emitted gamma-rays were used to obtain RDDS spectra at 23 plunger distances.

RDT Plunger Lifetime Measurements of Oblate and Prolate Yrast States in \(^{180,182}\)Hg and \(^{194}\)Po

In earlier RDDS lifetime measurements employing the Köln plunger at RITU the quadrupole collectivity and mixing in mid-neutron shell nuclei close to \(Z = 82\) was probed (PRL 97, 062501, 2006). The results indicated that the collectivity of the prolate yrast bands in \(^{186}\)Pb and \(^{188}\)Pb would be higher than that for identical bands in even-mass Hg and Pt nuclei. Therefore, similar life-
time measurements for yrast states in 180Hg and 182Hg have been performed, where these bands extend down close to the weakly oblate ground state. A beam of 88Sr impinging on stretched 94Mo and 92Mo targets was used to populate excited states in 180Hg and 182Hg, respectively, via 2n- evaporation channels. A 1 mg/cm2 thick Mg foil served as a degrader foil. In figure 6, a sample recoil-gated gamma-ray spectrum from 182Hg shows that with this foil the Doppler shift differences are enough for an RDDS analysis, which is in progress.

Earlier lifetime measurements for the first 2$^+$ and 4$^+$ states in 194Po indicate that the contribution of the oblate intruder structure in the ground state on 194Po is higher than predicted by simple mixing calculations. To shed more light on the onset of collectivity in neutron deficient Po isotopes an RDDS lifetime measurement for 196Po was performed, where the intruder structures should lie higher in excitation energy. The set-up was similar to the one in the Hg measurement and the 113Cd(86Kr,3n)196Po reaction was used.

Experiments, Spokespersons and Collaborating Institutes for the JUROGAM campaign in 2006

Gamma-ray spectroscopy of 195At.
H. Kettunen, Jyväskylä, Finland

Search for Magnetic Rotation and Superdeformation in 200Po.
A. Wilson, Australian National University, Australia

Alpha Decay Tagging Spectroscopy of 110Xe.
B. Cederwall, KTH- Stockholm, Sweden

Identification of low-lying T = 0,1 states in the N = Z nucleus 70Y.
S.N.S. Bondili, R. Wadsworth, University of York, UK

The changing structure of the light Re isotopes: Recoil decay tagging of 190Re.
D. Joss, University of Liverpool, UK

Structure of high -K states in 234No
R.-D. Herzberg, University of Liverpool, UK

Investigation of K-Isomerism in 250Fm.
P.T. Greenlees, University of Jyväskylä, Finland
R.-D. Herzberg, University of Liverpool, UK

Decay studies of the isomers in the proton emitter 151Lu and its daughter nucleus 150Yb.
Z. Liu, University of Liverpool, UK

Gamma spectroscopy of 256No using a radioactive 238U target.
B.Gall, INP Strasbourg, France

Cross-section measurement for the heavy ion radiative capture reaction 92Mo(90Zr,γ)182Pb: Opening up new possibilities for the study of the light lead nuclei.
D. Jenkins, University of York, UK

Recoil-Decay Tagging Spectroscopy of $^{176-178}$Au.
B. Cederwall, KTH- Stockholm, Sweden

Search for breakdown of T=1/2 mirror symmetry: recoil-beta tagging and decay spectroscopy of 11Kr.
D. Jenkins, University of York, UK

Probing the onset of collectivity in 189Po by means of RDDS lifetime measurements.
T. Grahn, University of Liverpool, UK

RDDS lifetime measurements of yrast states in 180,182Hg.
T. Grahn, University of Liverpool, UK

Coulex-plunger lifetime measurements with Xe beams and test of inverse kinematics for future Coulex-plunger experiments.
S. Harissopulos, NCSR Demokritos, Greece
The activity of the RITU group in 2006 focused, as in recent years, on recoil decay tagging in-beam γ-ray spectroscopy studies of the JUROGAM campaign. The neutron-deficient side of the nuclear chart was widely probed. Due to the highly efficient focal plane GREAT spectrometer, many of the in-beam experiments also yielded new results on delayed spectroscopy. With the addition of two VEGA detectors at the focal plane (on loan from GSI), isomeric states were used as probes at the proton drip line (171Pt [1]) and in the super-heavy element region (250Fm [2]).

In the Pb region many nuclei were studied using symmetric reactions. In these studies the lifetimes of lowest exited states were measured utilizing the RDDS plunger technique [3].

In-beam Study of 110Xe

Following the successful study of 106Te in 2005 [Phys. Rev. C 72, 041303 (2005)], the study of the super-allowed alpha-decaying region above 100Sn continued in 2006 with the study of 110Xe [4]. The symmetric reaction of 58Ni(54Fe,2n)110Xe was employed and RITU successfully separated the beam from recoiling nuclei. The half-life of 110Xe, 96(3) ms, is rather long for single correlations to be selective enough to unambiguously identify gamma rays from this nucleus using RDT. Thanks to the selectivity of the GREAT spectrometer and the short 70μs half-life of the daughter nucleus 106Te, recoil-alpha-alpha correlations were performed to select alpha particles and gamma rays originating from 110Xe, see fig. 1.
Combined In-beam and Focal Plane Study of 195At

An in-beam study on the proton-unbound nucleus 195At was performed using 56Fe beam on a 141Pr target [5]. Gamma-ray transitions were identified from the $1/2^+$ intruder ground state and from the $7/2^-$ isomeric state. This in-beam study resulted in evidence that there is a significant E3 branch between the isomeric $7/2^-$ state and the $1/2^+$ intruder ground state (Fig. 2).

Fig. 2. Energy spectra of recoil-gated prompt γ-rays from the 56Fe + 141Pr reactions gated by the α-particle decays from $7/2^-$ isomeric and $1/2^-$ ground states in 195At.

Recoil-beta Tagging (RBT)

Recoil-beta tagging (RBT) tests in the mass region $A = 70 \sim 90$ were continued. In these tests the planar Ge-detector was replaced with a plastic scintillation detector in order to improve the β-particle collection efficiency. Following the RBT-tests, transitions in 74Rb and in 78Yb were identified and studied using the symmetric reactions 36Ar + 40Ca and 40Ca + 40Ca, respectively, at Coulomb barrier energies. In these experiments, the conventional 300 μm thick DSSD
implantation detector was replaced with a 700 µm thick detector [6].

A Radiative Capture Reaction Test

A heavy ion radiative capture reaction test [7] was performed in September using the combination of a 90Zr beam on a 92Mo target. The one neutron evaporation channel was clearly identified although the available beam intensity did not allow an unambiguous identification of the radiative capture channel.

Proton Unbound Francium Isotopes

One of our main research activities has been to study proton unbound trans-lead nuclei. In November 2006, an experiment in the heavy trans-lead proton unbound region was carried out [8]. The francium isotopes 197,198Fr were studied using reaction of a 55Mn beam (a new beam development) on a 144Sm target. The beam intensity was not enough for a detailed study of 197Fr and only one event was identified. Development work to produce high intensity beams, to enable experiments in this difficult but fertile field to be performed, is urgently needed.

The New Vacuum Mode Separator Project

The new vacuum mode separator project which started two years ago has progressed. The quadrupole triplet has been purchased from Danfysik and will be delivered to the laboratory in spring 2007 (Fig. 3). We hope to order the magnetic dipole during 2007. Funding for the most expensive part, the electric deflector, is still an open question. Certain fusion reactions have been simulated more accurately to demonstrate the perform-
ance of the new separator. Web pages for this project have been developed and are located under the RITU web pages [9].

![Diagram of the ion-optical principle of the new separator.](image)

Fig. 3. Ion-optical principle of the new separator (horizontal plane). The energy dispersion from the deflector is cancelled by the magnetic dipole. The mass dispersion from the dipole gives the mass resolving power. The quadrupole triplet is used to achieve point-to-point focusing in both directions.

Spokespersons and collaborating institutes:

1. B. Cederwall, C. Scholey
 Royal Institute of Technology (Stockholm), University of Liverpool, CLRC Daresbury Laboratory
2. R. D. Herzberg, P. Greenlees,
 University of Liverpool
3. T. Grahn, A. Dewald,
 IKP Köln, TU München
4. B. Cederwall, B. Hadinia
 Royal Institute of Technology (Stockholm), University of Liverpool, University of York, CLRC Daresbury Laboratory
5. J. Sarén, M. Nyman, J Uusitalo,
6. D. Jenkins, S. N. S. Bondili, R. Wadsworth,
 University of York
7. D. Jenkins,
 University of York
8. J. Uusitalo, J. Sarén,
It was a tragic year for our team. On January 17, as a result of complications after an accident, we have lost Svetlana Tretiakova from JINR Dubna. Svetlana was the world specialist on solid tracking detectors and a key person of two experiments approved for 2006. The second blow came on June 18 with death of Vladimir Lyapin – Technical Coordinator of ALICE T0 detector and renowned expert on fast timing. We also had to endure unwelcome developments in computing and administration. Nevertheless, we were able to fulfil our research plans aided by our outside collaborators who stayed in Jyväskylä for the equivalent of 1290 visitor-days. Our team has carried out 12 in-beam experiments at JYFL that took a total of 60 days (1433 hours of beam on target), conducted a major test at CERN PS and took part in detector developments in Catania.

At low energies a major experimental effort was carried out to study dynamics in binary fragmentation at masses below A=150. The two-week experiment involved over 20 scientists from 7 European laboratories. In the other demanding experiment, the shape of the fusion barrier in the reaction of 20Ne with Sn and Pb isotopes was studied. It involved 3 different registration techniques in two separate setups together with multiple energy changes of the cyclotron beam. We have also continued deep sub-barrier studies of fission and measurements of rainbow scattering. A new method (B-TOF; see Javanainen, et al. in the publication list) for energy loss of charge heavy ions has been invented and intensively utilized in 2006. The year ended with measurement of 110 MeV 4He scattered on carbon in an attempt to revive Bose-Einstein condensation properties of the second 0$^+_2$ state in 12C.

In 2006, ALICE T0-C and T0-A arrays were built and pre-commissioned as planned, in spite of the shift in installation. According to the new LHC schedule, the arrays will be installed in the cavern in March and July of 2007. The final round of simulations aiming at verifying the role of T0 in trigger and luminosity measurements is well advanced. The work on T0 fast electronics and the integration with readout, slow control, and DAQ have been proceeding as planned, although the unexpected death in June of the Technical Coordinator of T0 (see inset) was a very heavy blow to our team and to our work.
High-pT Physics

Our group explores partonic properties and their modifications in the excited nuclear medium. Building on the experience from the analysis of RHIC data obtained by the PHENIX collaboration, we have developed various methods of extracting the parton intrinsic transverse momentum k_T and jet fragmentation transverse momentum j_T from the two-particle azimuthal correlation function. This activity was aimed at preparing the analysis tools for extraction of these quantities from ALICE data and at testing predictions related to the k_T-broadening and jet transverse heating.

We were also developing methods for extraction of the fragmentation function from the direct-photon associated distributions and from the particle distributions associated to fully reconstructed jets. These measurements are vital not only for understanding of the processes behind the creation and evolution of QGP but also for exploration of fundamental QCD properties. There is a growing interest even in the string theory field to confront heavy ion data with various predictions emerging from the Maldacena’s conjecture of duality between a compactified M/string theory in Anti-deSitter spacetime and large-N conformal theory which provides a connection between string theory and high-temperature QCD.

Further, using decay topology, we have also produced a reconstruction algorithm for charged kaons registered by TPC. In particular, we have addressed the question of whether the identification range achievable in ALICE allows us to use charged kaons – the dominant carriers of strange quarks – to get insight into the properties of the deconfined matter. The results of these studies have formed the basis of the first Finnish Ph. D. thesis on ALICE. The thesis “Detection of charged kaons using the decay topology in ALICE TPC” was defended by Mariana Bondila on May 22, 2006. The opponent was Prof. Rene Bellwied from Wayne State University in Detroit, Michigan, and the supervisor Doc. W.H. Trzaska.

Since the Tier-1 level data analysis in Nordic countries is coordinated by the Nordic Data Grid Facility, it is natural that we have also started to enhance the connections to the other Nordic ALICE groups. This activity is coherent with the aim to setup modest local computing resources at JYFL and that of relying on the future CSC-located resources for the Finnish LHC-related data analysis. The first step towards including Finland in the ALICE computing grid was taken by installing the AliEn.
On June 18, 2006 our friend and colleague – Vladimir Lyapin – has passed away. He was overcome by a very violent form of lung cancer that took him away in less than 3 weeks after he was diagnosed.

V. Lyapin’s association with the Department of Physics of the University of Jyväskylä and later also with HIP dates back to 1994. At that time a team of physicists from St. Petersburg’s Radium Institute, in fulfilment of the bilateral agreement signed in 1992, brought to the new Accelerator Laboratory the first parts of HENDES – High Efficiency Neutron Detection System. Volodia (as he was known to his friends) was in charge of the fast electronics and MCP detectors but his competence included nearly all aspects of experimental nuclear physics. For instance, he has developed an excellent instrument for pulse analysis from fast phototubes, a sophisticated Master Trigger Unit, several generations of fast amplifiers and CFD modules, etc. His devices were used in experiments at CERN, GSI in Darmstadt, ILL in Grenoble, KVI in Groningen, and laboratories in Catania, Legnaro, Dubna and Warsaw.

In 1998 Volodia was part of the consulting team evaluating feasibility of carrying out bonding for ALICE SSD in Finland. Since that time Volodia’s involvement in ALICE continued to grow and already in 2000 he became a full-time employee of HIP. At that time he worked on the design and tests of the MCP-based Forward Multiplicity Detector (FMD) for ALICE. Although, the collaboration finally opted for a less sophisticated but cheaper option for FMD, Volodia’s expertise and the excellent timing results achieved in test experiments at CERN have won for HIP the leadership of T0 – the key timing and fast trigger detector in ALICE. Professional know-how and pleasant personality have quickly convinced the collaboration to entrust Volodia with the mandate of Technical Coordinator of T0. In that capacity he was overlooking the work of a dozen of research engineers in 4 institutes. His electronics was adopted in part by other ALICE detectors (V0 and TRD wake-up). Fast timing techniques perfected with Volodia’s significant contribution for the needs of the LHC experiment were also used at JYFL. Especially impressive is the impact made by the new picoseconds-timing on TOF-based energy loss measurements of charged ions. Last but certainly not least is Volodia’s contribution to teaching. His patience and thoroughness in explaining the fundamentals of electronics and experimental techniques to scores of M.Sc. and Ph.D. students at JYFL were truly exemplary. We all miss him a lot.

in Memoriam

The accelerator-based materials physics group’s work has in 2006 become more directed towards biomedical research with ion beams. The areas on which we focus are: (i) the development of MeV ion beam lithography (ii) modification and characterisation of materials with ion beams and (iii) the application of radioactive ion beams from the IGISOL facility.

Group photographed around the Pelletron RF ion source. Left to right Timo Sajavaara, Sergey Gorelick, Mikko Laitinen, Ananda Sagari, Harry Whitlow, Somjai Sangyuenyongpipat, Nitipon Puttaraksa.
The most significant development has been that the Technical Research Centre of Finland has donated their 1.7 MeV Pelletron accelerator facility to the Accelerator Laboratory. This machine is extremely well suited for materials and thin film research but also it will be able to act as efficient focus for collaboration with commercial entities at local to international levels.

Deposition of Ca-P-O Films by Means Of Atomic Layer Deposition and Ion Sputtering

Calcium phosphate ceramics such as hydroxyapatite (HA) are one of the most promising implant coating materials due to their good biocompatibility. Two deposition techniques were used to produce thin film coatings: atomic layer deposition (ALD) and ion-beam sputtering.

The correct stoichiometry could be tailored for atomic layer deposited films and they showed characteristic HA X-ray diffraction peaks when annealed in a moist Ar atmosphere at 800 °C.

Ca-P-O thin films were processed by atomic layer deposition (ALD). The resulting films were analyzed by XRD, XRF, FTIR, TOF-ERDA and AFM to determine film crystallinity, stoichiometry, possible impurities and surface morphology. As-deposited films contained significant amounts of carbonate impurities but the annealing at moist N₂ flow reduced carbonate content even at 400 °C. The as-deposited Ca-P-O films were amorphous but rapid thermal annealing promoted the formation of the hydroxyapatite phase (Fig. 1). According to the bioactivity studies cell proliferation was enhanced on as deposited ALD-grown Ca-P-O films and greatly enhanced on films annealed at 500 °C in comparison with reference cells cultured on borosilicate glass.

Ion-sputtering was studied as a room temperature deposition technique. Pressed high purity hydroxyapatite targets were bombarded using nitrogen, argon and krypton beams at different acceleration voltages. In order to compensate the P-loss during the sputtering process, a mixture of high purity hydroxyapatite powder and red phosphorus was also used. Comparative theoretical studies to determine the sputtering yield of different elements in the target were done using SRIM simulations. Time-of-flight elastic recoil detection analysis (TOF-ERDA) using a heavy 16 MeV ⁶³Cu⁺⁺ ion beam was used to determine the film composition (Fig. 2). The Ca/P atomic ratio for HA is 1.67, the closest Ca/P atomic ratio of 1.6 (approaching to 1.67) was obtained for the film sputtered using Ar as feedstock at 10 kV from a HA + red phosphorus target corresponding to 44 at.% P. The biocompatibility of the films was investigated using osteoblast-like cells. For films deposited under optimal conditions the osteoblasts exhibited dendritic growth,
indicative of more realistic chemical signalling than for other substratum e.g. polystyrene or plain glass.

Lithographically Produced Cell growth Substrates

MeV Proton Beam Writing (PBW) has the capability to write extremely high aspect ratio 3D microscale structures with vertical sidewalls and nanometer-scale precision. One of the main applications of PBW is production of 3D structures with geometrically defined nanometer-scale features for biomedical research at the cellular and subcellular-level. Our goal has been to produce and study surfaces with controlled features on a µm and nm scales to be used as growth substrates for bone cells. Osteoblasts, the cells responsible for bone production, were cultured on lithographically modified surfaces of two materials: SU-8 and PMMA. The PBW system at the National University of Singapore was used to fabricate high aspect ratio structures (in PMMA), while 2-dimensional low aspect ratio structures were fabricated using conventional electron beam lithography and UV lithography in SU-8. It was found that SU-8 can be used as a substrate material for osteoblast cell culture studies if the surface was treated with oxygen plasma. The osteoblast attachment, migration and cytoskeleton organization on these micron and nanometre structures behaved in remarkably different ways (Fig. 3).

Fig. 2. a) TOF-energy histogram from 100 nm thick film measured with 16 MeV 63Cu$^{7+}$ ions. The film was sputter-deposited using argon and 6 kV acceleration voltage on a borosilicate substrate. b) The corresponding elemental depth profiles.

Fig. 3. Fluorescence confocal microscope images of murine osteoblasts cultured on PBW-machined PMMA/sputtered Ca-P-O/glass substrate. a-b) Wide channels (an arrow points at a typical cell growth on smooth PMMA surface). c-d) Narrow channels. Blue denotes cell nuclei.
Bioimaging with MeV Ions

New methods of imaging biological cells and tissue have recently undergone an upsurge of interest. Scanning Transmission Ion Microscopy (STIM) has the capability of structural imaging of biological materials. The energy straggling associated with the ions traversing the tissue growth substrate is the limiting factor for the depth resolution while the attainable beam spot size limited the lateral resolution. Through a combination of directly cultivating the cells on the SiO$_2$-pasivated surface of a Si p-i-n diode used to determine the energy of transmitted ions and a using a 2MeV 4He$^+$ beam focused to an 80×90 nm2 spot size, we were able to demonstrate the imaging of single cells with sub-100 nm spatial resolution. Various representation techniques of the 4-dimensional data were investigated using the BioimageXD software. An example is illustrated in Fig. 4 which presents energy-loss slices through the cell in a way somewhat akin to tomographic imaging. Clearly the organelle structure can be clearly seen with the nucleoli having the greatest energy loss. The nuclear membrane and nucleoli can be clearly discerned and the cell membrane is very sharply delineated.

Lithography System Development

MeV ion beam lithography system for writing high aspect ratio 3D patterns has been developed at the Jyväskylä accelerator laboratory. The system employs a programmable proximity aperture to define the beam. The proximity aperture is made up of Ta blades with precise straight edges that cut the beam in the horizontal and vertical directions. The blade position and dimensions are set by a pair of high-precision linear-motion positioners. Edge-polishing of a Ta aperture blade with 2000 groove SiC sandpaper followed by diamond paste, resulted in an edge roughness of better than 100 nm peak to valley deviation from straightness over 4 mm, as measured with a profiler.

The sample is mounted in a vacuum chamber on a X-Y-Z stage capable of moving with 100 nm precision steps under computer control. This allows entire pattern elements (horizontal and vertical lines, rectangles, squares)
with sizes up to ~500 µm to be written in one step (Fig. 5). This approach considerably speeds up the writing time for large patterns compared to writing by scanning a small spot over each pattern element.

Simulation of Slit Scattering

The performance of the PPAL (programmable proximity aperture MeV ion beam lithography) system is primarily governed by the quality of the proximity aperture. Pattern edge sharpness is set by the beam divergence, aperture blade straightness, and secondary and scattered particles from the aperture blade edges (see Fig. 6). The analytical approach for pattern edge sharpness calculations is not straightforward. Therefore Monte Carlo simulations were used. Ray tracing simulations using the object oriented GEANT4 toolkit were performed to investigate the performance of the proximity aperture. The GEANT4 toolkit provides comprehensive detector and physics modelling capabilities, as well as a complete set of functions like ion tracking, material specification and geometry description.

The results indicate that the edge-scattering will not significantly affect the pattern edge sharpness. The predictions will be refined and validated as soon as experimental data becomes available in early 2007.

Theoretical Studies of Ion-Matter Interactions

Our theoretical activities have focused on maintaining know-how in order to give postgraduate courses at an advanced level and to compliment the experimental program with recent theoretical developments. Many practical applications of MeV ion beam lithography are based on atomic displacement damage. As the attain-
able beam focus reaches the nanometre region the conventional broad-beam displacement damage approaches are inadequate to describe radial interstitial and vacancy from a nm-scale focused primary beam. We used a hybrid approach where the primary ions are followed using the SRIM binary collision approximation and coupled to molecular dynamics code to follow the recoil cascade via the impulse approximation. Nakagawa’s pixel mapping approach was employed to determine the radial defect distribution of defects after the cascade had cooled to room temperature. The results (Fig. 7) showed that although high energy primary knock-on atoms contribute many defects, the low energy primary knock-on atoms give rise to the highest concentration of defects and this is located within 1 nm or so of the ion track.

Pb diffusion in Glass with Low and High Implantation Fluences

Diffusion studies of ion implanted Pb in glass continued in year 2006. The high fluency study had implantation energy of 50 keV and fluences varied between 1×10^{14} to 1×10^{16} ions cm$^{-2}$. The preliminary results indicate that the activation energy for Pb diffusion in glass is not concentration dependent with high fluences. Diffusion of Pb in very low concentrations was studied using IGISOL-technique. Very low concentrations of radioactive 210Pb was implanted to the glass substrates, annealing was performed in vacuum, and finally sputtering was used for serial depth sectioning of the sample. Compared to earlier experiment in 2004 the increased number of annealing temperatures and better defined depth profiling gave more coherent results. The data analyses are in progress on both high and low fluence studies and should be concluded in 2007.

Damage Recovery of Silicon Carbide

In March 2006 channeling measurements of 4H-SiC were carried out at Pacific Northwest National Laboratory, PNNL, USA. In these studies 28Si$^+$ ions were implanted at the energy of 550 keV into SiC-crystal at various fluences, and implantation damage and damage recovery due to annealing were measured using channelling-RBS. Channeling spectra were measured from $<0001>$ and $<4403>$ crystal directions. From measured RBS/C spectra the relative disorder in the damaged region is determined (Fig. 8).
For the 2007 SiC diffusion studies to be done in Jyväskylä, a high temperature oven capable of heating samples in a vacuum at temperatures higher than 1850 °C was designed and built (Fig. 9).

Development Plan for the New Pelletron Accelerator Facility

The State Technical Research Centre of Finland donated their 1.7 MV Pelletron Accelerator to the Jyväskylä Accelerator Laboratory. The University of Jyväskylä accepted the donation and provided the financial support to cover the necessary building reconstruction costs. The construction of the laboratory was a major work – this was constructed from three adjacent rooms, a 30 cm thick concrete block needed to be cast under the accelerator and magnets, hundreds of meters of stainless steel pipe was required for the cooling water and a major upgrade of the air conditioning and ventilation system in the laboratory was carried out. Despite the extensive work, the first beam could be accelerated and guided to the target a bit more than four months after signing of the contract and the arrival of the accelerator.

The donation is a complete system that allows automated RBS and channelling analysis. One of the terms of the donation is that the Accelerator Laboratory undertakes to provide up to 200 analyses per year without charge. This means circa 1 day per month of beam time.

The accelerator is particularly well suited for accelerator-based materials research. This is particularly welcome addition because it will enable us to strengthen our ties to the Nanoscience Centre in Jyväskylä as well as providing a tool that can be used by other research groups and industrial partners. The first step in the development plan is to build an ion beam analysis setup which is capable of depth profiling all the sample ele...
ments including hydrogen with better than nanometre depth resolution at the surface. Moreover, this tool will be sensitive enough to measure quantitatively concentrations below 0.1 at.% and ion irradiation sensitive organic materials like polymers. Another high priority development will be the installation of the above described lithography system to one of the Pelletron beam lines.

A longer term plan is to extend the system by building a magnetic focusing system to one of the beam lines and focus the beam to 100 nm or less. In addition to lithography, this will enable biomedical cellular and subcellular imaging below the diffraction limit.

Main collaboration:

Prof. Frank Watt, Dr. Jeroen van Kan, Dr. Andrew Bettiol, Assoc. Prof. Thomas Osipowicz, National University of Singapore, Singapore.
Prof. Johan Helgesson, Dr. Lennart Karlsson, Dr. Jörgen Ekman, Malmö högskola, Sweden
Prof. Juhani Keinonen, Department of Physical Sciences, University of Helsinki, Finland.
Prof. Sulin Cheng, Paavo Rahkila, Department of Health Sciences, University of Jyväskylä, Finland.
Dr. Arno Hahma, Department of Chemistry, University of Jyväskylä, Finland.
Prof. Ragnar Hellborg, Docent Kristina Stenström, Mariusz Graczyk, C.T. Jönsson, Docent Ivan A. Maximov, Department of Physics, University of Lund, Sweden.
Dr. T. Weijers, Australian National University, Canberra, Australia.
Dr. Rainer Grötzschel, Forschungszentrum Drogen-Rossendorf e.V., Germany.
Dr. Heiko Timmers, Australian Defence Force Academy, Canberra, Australia.
Prof. Sachiko Nakagawa, Okayama University of Science, Japan.
Prof. Wilfried Vandervorst, Bert Bijs, Dr. Kai Arstila, IMEC, Leuven, Belgium.
Prof. André Vantomme, IKS, K.U.Leuven, Belgium.
Dr. Kaupo Kütki, Prof. Mikko Ritala, Department of Chemistry, University of Helsinki, Finland.
Prof. Lauri Niinistö, Dr. Matti Putkonen, Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Finland.
Docent Mikael Hult, EC-JRC Institute for Reference Materials and Measurements, Geel, Belgium.
Prof Vilaithong Thiraphat, Assoc. Prof. Somsora Signkarat, Chiang Mai University, Thailand.
Industrial Applications

Space Related Study

2006 was the first full year, when the RADEF facility was operated as one of ESA’s external European Component Irradiation Facilities (ECIF). The following users performed heavy ion and proton tests at RADEF in 2006:

- Alenia Alcatel Space, Toulouse, France
- Comité Européen des Assurances – CEA, Bruyère-le-Chatel, France
- EADS-Space Transportation, Bremen, Germany
- European Space Agency, ESA/ESTEC, Noordwijk, The Netherlands
- Finnish Meteorological Institute
- Helsinki University of Technology, Finland
- Hirex Engineering, Toulouse, France
- Institut für Datentechnik und Kommunikationsnetze – IDA, Braunschweig, Germany
- Instituto Nacional de Tecnica Aeroespacial – INTA, Madrid, Spain
- Oxford Instruments Analytical, Turku, Finland
- Saab Ericsson Space, Gothenburg, Sweden
- Technical University of Denmark – DTU, Copenhagen, Denmark
- University of Helsinki, Finland
- University of Padua, Italy
- Åboa Space Research, Turku, Finland

In figure 1 the distribution of beam time for different users is shown. The total beam time in 2006 was 576 hours, from which 432 hours were used for ESA or non-ESA users. Figure 2 shows the distribution of the use of beam time during the test campaigns.

Fig. 1. Relative beam time distribution between ESA- and non-ESA users. In addition, about 30% of beam time was used for the research or development of the facility. The research means the beam time, which has been allocated via the proposal submitting procedure.
Users performing radiation tests at RADEF often rely on semi-empirical prediction codes for determining the linear energy transfer (LET) of ions. However, it is seen that estimations calculated with different codes can have over 10% discrepancies, especially in the case of heavy ions with higher LET (e.g. xenon and krypton). As a consequence of the modern component fabrication techniques this has became an important issue when studying the radiation durability of electronics [1].

This LET problem and its consequences for accurate SEE testing were addressed at the 1st RADECS Thematic Workshop held in Jyväskylä, May 2005. In order to clarify this inconsistency we measured the LET of 131Xe and 82Kr ions in silicon in the energy ranges from 1.25·A to 8.6·A MeV and 0.35·A to 8.8·A MeV, respectively. The high energy ranges have not been previously measured for these ions.

There is a good agreement with measured values and simulations made with SRIM code[2] at low energies. This can be seen in figure 3.

In the case of Xe at high energies the SRIM code seems to overestimate the measured LET values. The LET Calculator [3], on the other hand, seems to underestimate the LET at higher energies for both ions. For krypton the measured LET values follow the SRIM estimates quite well at low energies (i.e. below 1.5·A MeV). The high energy behavior of LET with respect to SRIM estimations can be divided in two parts: in the energy range from 1.5·A to 5·A MeV the measured values are higher than...
the SRIM values, and above 5.4 MeV measured LET values are below SRIM values. More details can be found in [4] (accepted to IEEE Trans. Nucl. Sci.).

The results obtained are our first steps towards a more precise way of assigning LET values to SEE data as acquired at ground SEE facilities. The LET of other ions used at the RADEF facility will also be measured and it is hoped that a common LET code can be produced in service of harmonizing LET values and ranges used throughout European Component Irradiation Facilities.

Our group also participated in RADEC2006 Workshop in September, held in Athens. We contributed in three papers; two of them were presented by the group members with one oral and one poster [4, 5, 6].

Radio-medicine

The high-intensity proton beams, produced from the LIISA ion source, are used weekly in the production of 123I radioisotope for MAP Medical Technology Ltd. This production covers the needs of radioactive iodine for the 20 largest hospitals in Finland. The 123I based radio-medicines produced by MAP are mainly used in diagnosing brain-based diseases. They are also delivered for medical research work to many other European countries. During the year 2006 39 production runs were performed with the intensities between 40 to 47 microamperes.

Ion Beam Applications

In experiments of Al film implantation a new element, Mn, was introduced to wide range of available ion beams of 6.4 GHz ECR ion source connected to UHV chamber. Superconducting critical temperature T_c was measured in a cryostat in Nano Science Center (NSC). It was found that T_c is suppressed more efficient by Mn implantation with respect to earlier experiments with Fe [7,8], as is seen in figure 4. Therefore, certain CBT based applications needing ~10mK range T_c temperatures can be realized with sequential Mn ion implantation offering competitive and accurate method for T_c suppression with respect to e.g. chemical vapour or sputter deposition.

Other Collaborations

With the funding from National Technology Agency, TEKES, a joint project with VTT Processes (Technical Research Centre of Finland) ended in November. It contained studies of different radiation based analyzing techniques of bio-fuels. The results are given in a master of thesis and were also presented to the steering group of the main project with representatives from Tekes, VTT.
and eight industrial partners. The group found the results so interesting that it recommended starting a new project with the main focus being on neutron measuring techniques. This is planned to be started together with VTT and in collaboration with the ion source and plasma physics group from Lawrence Berkeley National Laboratory, USA.

One other undergraduate thesis project with a local company and the Cancer Therapy Center of the local hospital was also finalized in 2006.

Ten Years Industrial Applications

The Industrial applications program of the accelerator laboratory celebrated 10 years of activity in 2006. With funding from 16 research and development projects, 12 research grants and research service the total income has reached 2.7 M€. In honour of this anniversary, the annual service income and revenues passed the 500 k€ milestone in 2006. The increase can be seen in figure 5, where the annual development of funding is shown.

Students have played a very important role in developing the laboratory’s industrial applications. The main work has been made by them in their research training and master’s or licentiate’s theses (29 in total). In summer 2004 a second senior member joined the group, as RADEF started the ESA laboratory upgrade and more permanent technical expertise was needed. Although the main interest has been in industrial applications, the production of scientific publications has been kept at an active level. A total of 39 publications (22 refereed and 17 proceedings) in international journals have been produced in the research and development projects or in different collaborations since 1996. The annual amount of theses and publications are shown in figure 6.
References

Fig. 6. The annual amount of theses (master or licentiate) and publications made in research and development projects or industrial collaborations during 1996–2006.
Nuclear Matrix Elements Related to Double Beta Decays

Detection of the neutrinoless double beta decay is essential in probing physics beyond the standard model of electroweak and strong interactions. Detection of this decay mode assigns the neutrino to be a Majorana particle. In addition, the related experimental half-lives can be used to access the absolute mass scale of the neutrino. In extraction of the neutrino masses the involved nuclear matrix elements play an essential role:
their uncertainties immediately reflect in uncertainties of the extracted neutrino masses.

The transition amplitude of double beta decay consists of virtual single-beta-decay transitions from the ground state of the even-even mother nucleus to the virtual states of the adjacent odd-odd nucleus (the ‘left leg’), and from the virtual states further to the states of the even-even daughter nucleus of double beta decay (the ‘right leg’). The left and right legs can be tested by using electron-capture and beta-decay data which, unfortunately, are quite scarce. This is why related experiments are urgently called for.

We have suggested recently that the above-described virtual transitions can be probed by experiments measuring muon-capture rates to the involved virtual states. This process involves the capture of a negative muon from the atomic s orbital without emission of a gamma quantum. Muon capture does not probe directly the virtual transitions but rather the wave functions of the virtual states.

In the so-called mass mode of the neutrinoless double beta decay the involved two nucleons exchange a light Majorana neutrino and average value of the exchanged momentum is of the order of 100-200 mega-electron-volts. Thus the involved nucleons are on average at close distance from each other. There is, however, a minimum relative distance after which the two nucleons start to overlap. In nuclear matter this overlapping cannot occur and in the theoretical description of neutrinoless double beta decay one needs to take into account this fact. Based on this it has been argued that special measures have to be taken when performing nuclear-structure calculations using the mean-field picture with residual two-body interactions between the two interacting nucleons. Traditionally these measures boil down to introducing an explicit Jastrow correlation function into the involved two-body transition matrix elements. This method simply cuts out the close-range part of the relative wave function of the two nucleons and thus violates its normalization. Using the Jastrow method in numerical calculations considerable corrections to the involved Fermi and Gamow-Teller nuclear matrix elements have been reported in the literature.

We have recently studied the effect of short-range correlations by using the more complete new concept of unitary correlation operator method (UCOM). In this method a unitary correlation operator moves a pair of nucleons away from each other whenever they start to overlap. This method also conserves the probability normalization of the relative wave function. We have tested this method against the Jastrow method in the cases of 48Ca and 76Ge double beta decays. The nuclear structure part was calculated by using the nuclear shell model for 48Ca decay and the proton-neutron quasiparticle random-phase approximation for 76Ge decay. In Fig. 1 we show the multipole decomposition of the matrix element for the 76Ge decay.

From Fig. 1 and the 48Ca results one concludes that the Jastrow method cuts off relevant parts of the many-body

![Fig. 1. Multipole decomposition of the nuclear matrix element for 48Ca decay. The cases are: no short-range correlations included (squares), with Jastrow correlations (triangles) and with UCOM correlations (diamonds).](image-url)
wave function for high values of angular momentum of the intermediate nuclear states. This leads to excessive reduction in the magnitudes of the nuclear matrix elements. At the same time the UCOM reduces the magnitudes of the matrix elements only moderately, roughly equally for all multipoles. Our results put to question the recent calculations where short-range and tensor correlations cause large effects on the nuclear matrix elements of neutrinoless double beta decay. Study of the effects of the UCOM procedure upon heavier nuclei is in progress.

Theoretical Rates for Highly-Forbidden Beta Decays

Computer programs have been created to compute rates of highly-forbidden beta-decay transitions. We have used these programs to estimate the decay rates of the fourth-forbidden non-unique beta decays of the odd-mass nuclei \(^{113}\text{Cd}\) and \(^{115}\text{In}\). The corresponding decay schemes with experimental data have been displayed in Fig. 2.

The nuclear model employed in the calculations was the microscopic quasiparticle-phonon model (MQPM) where QRPA (quasiparticle random-phase approximation) phonons are combined with BCS quasiparticles to form a non-orthogonal overcomplete basis in which a realistic residual hamiltonian is then diagonalized. The computed half-lives are \(4.95 \times 10^{16}\) years for the decay of \(^{113}\text{Cd}\) and \(1.99 \times 10^{15}\) years for the decay of \(^{115}\text{In}\). These agree reasonably well with the corresponding experimental values shown in Fig. 2.

We have used the formalism of highly-forbidden beta transitions to investigate the decay transitions of Fig. 3 for the beta decay of \(^{96}\text{Zr}\).

The involved transitions between the ground state of the mother nucleus \(^{96}\text{Zr}\) and the states of the daughter nucleus \(^{96}\text{Nb}\) are as follows: transition to the \(6^+\) state is sixth-forbidden non-unique, transition to the \(5^+\) state is fourth-forbidden unique, and transition to the \(4^+\) state is fourth-forbidden non-unique. Our calculation shows that the fourth-forbidden unique transition to the \(5^+\) state dominates and the total computed half-life of the decay is \(2.4 \times 10^{20}\) years. There are no measured data on the beta-decay half-life to compare with.

Interestingly enough, \(^{96}\text{Zr}\) decays also via double beta decay with the geochemically measured half-life of

![Fig. 2. Experimental data on the fourth-forbidden non-unique beta decays of \(^{113}\text{Cd}\) and \(^{115}\text{In}\).](image)

![Fig. 3. Single and double beta decays of \(^{96}\text{Zr}\). Data on the decay Q-values and excitation energies of the first three states of \(^{96}\text{Nb}\) are also indicated.](image)
(3.9±0.9)×10^{19} \text{ years}. Comparing the computed beta-decay half-life with the geochemical double beta half-life indicates that ^{96}\text{Zr} decays principally by double beta decay.

Detection Rates for Supersymmetric Dark Matter

The lightest supersymmetric particle, LSP, of supersymmetric theories of particle physics is considered to be an important candidate for constituents of cold dark matter (CDM) of the Universe. Nucleus-LSP elastic scattering can be used for direct detection of the LSP and that is why it is of great interest to chart the possible detector nuclei and their sensitivity to the LSP detection.

We have calculated the structure of the ground states of the ^{23}\text{Na}, ^{71}\text{Ga}, ^{73}\text{Ge}, ^{127}\text{I} and ^{133}\text{Cs} detector nuclei by using the nuclear shell model. Since the scattering rate of the LSPs is spin dependent for the used odd-mass detector nuclei, the description of the magnetic moments of the ground states of these nuclei is extremely important. Our shell-model results reproduce the measured magnetic moments quite well. We were able to summarize our results in a way that enables evaluation of the LSP detection rates independently of the used parametrizations of supersymmetric models. Studies of the inelastic channels of LSP detection, e.g. for ^{83}\text{Kr}, ^{77}\text{Ge} and ^{127}\text{I} are in progress.

Systematics of Alpha-Decay Hindrance Factors for Rotational States

We have used a simple model to explain the alpha-decay fine structure in rotational nuclei. We have used a coupled-channels formalism to estimate decay widths and a double-folding procedure to compute the interaction between the decay daughter and the alpha particle. The simple rotational model is able to explain very well the total half-lives and decay widths to the first 2^+ states. Our analysis reveals that the effective nucleon-nucleon interaction is influenced by alpha clustering and this dependence changes with the mass of the decaying nucleus. Hence, alpha-decay fine structure is in a position to improve our knowledge about how the effective nucleon-nucleon potential changes in the presence of alpha clustering.

Our results for decays to the first 4^+ states have not the same quality as the results for the 2^+ states, but nevertheless are in fair agreement with the data for decay widths and half-lives. Interestingly, our results for the intensity of decay to a rotational state depends on the deformation of this state. This pattern is, however, not in agreement with part of the data on decays to the 4^+ states. The reason for this deviation is still unclear.

Gamma and Beta Decays Involving Two-Phonon Structures

We have developed the Microscopic Anharmonic Vibrator Approach (MAVA) for microscopic description of low-lying two-phonon states in even-even nuclei. The building blocks of the two-phonon states are the quasiparticle random-phase approximation (QRPA) phonons. A realistic microscopic nuclear Hamiltonian is diagonalized in a basis containing one-phonon and two-phonon components yielding a dynamical mixing of these two degrees of freedom. We have used MAVA to describe energetics and gamma decays of low-lying collective states in chains of even-even Cd, Ru and Mo isotopes.

We have extended the MAVA to describe states of odd-odd nuclei and their beta decay to the adjacent even-even nuclei. This model, coined as the proton-neutron
MAVA (pnMAVA), has been applied to describe beta-decay feeding of the low-lying collective states in the 106Pd and 108Pd nuclei. The results have been published and are encouraging. The pnMAVA is currently being applied to the Cd, Ru and Mo chains of isotopes. Since the $3(N-Z)$ sum rule, i.e. the Ikeda sum rule, is quite accurately satisfied by the pnMAVA, it can also be used to predict strength functions of charge-exchange reactions. In a similar vein we can apply the pnMAVA to describe double beta decays in medium-heavy and heavy nuclear systems.

New Extension of the MQPM: The pnMQPM for Beta Decays of Odd-Mass Nuclei

We are currently on the way to extend the formalism of the microscopic quasiparticle-phonon model, MQPM, to its proton-neutron sister model, the pnMQPM (proton-neutron MQPM). In the MQPM a BCS quasiparticle was coupled with a QRPA (quasiparticle random-phase approximation) phonon to create a three-quasiparticle state. Then the residual hamiltonian was diagonalized in a basis consisting of these three-quasiparticle states and all the one-quasiparticle states. In this way the wave functions of states of an odd-mass nucleus were created by using the adjacent even-even nucleus as a reference.

As in the MQPM, also in the pnMQPM the residual hamiltonian is diagonalized in the basis of one- and three-quasiparticle states, but the three-quasiparticle states are based on pnQRPA (proton-neutron QRPA) phonons instead of QRPA phonons. One thus generates the wave functions of the states of an odd-mass nucleus by using the neighboring odd-odd nucleus as a reference. This change in the construction of the basis states is better suited for description of beta-decay transitions in odd-mass nuclear systems since the pnQRPA formalism satisfies the Ikeda sum rule for the reference nucleus. Development and applications of the pnMQPM formalism is in progress.

Large-Scale Computing with the Program ‘Eicode’

The shell-model code EICODE has been under constant development and use during the year 2006. A new method that speeds up j-scheme nuclear shell-model calculations has been developed. The method allows the low-spin states of a nucleus to be calculated up to a hundred times faster than with the previously available j-scheme methods. The new method has been implemented into the shell-model code EICODE. Shell-model calculations for various nuclei involved in the cold dark matter search, such as 83Kr and 133Cs, have been made using the new method.

Other improvements of EICODE are the introduction of seniority truncations, as in the shell-model code NATHAN, and a center-of-mass quantum number truncation scheme for no-core shell model type calculations. The new speedup method also allows an efficient compression of the used density matrix element data, thus making it possible to more easily perform large shell-model calculations that require very large amounts of density matrix elements.
The Nanophysics group is mainly dedicated to experimental research in some of the key issues in nanoscale or mesoscopic physics. Main activities are mesoscopic superconductivity, thermal effects in mesoscopic devices, and the fundamentals of solid state quantum computing. In addition, we do research on the physical properties of single carbon nanotubes.

Thermal Properties of Nanostructures and Radiation Detector Development

Ilari Maasilta

The main research direction of the thermal nanostructure research team led by Dr. Maasilta is to (a) understand energy flow mechanisms in low-dimensional geometries, and (b) utilize this knowledge in the development of ultrasensitive thermal and radiation sensors (bolometry).
Electron-Phonon Interaction in Nanostructures

We have continued to utilize normal-metal-superconductor tunnel junctions (NIS) for ultrasensitive thermometry in sub-Kelvin temperature range. NIS-junctions can be used to characterize the electron-phonon (e-p) interaction in metals very accurately.

Fig. 1. (a) Solid: Temperature of a Cu wire vs. Joule heating power at two different locations. (b) and (c) The measured temperature vs power dependencies are not the same at those two locations.

Group: From the left, first row: Jenni Karvonen and Minna Nevala, second row: Kimmo Kinnunen, Panu Koppinen, Ilari Maasilta, Tero Isotalo and Henri Jaakkola
The main results achieved in 2006 are: (a) Measurement of the e-p interaction in the Kondo alloy Aluminum doped with Manganese for several Mn concentrations. We have shown that by using this material, the sensitivity of a sub-Kelvin bolometer can be improved by a factor of 5 compared to typical materials. This is because the strength of the e-p interaction varies significantly with the concentration of the Mn impurities. Our results will be applied in the next generation bolometers developed for NASA and observatory applications by the National Institute for Standards and Technology (NIST) in Boulder CO. (b) We have discovered that significant temperature gradients develop quite easily even in good conductors such as Cu and Au at sub-Kelvin temperatures. This affects the design of solid state coolers and bolometers, and is critical for the correct interpretation of e-p interaction measurements, but can be understood with the help of e-p interaction theory and electronic thermal conduction by diffusion.

Thermal Transport in Insulating Nanostructures

Theoretical and experimental work on phonon transport in low-dimensional structures is also a focus field. We have started an experimental project to study phonon transport in novel insulating materials, such as SiC and AIN. High quality piezoelectric AIN for this purpose is processed by reactive sputtering in collaboration with Uppsala University. We have developed new lithographic techniques to fabricate complex suspended AIN structures with tunnel junction thermometers integrated. These structures will be used to study the multitude of interesting thermal phenomena associated with low dimensional piezoelectric phonons, which carry EM fields with them. Numerical FEM modelling of phonon trans-
port in complex boundary geometries is performed in collaboration with mathematicians at the St. Petersburg State University.

Development of Tunnel Junctions

As tunnel junctions are of critical importance in our applications, we have also managed to show how their characteristics can be improved. With our home-built vacuum annealing system we have demonstrated that by annealing Al-AlOx-Al tunnel junctions between 350–450 degrees C their characteristics can be improved quite significantly. They become completely stable with time (no aging) and many negative properties of the AlOx barrier disappear (such as unwanted resonances). The change in the measured properties can be explained with the barrier thickness and height both increasing with annealing. This technique appears to have wide relevance in applications such as quantum bit readouts and sensitive measurements of current noise.

Fig. 5. A sample with 8 NbN/TaN/NbN SNS Josephson junctions.

Superconducting Transition Edge Sensors (TES) for X-ray calorimetry

Superconducting transition edge microcalorimeter development continued with a project funded by the European Space Agency, in collaboration with Oxford Instruments Analytical Oy. The long term goal for ESA is to develop a cryogenic imaging spectrometer in the 0.1–10 keV band with a few eV resolution, to be installed onboard a satellite (XEUS). We have shown that using novel geometric designs, the noise properties of the TES sensors can be improved, predicting clear improvements on the detector energy resolution. In addition, we have calculated how to optimally operate TES sensors, when their heat dissipation is limited by a ballistic phonon flow in 2D membranes (has shown to be a realistic situation).

NbN/TaN/NbN SNS Josephson Junction Development for Superconducting Digital Electronics

The superconducting Rapid-single-flux-quantum (RSFQ) logic is the technology with highest speeds of any digital electronics family. It is based on non-hysteretic Josephson junctions, which are traditionally made with tunnel junctions and external shunt resistors. However, in recent years interest has grown on using naturally non-hysteretic SNS Josephson junctions. We have started the development of high quality SNS junctions from top quality epitaxial NbN/TaN/NbN trilayers, fabricated by pulsed laser ablation by our collaborators at the Indian Institute of Technology, Kanpur. The NbN films have critical temperatures ranging up to 17 K, allowing for the possibility that the RSFQ logic can be supported by simple closed cycle coolers operating at around 10 K.
Flux Penetration Avalanches in Ultrahigh Quality Niobium Nitride

We have continued the collaborative project between NSC, Indian Institute of Technology Kanpur and University of Oslo, where the goal is to study the thermomagnetic instabilities occurring with flux penetration into epitaxial NbN films. Images are obtained with the magneto-optical technique (measurements performed in Oslo). Fig. 6. shows how the flux penetration develops with increasing magnetic field. The flux forms sophisticated dendritic avalanche patterns and can have a fractal dimension.

Fig. 6. Flux penetration into an epitaxial NbN film as a function of applied magnetic field, measured by magneto-optical imaging. Image courtesy of T. Johansen, Oslo University.

Mesoscopic Superconductivity

Konstantin Arutyunov

Fig. 7. Mesoscopic superconductivity group inside electromagnetically shielded room constructed specially for precision ultra-low-temperature measurements using 3He-4He Kelvinox-400 dilution refrigerator. Acknowledging extreme accuracy in designing the measuring set-up for their flagship product Oxford Instrument Superconductivity assigned a honorable “Reference” tag to our site.

Nanotechnology

We have refined our method of progressive reduction of pre-fabricated nanostructures by low-energy ion bombardment. Fig. 8. demonstrates evolution of aluminum nanowire after a sequence of Ar⁺ sputterings. Very precise adjustment of ion sputtering parameters enables us to trace evolution of size phenomena on a same nanowire from 100 nm down to 10 nm with accuracy ~ 1 nm (Fig. 9a). In collaboration with VTT patent application FIN-20060719 has been filed in August 2006.
Electron Transport in One-dimensional Superconductors

Progressive reduction of the effective diameter of a nanowire has been applied to trace evolution of the shape of superconducting transition $R(T)$ in quasi-one-dimen-

Fig. 8. SPM pictures illustrating evolution of the same aluminum nanowire after sessions of ion beam sputtering. Arrows illustrate the direction of bombardment with 1keV Ar+ ions. a) Constant angle perpendicular to the plane of the structure. Note progressive development of structural inhomogeneity. b) Sputtering of a similar nanowire at 40° while rotating the substrate. Note the ‘polishing’ effect removing the original sample roughness. In both cases silicon substrate is sputtered faster than aluminum. Plane with grating (height = 0) separates silicon from aluminum.

Fig. 9. a) Resistance vs temperature for the thinnest samples obtained by progressive reduction of the diameter of the same aluminum nanowire Al-Cu126-3. Note dramatic changes in slope of the $R(T)$ dependence when effective diameter is changed by +/- 1 nm. Fitting using ‘orthodox’ thermal fluctuation model is shown with dashed lines for 11 and 15 nm samples. Fitting using quantum phase tunneling model is shown with solid lines.

b) Slowly recorded (~1 hour) resistance vs temperature dependence for 11 nm sample from Fig. 9a. While sweeping the temperature few times perpendicular magnetic field $B = 19.6$ mT was switched on and off. Top branch corresponds to zero field, while the lower one - to field ‘on’. Inset: resistance vs perpendicular magnetic field for the same sample measured at constant temperature and small AC current.
sional aluminum structures. In nanowires with effective diameter <15 nm the R(T) dependencies are much wider than predicted by the model of thermally activated phase slips (Fig. 9a). The effect can be accounted for quantum fluctuations of the order parameter. Negative magnetoresistance is observed in the thinnest samples (Fig. 9b). Experimental results are in reasonable agreement with existing theoretical models. The effect should have a universal validity indicating breakdown of zero resistance state in a superconductor below a certain scale. The work is done in tight collaboration with theoretical group from Institute for Nanotechnology, Forschungszentrum Karlsruhe, Germany.

It has been observed that critical temperature of superconducting nanowires systematically varies with reduction of the wire cross section (Fig. 10). In collaboration with theoretical group of University of Antwerp, Belgium it was shown that the effect originates from size-dependent resonances in the superconducting density of states. The results are published in Physical Review B 74, 052502 (2006).

Tunneling Spectroscopy of Persistent Currents in Superconducting Microrings

Our recent pioneering results on solid state interferometry [K. Arutyunov and T.T. Hongisto, Phys. Rev. B 70, 064514 (2004)] triggered an intensive collaboration with theorists. In collaboration with groups from Institute for Physics of Microstructures, Russian Academy of Sciences and University of Antwerp, Belgium it has been shown that apart from observation of a novel

Fig. 10. Critical temperature $T_{c,\sigma}/T_{c,\text{bulk}}$ versus the square root of the cross section α of a cylindrical Al nanowire. Symbols are experimental data from our own results and from literature, the solid curve is a guide to the eye and indicates the general trend of the experimental results. Inset: the same dependence but in the small-α region.

Fig. 11. a) Experimentally observed magnetic field modulation of a tunnel current in NIS structure with superconducting electrode in the shape of 25 μm x 25 μm loop. The inset shows variation of the period of the oscillations. b) Calculated corresponding dependence of the current density and jumps of vorticity ΔL (inset).
physical effect, the method enables probing of persistent currents in superconducting nanorings (Fig. 11). The results are published in *Europhys. Lett. 75*, 315 (2006). This approach opens wide horizons in experimental study of quantum coherent phenomena in various micro- and nanostructures.

Spin Doping of Low Dimensional Superconductors

Recently there appeared a number of publications predicting unusual behavior of low dimensional superconductors with low concentration of residual magnetic impurities.

In collaboration with the material science group from JYFL cyclotron lab (Dr. A. Virtanen) ion implantation of Fe and Mn into Al thin films was used for effective modification of Al superconductive properties. Critical temperature of the transition to superconducting state was found to decrease gradually with implanted Fe concentration. It was found that suppression by Mn implantation is much stronger compared to Fe. At low concentrations of implanted ions, suppression of the critical temperature can be described with reasonable accuracy by existing models, while at concentrations above 0.1 at. % a pronounced discrepancy between the models and experiments is observed. Å-resolution TEM analysis (Fig. 12b) has been done in collaboration with EMAT group of University of Antwerp, Belgium. Results will be published in *Sol. St. Comm.*, (2007).

Fig. 12. a) Dependence of critical temperature in Al films grown on SiN/Si substrates and subsequently implanted with Fe and Mn. Lines stand for theoretical predictions of the Abrikosov- Gork’kov (AG) model and the one assuming impurity atoms interacting antiferromagnetically (AF). b) High resolution electron microscopy (HREM) image along the [110] zone of an individual Al grain of a structure implanted with Mn with dose 5×10^{14} 1/cm2. Dislocations and associated stacking faults along {111} planes are marked by white arrows. Inset: electron diffraction (ED) pattern taken in [110] direction reveals undeformed cubic Fm-3m lattice for the Al grain. Note absence of any inclusions in HREM and distortion of ED pattern due to Mn implantation.
Quantum Engineering

Sorin Paraoanu

In 2006, the Quantum Engineering (QE) unit of the NanoPhysics group has consisted of the following researchers: S. Paraoanu, K. Chalapat, J. Li, S. Ylinen, and V. Haaksluoto. This unit is doing research on the microwave properties of nano-structured materials and on quantum coherence effects in superconducting devices based on the Josephson effect.

Superconducting Microwave Resonators

In 2006 we have fabricated and tested on-chip CPW superconducting resonators (Fig. 13) and microwave resonant cavities. Testing of these systems at frequencies up to 40 GHz, as well as more in-depth studying of qubit-resonator phenomena, will continue in 2007.

Microwave-induced Coupling of Superconducting Qubits

We have investigated the quantum dynamics of a system of two capacitively coupled quantronium circuits under microwave irradiation (Fig. 14). A quantronium circuit (also called charge-flux qubit) is a split Cooper pair box shunted by a relatively large Josephson junction used for read-out. We find that, with the boxes operated at the charge co-degeneracy point, the quantum evolution of the system can be described by a new effective Hamiltonian which takes the form of two qubits with tunable coupling between them (G. S. Paraoanu, Microwave-induced coupling of superconducting qubits, Phys. Rev. B 74 (2006) 140504(R)). This Hamiltonian can be used for experimental tests on macroscopic entanglement and for implementing quantum gates.

Interaction-Free Measurement with Superconducting Circuits

We have proposed an interaction-free measurement protocol for a quantum circuit consisting of a superconducting qubit and a read-out Josephson junction. By measuring the state of the qubit one can ascertain the presence of a small pulse of electric current without any disturbance due to energy exchange with the continuum of states outside the washboard potential well in which the qubit is localized. An experiment of this type would constitute a test, at the macroscopic level, of a strongly nonclassical consequence of quantum mechanics. Two fundamental physical processes, interferometry and tunneling, are combined here to demon-

Fig. 13. Colored SEM picture of a micro-resonator (a) fabricated on a Si chip, connected to a 50Ω transmission line through on-chip interdigitated capacitors (b), and coupled to SQUID structures (c,d,e).
strate the equivalent of the optical Mach-Zender interaction-free detection scheme for this superconducting quantum circuit (Fig. 15). (G. S. Paraoanu, *Interaction-free measurements with superconducting qubits*, Phys. Rev. Lett. 97 (2006) 180406; G. S. Paraoanu, *How do Schrödinger cats die?*, J. Low Temp. Phys. 146 (2007) 263). The crossover between standard interference effects (such as the shift in the interference pattern due to phase difference accumulated) and the interaction-free phenomenon is also discussed.

Carbon nanotubes are seen as one of the main components in future nanotechnology and already today as a superb system in which the phenomena of nanoscale physics can be investigated. The carbon nanotube consists of one or multiple concentric shells of seamless graphite sheets. A single wall nanotube (SWNT) has a diameter of 1–3 nm while the multiwalled nanotube (MWNT) may have any diameter in the range of 2–50 nm. Depending on the wrapping angle of the graphite sheet (chirality), an individual nanotube can be either metallic or semiconducting. A fact of fundamental importance is that the charge carriers in nanotubes of all sizes are truly delocalized. Ballistic conduction over μm-sized distances have been measured in carbon nanotubes. The axial Young’s modulus of an individual nanotube sheet is approximated by the in-plane modulus of graphite (≈1 TPa), which makes the carbon nanotube one of the stiffest material that exists. A single carbon nanotube is thus an excellent free-standing electrical conductor.
In a project funded by Tekes (The Finnish Technology Development Center) we investigate the use of single CNTs as memory elements in digital nanoelectronic circuits. Figure 16 shows the conductance of a field effect transistor (FET) based on single CNTs as a function of gate voltage, swept in both directions between negative and positive polarity. A very robust hysteresis of the gate dependent conductance, due to charge trapping in the backgate oxide, emerges which can be utilized to define non-volatile memory states of the transistor.

Atomic Force Microscopy (AFM) is most crucial to much of the experimental research in nanotechnology. In the standard type of AFM, the tip responds to the local topography of the surface via (normally) attractive long-range Van der Waals forces and repulsive close-range forces. Normally the AFM is operated in ambient conditions, that is, in air and the humidity that comes with it. To obtain true atomic resolution operation in UHV (ultra high vacuum) conditions is often required. A type of AFM that lies between the ambient and UHV-type instruments is the so called environmental-AFM (env-AFM) which is operated inside a chamber as the UHV-AFM, but has a more modest level of vacuum (down to 10^{-6} mbar vs. the 10^{-9} mbar of the UHV), and therefore is more practical to use. In addition to vacuum the env-AFM has the possibility to operate in different gaseous atmospheres, full control of humidity, and also temperature control above and below room temperature, and therefore offers many functionalities otherwise not possible in AFM work. We have constructed an environmental chamber for a standard commercial AFM, shown in Fig. 17. Our design differs from earlier reported schemes especially in that the instrument can be efficiently operated inside the chamber and yet be easily reconfigured into the original setup.
Ultracold Atomic Fermi Gases

During 2005 and 2006 the observation of vortex lattice states in rotating gases presented the so far strongest case for superfluidity in the atomic Fermi gases along the whole crossover region from weakly interacting fermions to weakly interacting bosonic molecules of fermions. The unprecedented control of interactions, internal and external degrees of freedom, and thermodynamics offered by the Fermi gases continues to give rise to important experimental results also relevant to high - T_c superconductors, nuclear collision physics, physics of neutron and compact stars, quantum information and quantum computing.

In late 2005 and during 2006 a number of experiments on polarized (unequal number of spin up and spin down fermions) Fermi gases launched a vigorous study on the different phases of the superfluid Fermi gas, including the possible realizations and observations of BCS - (Bardeen, Cooper, Schrieffer), BP - (breached pairing), FFLO - states (Fulde, Ferrell, Larkin, Ovchinnikov), and deformed Fermi surface states (DFS). We have continued and extended our studies of the imbalanced gases in various geometries.

Increasingly more precise measurements on imbalanced Fermi gases appeared during 2006 leading to several suggestions for the spatial structure of the imbalanced condensates. The suggested phases range from phase separation into a superfluid droplet surrounded by a normal gas to more exotic superfluid states characterized by coexistence of magnetic and superfluid order. The imbalanced Fermi gases were studied in traps with particular focus on the possibility of observing the non-standard magnetically polarized superfluid pairing states with oscillating order parameter found in our theoretical calculations. Moreover, it was suggested that the nature of the order parameter could be probed by using recently developed RF spectroscopy.
Fermions in optical lattices made of crossing laser beams present new exciting possibilities and a promise of technological applications especially in the areas of quantum metrology, and precision spectroscopy. Optical lattices also make direct simulations of tailormade quantum Hamiltonians possible. We have extended our earlier work on three dimensional optical lattice to the case of imbalanced gases and have found that while in the literature the zero temperature phase diagram of a free imbalanced gas is dominated by the phase separated state and the FFLO area is negligibly small, in a lattice the two phases are equally visible.

Three component Fermi gases are also experimentally realistic in the very near future and have until now, received only scant attention. For this reason, we studied a homogeneous three component Fermi gas, where the components are different alkali atoms. We generalized the well known two component BCS - theory into the three component BCS - theory.

Current crossover experiments are all conducted with broad Feshbach resonance taking place over a large region of magnetic field values and which is equivalent to the case of a weak coupling of the fermions to the closed molecular channel. However, there is an experimental effort to also drive the crossover with the experimentally observed narrow resonances. In this connection we have extended the Leggett crossover model to also cover the case of narrow resonances and subsequently studied the effect of the width of the resonance on several physical quantities in the crossover regime.

Dielectrophoresis and Polarizability of DNA Molecules

Dielectrophoresis (DEP), i.e., movement of a polarizable particle induced by a nonhomogeneous electric field, is an electrical analogue of the optical tweezers. The dielectrophoretic force is determined by the gradient of the electric field square and the polarizability of a particle ($F_{\text{DEP}} = \nabla (\varepsilon'))$. We have shown that the dielec-
Fig. 2. Differences in the momentum distributions of the two species of Fermions with a population imbalance in an optical lattice with average densities of 0.05 (top row) and 0.2 (bottom row) atoms / lattice site. The figures on the left show the breached pairing (BP) phase with a symmetric breach around the Fermi surface and the ones on the right show the asymmetric breach of the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase.

trophoretic trapping combined with a thiol-based (−SH) immobilization is an efficient method for positioning of nanoscale DNA molecules to lithographically fabricated electrodes. The DEP trapping and the thiol-based immobilization was intensively studied using in situ confocal microscopy. Dependency of the trapping efficiency on a DNA length, varying from 27 to 8461 base pairs, and a frequency of the applied AC-signal were studied. The immobilization of DNA modified with different linkers, i.e. hexanethiol and dithiol phosphoramidite (DTDA), was studied with a theoretical support from density functional theory calculations performed by Hannu Härkkinen.

Finite element method simulations were used in conjunction with the analysis of the data obtained from the DEP experiments performed using confocal microscopy. In addition to the DEP efficiency, these studies revealed information about the DNA polarizability. Especially the dependency of the polarizability on the length of the DNA fragment and the frequency of the applied AC-signal (See Fig. 3) was clarified.

For nanoscale objects, such as short DNA molecules, the Brownian motion poses a challenge due to an increase in the thermal drag force as the dimensions of the trapped particle decrease. To further extend the DEP-based method to nanoscale, we have replaced one of the lithographically fabricated fingertip-style electrodes by a carbon nanotube (CNT), which has a smaller diameter than a lithographically fabricated electrode and thus generates higher gradients to the induced electric field. Therefore, it offers higher DEP forces even by using relatively low trapping voltages. It was observed that CNT indeed functions as a more efficient DEP trap for nanoscale DNA if compared to the lithographically fabricated nanoelectrodes (See Fig. 4).

Fig. 3. Polarizability of DNA fragments as a function of a length of the molecules. It was observed that the polarizability per base pair increases with a decrease of the molecule length, which is an indication of a counter-ion cloud polarization.
This work has been done in collaboration with chemists and biologists at NSC (V. Hytönen, T. Ihalainen, E. Niskanen and M. Vihinen-Ranta).

Molecular Scale Memory Elements

Due to fundamental physical limitations, the scaling down of current designs in silicon-based microelectronics is causing them to function unreliably. Molecular electronics can, in principle, overcome these limitations and especially single walled carbon nanotubes (CNTs) are an attractive material due to their unique electronic, mechanical, and chemical properties. Depending on the diameter and the chirality of the CNT, it behaves as one-dimensional metal or semiconductor. These properties together with their great mechanical toughness and chemical inertness make them promis-
ing material for creating reliable high-density arrays of molecular-level devices.

One of the interesting applications of nanotubes would be to utilize their exceptional properties to fabricate high density memory elements. We are studying the possibilities to create such a memory element by utilizing a semiconducting single walled CNT in combination with a carefully chosen nanometer thin dielectric layer. In Fig. 5, we show an atomic force micrograph of one of our typical nanotube devices. It is made on top of a highly doped Si substrate covered with the thin dielectric layer. The highly doped Si substrate beneath the dielectric layer is used as a back gate. We have observed hysteresis which makes the device a poor FET, but instead an excellent memory device with two different conductance states at zero gate voltage. The memory effect is highly reproducible and has been seen in the majority of our devices, with a yield of more than 90%.

In order to demonstrate the memory application of the above device, we show in Fig. 6 its conductance response as it is addressed by voltage pulses applied to its back gate, displayed in the upper pane as a function of time. In the lower pane, the conductance response of the nanotube device is displayed. The conductance is switching between two different states, depending on whether the preceding voltage pulse is positive or negative. A positive voltage pulse switches the conductance to its higher value, while a negative voltage pulse reduces the conductance with a factor of 10. Thus the nanotube memory device has well resolved ON and OFF states. Note that these measurements were made at room temperature, further stressing that CNTs may provide solutions to everyday electronics products.

The project is done in collaboration with M. Ahlskog’s and K. Rissanen’s groups at JYU and E. Kauppinen’s group at HUT as well as Nokia Oyj, Planar Inc and Vaisala Oyj.

Fig. 5. An atomic force micrograph of a typical nanotube device.

Fig. 6. A nanotube device is addressed by voltage pulses applied to its back gate, displayed in the upper pane as a function of time. The lower pane shows the conductance response to the voltage pulses. The conductance is switching between two different states, depending on whether the preceding voltage pulse is positive or negative.
We have studied the geometry and electronic structure of pristine and chemically functionalized single-walled carbon nanotubes (SWNT’s). This is done by applying the density functional theory (DFT) of electronic structure which is based on quantum mechanics. The possibility to tune and control the electronic properties of the SWNT’s by threading them inside cyclic crown ether (CE) and \(\beta \)-cyclodextrin macromolecules have been investigated. The noncovalent interaction between the nanotube and the macromolecule in this kind of a rotaxane complex can be changed to covalent bonding by cross-linking them chemically. This can be done by substituting some CE oxygen with a nitrogen or by an oxygen abstraction in the \(\beta \)-cyclodextrin. It is found that SWNT’s maintain their electronic properties upon the noncovalent complexation, whereas the cross-linking introduces new features in the electronic band structure.

Fig. 1. Geometry of SWNT-CE complex (a) before and (b) after substitution of four ether oxygens (red) with trifunctional nitrogen (blue).
The results show that it is possible to form polyrotaxane systems from SWNTs and cyclic supermolecules (see Figure 1) where the electronic properties of the nanotube are preserved. This might enable size-selectivity and separation of SWNTs. Furthermore, it is possible to tune the conductivity of the SWNT significantly by chemical cross-linking. The conductivity change suggests also that properly activated SWNT-rotaxanes could be used as chemical sensors, where the presence of the macrocycle enables a more specific binding site for the target molecule than in the case of a pristine nanotube.

Rotating Fermions and Bosons
In A Harmonic Trap
Matti Manninen

Electrons in quantum dots and weakly interacting fermionic and bosonic atoms in harmonic traps form related man-particle systems. We have studied theoretically the rotational states in such systems and observed strikingly similar vortex formation for both bosons and fermions. Moreover, the rotational spectrum is rather insensitive to the interparticle interaction. For spinless bosons and fermions the vortices are the dominating low energy excitations at small angular momentum, while at large angular momentum the rapid rotation causes particle localization (Reimann et al, New J. Phys. 8, 59 (2006)).

We have shown that, at large angular momentum, the whole many-particle spectrum can be described with rigid rotations accompanied with vibrational modes (Nikkarila and Manninen, Solid State Commun. 141, 209 (2007)). The allowed combinations of angular momentum and vibrational modes are determined by the symmetry group of the localized positions and the statistics of the particles in question.

The rotational states of bosons and fermions are closely related as indicated by Ruuska and Manninen (Phys. Rev. B 72, 153309 (2005)). We have further studied this similarity by converting the exact boson state to the corresponding fermion state and computing the overlap between that and the exact fermion state. The overlaps of corresponding states are in general large (typically 80 %) and the pair correlation functions are very similar to the two types of particles.

In the case of fermions we have also studied the effect of spin to the rotational spectrum. In this case there are many other low energy excitations than vortices and the spectrum becomes very intriguing as seen in Fig. 2 which shows the spectrum for seven electrons. The figure shows the different spin states with different symbols (\(S=7/2\) with black dots, \(5/2\) with blue squares, \(3/2\) with open circles and \(1/2\) with blue stars). We can see a large energy gap above the black dots. This is caused by the localization of the electrons. In the rich spectrum shown in Figure 2 this gap is due to spin excitations, which include spin waves and domain formation.
Magnetism of Fermionic Atoms in Optical Lattices

Matti Manninen

We have used a density functional mean field model to study spontaneous magnetism of fermionic atoms trapped in a two-dimensional optical lattice. Especially we are interested in situations where more than one atom occupies each lattice site. It turns out that the magnetism follows closely the shell structure in the individual lattice wells, emerging as there is an excess of one spin species in a single lattice site. The situation is in fact analogous to the behavior of quantum dot lattices in semiconductors, where the magnetism is governed by the shell structure of the single-dot components (Koskinen et al, Phys. Rev. Lett. 90, 66802 (2003)).

The results show that two-component cold fermionic atoms in an optical lattice establish a rich magnetic phase diagram, and can show analogous effects to the electrons in magnetic solids. The magnetism in the optical lattice is determined by the number of atoms per lattice site, and the depth of the lattice. If the lattice is shallow, for strong inter-site tunneling the lattice does not show any magnetism. For deeper lattices, where the tunneling is small, the total spin of the atoms at a single site is determined by the shell structure in the lattice minima.

For closed shells (so-called “magic numbers” with 2, 6, 10 or 12 atoms per site) the single-wells are non-magnetic. For contact-interacting repulsive fermions, Hund’s first rule applies in a particularly dramatic way, removing the interaction between the same atom species. Antiferromagnetic ordering of the single-site spins was found when a gap at the Fermi level could open up. This was the case at mid shell, with 1, 4, 8, or 11 particles per lattice site. Ferromagnetism occurred at the beginning and the end of a shell.

Figure 3 shows the magnetic phase diagram for a square lattice with 1 to 12 atoms per lattice site, showing the nonmagnetic and magnetic regions for each atom number as a function of the well depth of the lattice.
Divide and Protect: Capping Gold Nanoclusters with Molecular Gold-Thiolate Rings

Hannu Häkkinen and Michael Walter

Synthesis, characterization, and functionalization of size-controlled, ligand-stabilized gold nanoparticles are long-standing issues in the chemistry of nanomaterials. Ligand-protected gold nanoparticles offer an intriguing possibility to economically fabricate building blocks for potential applications in catalysis, sensing, photonics, biolabeling, and molecular electronics. These building blocks are expected to have unique size-dependent physical and chemical properties that have been documented in studies of size-selected gold clusters in the gas phase. Collective efforts by several groups have established a series of Au core sizes in 1–3 nm range that are predominantly formed in the process of reducing gold from metal salt in the presence of phosphines (P-R₃) or thiols (HS-R). A profound understanding of the growth mechanism or of the physical reasons for the observed “magic” core sizes is, however, still lacking due to the complexity of the growth process and the heavy numerical burden of modeling the ligated gold clusters by state-of-the-art electronic structure calculations. Additional complication is brought by the fact that ligand-exchange reactions involving phosphines and thiolates (S-R) have been shown to modify the growth pattern and to lead to stabilization of core sizes different from that of the original compound. Moreover, high sulfur-to-gold ratios result in etching of the gold core. These experimental facts point to the drastically different nature of the gold/phosphine and gold/thiolate interfaces.

We have performed large-scale density functional theory calculations for Au₃₉(PH₃)₁₄Cl₆ (1) and Au₃₈(SCH₃)₂₄ (2) (J. Phys. Chem. B 110, 9927 (2006), Figure 4). The explored systems have core sizes of about 1.1 nm and are chemical homologues to experimentally isolated cluster compounds. The calculations reveal a novel form of gold core protection, namely, by gold-thiolate tetraunits (AuSCH₃)₄; thus, compound 2 can be written as Au₃₈[(AuSCH₃)₄] (2a) This structure is energetically competitive with the one where the gold core is dis-

Fig. 4. A to C: Structures of clusters (1), (2a) and (2b). D: Au core of (1), shown by a 90 degree rotation about the horizontal axis on the left; E: Au-S framework of (2a), with 45 degree rotation about the vertical axis on the left; and F: Au-S framework of (2b). Au: orange-brown, S: yellow, P: red, Cl: green, C: dark grey, H: white.
ordered and the number of metal bonds is maximized (structure (2b) in Fig. 4). The interaction between (AuSCH$_3$)$_4$ and the remaining Au$_{14}$ core in 2a is comparable to the phosphine-Au bond strength in 1, which is suggested to have important consequences for the understanding of ligand-exchange reactions involving phosphines and thiolates. We also discuss the implications of different structure motifs regarding optical spectra of these species.

The density functional theory was used to explore structural, energetic, vibrational, and optical properties of fully thiolated gold clusters (MeSAu)$_x$ with $x = 2$-12 (J. Am. Chem. Soc. 128, 10269 (2006)). Clusters up to (MeSAu)$_4$ adopt Au-S ring conformations, and crownlike structures are formed for larger sizes. The clusters are essentially polymeric and show convergence in structural and energetic properties at (MeSAu)$_4$. The nature of the Au-S bond is polar covalent with a degree of cyclic electron delocalization. Vibrational analysis reveals characteristic Au-S stretch vibrations at \sim300 cm$^{-1}$. Effects of ligand substitution are studied in the case of the tetramer by comparing the results for methylthiolate with hexylthiolate, benzenethiolate, and glutathionate (GS). The choice of ligand has clear effects on electronic properties. For example, the optical gap is \sim1.5 eV lower for (GSAu)$_4$ than for (MeSAu)$_4$.
The previously introduced generic model for elastic material in which mass points are connected by massless elastic beams was further developed so as to reliably describe situations in which large or even plastic deformations appear. This model was implemented numerically such that it can describe crumpling and folding of thin elastic sheets. In collaboration with a research group at MIT, such crumpling and folding processes were simulated under various geometrical constraints and compression rates. Related experiments were done at MIT.
Microfracturing that appears in sapphire crystals under point-force loading can be accurately measured by detecting at very low temperatures the temperature pulses which follow from breaking only a few hundred covalent bonds. Such data produced when testing the CRESST dark matter detection system were further analyzed for their statistical and correlation properties (large international collaboration). We have found previously that the energy distribution of fracture events follows a power law similar to that for earthquake magnitudes. We analyzed further the waiting time (\(t\)) distribution that also appears to display power-law behaviour at small \(t\). Possible precursors preceding large events were as well analyzed.

Stochastic Systems

When analyzing the dynamics of slow-combustion fronts, it became evident that related heat transfer processes need to be better understood if the pinning behaviour of such fronts is considered. We have therefore developed a new method to measure the heat diffusion coefficient of any solid material by recording the time-dependent temperature field under appropriate boundary conditions. The measured temperature evolution is fitted by a theoretical expression, in which the convective transfer of heat away from the sample is included, and in which the heat diffusion coefficient is the fitted quantity. If the specific heat of the material is known, the conductivity coefficient of heat can also be determined. The method developed was calibrated with samples made of pure silicon and pure copper.

We continued our research on theory of interacting particle systems. For zero-range processes in random media, we gave a complete characterization of the stationary distribution in the boundary driven case, and calculated in the thermodynamic limit certain expectations for the motion of a tagged particle. We also studied polymer systems where coupling of stochastic processes produces directed transport. For this purpose, we extended numerical density-matrix renormalization-group techniques for problems including time-dependent potentials. As another example of coupled processes, we analyzed stationary and time-dependent properties of two interacting interfaces.

Soft Condensed Matter Physics

Transport Properties of Porous Materials

We used high-resolution X-ray microtomographic reconstructions of paper and granular materials as samples in \textit{ab initio} fluid-flow simulations by the lattice-Boltzmann method, by which the fluid transport properties of these materials were determined. We analyzed in particular the penetration under external pressure of a non-wetting liquid in a tomographic reconstruction of a sample of paper board (collaboration with the University of Minnesota). The simulated intrusion curve corresponded almost exactly to the one measured by mercury intrusion porosimetry (MIP) on the same sample, provided that the simulation result was interpreted the same way as the MIP result using the Washburn equation. Using image analysis of the tomographic reconstruction, we could however conclude that the MIP result cannot be reliably converted to a pore-size distribution because there are large pores and pore throats shielded by smaller ones. This ‘ink-bottle’ effect was further analyzed by constructing a numerical invasion percolation model which was applied on the same tomographic reconstruction. We thereby determined the ‘access function’
of the sample, which describes the fraction the liquid actually invades of the pore space that it could invade with the given external pressure. The ink-bottle effect was found to be significant. Similar simulations of the permeability of paper as a function of compression were as well carried out.

Rheology of Liquid-Particle Suspensions

We completed an extensive research project ‘Rheological materials in process industry (ReoMaT)’ funded mainly by Tekes and carried out jointly with VTT, Tampere University of Technology and Åbo Akademi University during the years 2003–2006. The research included three main topical areas: experimental rheology, development of experimental techniques and numerical analysis. In addition to conventional methods, the projected research utilized several novel techniques, both experimental and numerical, that have only recently become available in other disciplines of materials science and flow mechanics. It led to several new innovations in experimental techniques for finding the relevant material properties of liquid-particle suspensions, methods based on ultrasound Doppler velocimetry in particular. The lattice-Boltzmann numerical method was utilized in order to study mesoscopic mechanisms leading to observable rheological behaviour of liquid-particle suspensions, including shear thickening, strain hardening and wall slip. A new improved semiempirical correlation model and a related measurement technique for estimating losses in fibre-suspension flows was also developed. In addition, the rheology of consolidating fibre network under large deformations was studied in the context of modelling filtration of liquid-fibre suspensions.

High-Resolution Computed X-Ray Tomography

X-ray tomographic imaging was used to analyze the three-dimensional structure of paper, compressed layers of mineral pigments, and granitic rock. Both an in-
house table-top device with a resolution of about a micrometer, and the synchrotron radiation facility at ESRF in Grenoble (large international collaboration) with a resolution of 0.7 µm, were used. In order to improve image quality, new methods for noise reduction were developed, and for analysis purposes new methods for segmentation were constructed. In the case of paper we analyzed how the properties of coating colour and coating process influence the structure of the coating layer in printing paper, structural reasons for gloss variations in printed paper (collaboration with Universities of Joensuu and Oulu), and change of porosity and pore-size distribution under compression. In layers of mineral pigments we analyzed the effect of pigment shape and compression pressure on the pore-size distribution (collaboration with Åbo Akademi University and University of Helsinki), and in granitic rock the three-dimensional structure of fractures together with mineral distributions (collaboration with University of Helsinki).

Assessment of Bone by Ultrasonic Guided Waves

A numerical bone model was developed in collaboration with Laboratoire d’Imagerie Paramétrique (CNRS and Université de Paris 6). Realistic macroscopic geometry of the virtual bone developed was extracted from x-ray tomographic reconstructions of the same human radius bone samples which were previously measured by ultrasound in Jyväskylä. Propagation of ultrasound was simulated in two and three dimensions by using a finite-difference method. Simulated and measured ultrasound velocities were in close agreement, which indicated that variability in bone geometry alone explained most of the variability in recorded ultrasound velocity. A particular aim of numerical modelling is to explain the impact of overlying soft tissue, which is difficult to model analytically. Clinical studies in large subject populations were performed to estimate the ability of ultrasound method to diagnose and monitor the quality of bone. A new measurement set-up was also designed and is being constructed with novel, custom-made array transducers.
The primary goal of ultrarelativistic heavy ion collisions (URHIC) is to study strongly interacting elementary particle matter, Quark Gluon Plasma (QGP), and its transition to a gas of hadrons. In URHIC theory, along with trying to understand the QCD matter properties and QCD dynamics, we aim at solid predictions for various observables measurable soon in the ALICE experiment at CERN-LHC, currently in the BNL-RHIC and previously in the CERN-SPS experiments. Our basic computational tools are QCD perturbation theory (pQCD), relativistic hydrodynamics and effective field theories at finite temperature.

Fig. 1. The URHIC theory group in November 2006.
Our research is financially supported by the Academy of Finland (SA). We have participated in the proposals for the SA Center of Excellence in Theoretical Physics Research (prof. Enqvist, Helsinki), proceeding to the shortest list again. Together with prof. Kajantie’s group in Helsinki, we form the URHIC theory project lead by Eskola at Helsinki Institute of Physics in 2002-7. We are also in a close contact with prof. Rummukainen in Oulu and with the ALICE group at JYFL. Our collaborators abroad come from, e.g., CERN, Rome, Frankfurt, NBI, Odense, Heidelberg, LBNL, U. Virginia, Duke U., McGill U. and Nagoya. We participate in international meetings such as Quark Matter and the Hard Probes, and run an active visitor program. The Lecture Week on the Physics of Hadrons and URHIC at Hyytiälä in 9/06, which we organized with prof. Hoyer (Helsinki), was part of the Giessen-Copenhagen-Helsinki-Jyväskylä-Torino collaboration in the European Graduate School of Complex Systems in Hadrons and Nuclei. With the local ALICE group, we are organizing an international workshop High-p_T physics at LHC in 3/07 at JYFL.

Parton Distributions of Bound and Free Nucleons

Specific QGP signals in URHIC are examined against reference cross sections of inclusive hard processes, such as direct photon and large-p_T hadron production. These can be computed through the QCD factorization theorem, provided that nuclear parton distribution functions (nPDFs) are known. Previously, we have pioneered a global analysis, where the QCD-evolving nPDFs are extracted from hard process data in nuclear collisions and conservation laws. Our EKS98 parameterization is in a worldwide use and a standard reference in the field. We are now, after extensive further work, ready to publish a statistical error analysis for the obtained nPDFs. Further data constraints will, however, be needed for nuclear gluons: current RHIC data from d+Au collisions and charm production in e+Au collisions possible in the future are being investigated for this purpose. Next-to-leading-order and nonlinear scale evolutions are on our work-list. We have also suggested that the anomalyously large value of the weak-mixing angle observed by NuTeV in Fermilab in (anti)neutrino+Fe scatterings, could be explained by suitable nuclear modifications of the valence quark distributions in iron.

High-p_T Hadron Spectra as Tomographic Tool for QCD Matter?

One of the most striking QGP signals observed so far is that the single inclusive high transverse-momentum hadron spectrum in central Au+Au collisions at RHIC is suppressed by a factor 5 relative to p+p collisions. Earlier, pQCD cross sections folded with nPDFs, fragmentation functions and eikonalized energy loss probabilities, and accounting for simplest production geometry, we have predicted the amount of the suppression for central Pb+Pb collisions at the LHC and also at higher p_T at RHIC. Now we have included both the production geometry and QCD matter evolution in detail, by studying inelastic energy losses of high-p_T partons traversing a 3-dimensionally expanding hydrodynamic system. In particular, we have investigated prospects of doing medium tomography, i.e. obtaining information of the (dynamic) QCD matter density distribution through the energy losses. Our RHIC results suggest that high-p_T hadron-hadron (see Fig. 2) and photon-hadron correlations indeed serve as tomographic tools, once the information from single high-p_T hadron spectra is used to determine the quenching power of the QCD-medium. LHC predictions are in preparation. A Monte Carlo simulation of elastic energy losses is being developed.

Also the angular distribution of low-p_T hadrons bal-
ancing a high-p_T trigger hadron in Au+Au collisions at RHIC has been observed to be quite different from p+p collisions. A much debated question is whether this new structure is a Mach shock wave phenomenon caused by supersonic energy-losing partons traversing the QCD matter, and what is the underlying dynamical energy transfer mechanism to the matter, especially to its flow. Also we have launched studies on this exciting question, demonstrating the importance of both transverse and longitudinal flow in the interpretation of the RHIC data.

Hydrodynamic Modelling of Nuclear Collisions with Minijet Initial Conditions

Relativistic hydrodynamics provides an appealing method to study the evolution of a locally thermalized expanding system and phenomena like electromagnetic emission during the expansion stage. Strong features in its favour are the implementation of conservation laws and the QCD phase transition through the equation of state. In addition to the hydrodynamic modelling itself, one of our pioneering specialities is the calculation of the QGP initial densities in a (nearly) closed framework of pQCD minijet production and gluon saturation. In fact, we have been among the few groups in the position of making hydrodynamic predictions for future colliders, e.g. on hadron multiplicities and p_T-spectra. Recently, we have shown that the low-p_T parts of the dominant hadron spectra measured in central Au+Au collisions at RHIC are reproduced well by the hydrodynamically computed spectra and resonance decays, when a single, rather high, decoupling temperature is used. Based on the successful tests at RHIC, we have predicted the low-p_T hadron spectra, multiplicities and net-proton number in central Pb+Pb collisions at the LHC. In addition, we have also compared the hydrodynamical spectra with the nonthermal high-p_T spectra (see below). Work in progress includes dynamical improvements of the decoupling criterion, studies of the correlation between the final transverse flow and initial transverse profiles of matter, and predicting the amount of elliptic flow for Pb+Pb collisions at the LHC. An extensive invited review of various hydrodynamical results was completed and published.
Electromagnetic Probes

A new precision measurement of dimuon emission from In+In collisions has been performed by the NA60 collaboration at the CERN-SPS. This dataset allows to study double differential observables for the first time and hence poses strong constraints and challenges to theory. We have, based on experience in modelling Pb+Pb collisions at the same energy, developed a model description of the fireball created in the In+In collisions which successfully describes the collective expansion of the system and allows to disentangle medium evolution and in-medium changes of vector mesons. Some features, such as the hardening of the p_T spectra in the rho-like mass region and the softening at higher mass were successfully predicted by this framework. Using the constraints provided by the double differential data, we have given strong arguments that a phase with a temperature larger than the phase transition temperature seen on the lattice contributes to the observed dilepton radiation. In the hydrodynamical framework, computation of electromagnetic emission at RHIC and LHC, and studies of partonic jet-to-photon conversion will be carried on.

Effective Theories for QCD and Electroweak Symmetry Breaking

In earlier work, we have constructed effective theories for QCD at finite temperature and explained how deconfinement and chiral symmetry restoration intertwine into a single phase transition as observed in the lattice measurements. Currently we are extending these results to finite chemical potentials, and in the future we will include also the diquark condensation phenomenon. We will study the consequences of various nuclear and quark matter equations of state for the phenomenology of compact stars.

Fig. 3. The electroweak precision data is often presented in terms of parameters called S and T. Once the Technicolor gauge group is fixed, our model has two free parameters. The shaded parabola shows S and T obtained from the model as the two free parameters are varied. The ellipse is the confidence curve corresponding to one standard deviation of the most up-to-date global fit to the data.
Neutrino physics

Jukka Maalampi

The recent activity in theoretical particle physics has been concerned mainly with neutrinos, in particular astrophysical neutrino phenomena. We have studied the effects and observational signals of the possible sterile neutrinos in astrophysical environments. Sterile neutrinos have no interactions with matter, except that they can mix quantum mechanically with the ordinary active neutrinos and form as a result a part of the propagating neutrinos that have a definite mass. They are predicted by many theoretical models, and they may have an important role in neutrino mass and mixing mechanism. Most recently we have investigated these issues in connection to supernova explosions, where neutrinos encounter the effects of the matter of the star envelope they traverse. We have created a code that numerically solves the six-dimensional density matrix equation and gives the evolution of the neutrino states in the envelope. This has also led us to study a more general question of level crossing, so called multilevel Landau-Zener problem, in the case of non-linearly varying Hamiltonians.
Our group have also studied neutrino oscillation from a more formal point of view, namely by formulating the problem using relativistic quantum mechanism. Using this formalism, we have investigated for example the spin-flavor oscillations in rapidly varying magnetic fields, as well as interactions of mixed fermions with classical sources.

Cosmology

Kimmo Kainulainen

Extended Gravity and Dark Energy

One of the greatest mysteries of the modern cosmology concerns the observed accelerated expansion of the universe – the simplest explanation for which postulates that the universe is filled with a substance called “dark energy” (DE), carrying a negative pressure. An alternative solution is that the Newtons and Einsteins theories for gravity need to be modified at large distances. Our group has studied large dimensions motivated scalar-tensor theories as well as phenomenologically motivated f(R)-gravity extensions of the classical Einstein-Hilbert-theory. Our current activities concentrate on studying the constraints on these extensions arising from precision measurements in the Solar system. We are also studying the formulation of the extended gravity theories in the context of the Palatini-variational principle. Our group has a strong collaboration effect with the cosmology group in Helsinki and we are currently developing collaborative efforts in f(R)-theories with the cosmology group in Turku.

Quantum Transport Problem and Electroweak Baryogenesis

Another intriguing problem in modern cosmology concerns the origin of the baryon asymmetry, excess of matter over the antimatter, in the Universe (BAU). Our group has studied the creation of BAU in the electroweak phase transition (EWPT). A proper treatment of electroweak baryogenesis calls for the use and development of the quantum transport equations (QTE) in non-equilibrium plasmas and in spatially changing backgrounds. The QTE’s for EWBG were first derived by us in the WKB approximation. We then have explored the more fundamental derivation of QTE’s in the context of the Schwinger-Keldysh closed time path (CPT) formalism, and the WKB-limit was recovered in the limit of slowly varying backgrounds and weak interactions through controlled expansions in gradients and in coupling constants. We have recently extended the quantum transport formalism to include non-local quantum coherence effects (reflection) and we are developing a numerical code to solve for the momentum dependent diffusion of the CP-even and –odd currents in realistic

Fig. 1. In the electroweak baryogenesis problem fermions are reflecting off a phase transition wall under the influence of decohering collisions. This phenomenon can now be treated accurately by use of a quantum transport equation derived by our group using the CTP-formalism.
situations both in the WKB- and in the thin wall limits. Among our main goals in this work is to compute the BAU in the context of the minimal supersymmetric standard model including also the CP-violating currents from the neutralino sector.

Time, Space, Gravitation, and Quantum physics

Markku Lehto

Physics of Time

Originally inspired in the problem of quantum gravity, our group was led to the physical analysis of the concept of time.

We have approached the problem of physical time from two perspectives. The first concerns a metageometric analysis of time based on experiments involving preparation of quantum-mechanical systems; this time is apt to explain the origin of the classical concept of external parameter time. The second approach involves a geometric analysis of time based on measurements, which provides the physical foundation for classical, special-relativistic, and general-relativistic spacetime. The two approaches are envisaged to converge in the emergence of metageometric correlations.

Our sought-for metageometric, physical things were found by looking at the process of quantum-mechanical preparation (exemplified by a Stern-Gerlach experimental setup for the observable spin). From it, the theoretical concepts of metageometric premeasurement and transition things were developed.

Details on this research will appear in a forthcoming doctoral thesis of Diego Meschini.

Physics of Black Holes

There are good reasons to believe that the quantum-mechanical degrees of freedom of the black hole are due to the microscopic structure of spacetime at the event horizon. Therefore, one is led to probe the microscopic properties of the event horizon. It is possible, for example, to construct the horizon from microscopically small black holes such that the correct (statistical) entropy is produced. This result found by our group is encouraging as it has been proposed that microscopic black holes might have something to do with the structure of spacetime at the Planck-length scale. We have also argued that the concept of entropy may be associated with other horizons of spacetime as well and, at least to some extent, even with any spacelike two-surface of spacetime. One believes that these entropies also stem from the microscopic structure of spacetime. An understanding of the nature of black-hole radiation may therefore give valuable insights into the microscopic theory of spacetime itself.

Details on this research will appear in a forthcoming doctoral thesis of Ari Peltola.
Industrial Collaboration

Jussi Timonen, Päivi Törmä and Ari Virtanen

The Department has numerous contacts with domestic and foreign industry and research laboratories.

The important milestone of 10 years of industrial applications in accelerator laboratory was achieved in 2006. Putting the period into nutshell, a total of 2.7 million euros, 29 MSc or licentiate theses and 39 international publications have been produced in the group during these years. These have been made in 16 R&D projects, 12 research grants and in commercial service activity for international and national industrial companies.

Fifteen users performed irradiation tests at the RADEF facility last year. From those 10 users were international. Users were mainly private companies, but Instituto Nacional de Tecnica Aeroespacial, INTA, from Madrid and Comité Européen des Assurances, CEA, from Bruyere-le-Chatel, France, were performing satellite component tests in RADEF for the first time. In addition, two new universities (Technical University of Denmark from Copenhagen and University of Padua from Italy), carried out their test campaigns here. The total RADEF beam time in 2006 was 576 hours, from which 432 hours were used for ESA or non-ESA users.

Another important branch of our industrial collaboration is related to the medical applications. The Iodine-123 production for MAP Medical Technologies was continued at a constant level during 2006. A total of 39 production runs were performed, in which the beam current was 40-50 µA. Another medical project was continued in collaboration with Gammapro Ltd. and Jyväskylä Radiotherapy Hospital. This produced one MSc thesis by the end of 2006.

Co-operation with Doseco Ltd. continued in terms of one MSc project, which was done with the national Radiation and Nuclear Safety Authority including a neutron detection study for Nuclear Power Plant of Loviisa. Collaboration of the group with paper and paper machine industry continued also actively with Metso Paper Corporation. This project started as an MSc project, where the radiation was employed for studying formation profiles in paper. A new type of energy controlled β-radiography device was built for the use in the company’s research laboratory. This project turned to be so fruitful, that the decision to continue it as a PhD project was made. Another project, performed with the Technical Research Centre, VTT, also produced one MSc thesis. The work was done in collaboration with VTT Processes, Jyväskylä, and eight private companies. The aim was to study controlling possibilities of biomass flow used in fuel peat power plants. This brought up a new idea about the application of neutrons in the study of humidity and inorganic impurities in wood logs and peat. A decision to start a PhD project from this subject with VTT Processes during the spring 2007 was made. The idea is to do this study in collaboration with Plasma and Ion Source group from Berkeley National Laboratory, USA.

The nanophysics and nanotechnology group has well es-
tablished collaboration with a few companies in Finland. For about three years ultrasensitive radiation detectors based on calorimetry and bolometric sensing for x-rays and IR-radiation have been developed in collaboration with Oxford Instruments Analytical company from Espoo (formerly Metorex International). At the first stage the work has been motivated by the need of on-chip integrable ultrasensitive sensors in space research, and collaborative projects are continuing, funded by the European Space Agency. In addition, a TEKES funded project in collaboration with VIT Information technology and VTT MilliLab has continued to develop superconducting bolometers in the sub-millimeter band.

The nanoelectronics and nanotechnology group has established contacts with industry. The professorship in electronics has been sponsored by local municipalities and industry. The nanoelectronics group was funded by Tekes within the ELMO ("Miniaturization of Electronics") research programme. The project focused on micro- and nanosensors and was in collaboration with the companies Enermet, Metso Drives, Nanoway and JSP (Jyväskylä Science Park). A patenting process has been started as a result of the project. The industry collaboration is continued under new projects and including companies interested in nanotechnology such as Nokia, Planar and Vaisala, with funding from the FinNano Nanotechnology Programme of Tekes. The Nanoelectronics Education and Investment programme took place during the years 2002–2004 in collaboration with several companies such as Enermet, Nokia, JSP, Nanoway, Aplicom. The programme was mainly funded by EU via the regional government and partly by companies. The programme allowed developing the teaching in electronics and investments to equipment essential for research in nanoelectronics and nanotechnology. The Nanoscience
Center research infrastructure programme 2004–2006, also funded by EU via the regional government and partly by companies (now about ten participating), is also an important platform for industry collaboration. Through this programme, companies can have a so called “Window to Nanotechnology” to follow the rapid development of the field.

The soft condensed matter and statistical physics group continued its established collaboration with a number of companies in several branches of industry.

X-ray computed microtomography was used in several applied and industrial research projects for studying e.g. the structure of paper and pigment coating layers, paper-making fabrics, minerals, mineral wool and biological samples. In this work an in-house table-top x-ray scanner was used together with the synchrotron radiation based tomography facility at ESRF. Work at ESRF involved large international collaboration with more than ten research groups in Europe and the USA. Related to the tomographic techniques used, noise-reduction algorithms for improved image quality and segmentation algorithms for improved structural analysis were developed. Flow simulations based on the lattice-Boltzmann method were also carried out with tomographic images of paper and pigment layers in order to gain better understanding of the transport properties of these materials.

The research group continued participation in four large national research consortia funded by Tekes and industry, and in one funded by the Ministry of Trade and Commerce. These projects focused on developing new experimental and numerical techniques for flow in porous media, on basic and applied research on the rheological properties and dynamics of fibre suspensions, on tomographic imaging of paper-like materials and pigment layers, and on ultrasound methods in assessment and monitoring of the quality of bone.

Several other projects involving direct collaboration with industry were carried out. These projects included experimental research, numerical simulation and modelling of processes such as transport of fluid in paper, matrix diffusion, rheological properties of pigment suspensions and structural properties of paper and mineral wool.

The Department of Physics offers an internationally competitive study program at all academic levels. During the years 2004–2006 the Department was a national high-quality education unit, the only such unit in exact natural sciences. A particular strength, together with the diversity of choices of specialization in experimental and theoretical approaches in various fields of physics or teacher education, is that teaching at all stages of studies is closely connected with present-day research. Physics students get involved in laboratory work and other research as well as teaching and student recruitment, and they are strongly present at the Department in all its activities.

In 2006 the number of master’s degrees taken at the Department was 38, of whom 9 obtained teacher qualification. The Department produced 14 PhD degrees, which is an all-time high. The employment of the newly graduated students has continued to be good. According to recent very comprehensive surveys, the employment among the graduates of the years 2000–2005 is 98%.

Students

In 2006 there were 406 applicants for physics studies, with 255 indicating physics as their first choice. As a whole, 81 undergraduate students enrolled in 2006. The majority, 96% of students were admitted based on their high school record and national maturity test result. In addition, a traditional entrance examination was organized together with universities of Helsinki, Kuopio, Oulu and Turku. Only one fifth of the applicants and enrolled students were women, which stands as a great challenge for the student recruitment in future. Direct enrollment to teacher education has quickly become popular and 16 students chose it this year.

In 2006 there were about 530 undergraduate students at the Department. The new students first aim at the degree of Bachelor of Science and then continue to the degree of Master of Science. Some 30 students, many of them with a polytechnic engineering background, studied in the master programs for industrial physics, nanoelectronics and renewable energy. The number of post-graduate students aiming at the degree of Doctor of Philosophy was about 70.
Teacher Education

The trilateral co-operation between the Departments of the Faculty, the Department of teacher education and the Teacher training school has been close and inspiring in recent years. This is reflected e.g. in the co-operation of supervising MSc thesis projects which are now more often than before concerned with typical research questions of didactics. Further education for personnel involved in various stages of teacher education are arranged on a regular basis.

The Department participates in the Finnish graduate school of mathematics, physics, and chemistry education, with five students working on a degree of doctor or licentiate of philosophy in physics education. Niina Nurkka defended successfully her thesis on the subject Developing and evaluating a research-based teaching-learning sequence on the moment of force in 2006.

Teaching Development

The first-year crash course Flying start, one of the trademarks of the Department, was given for the sixth time. A major improvement this year was to have well-performed and enthusiastic physics students act as tutors. The research-oriented approach of the Flying start of the previous years was now combined with more effort to provide a good start for regular studies beginning after the Flying start, which was well received by the students. Also, the program was rearranged to better allow participation in the other activities arranged by the University for the incomers.

According to the Licentiate thesis study Physics education at JYFL: Improving interactions and research-oriented learning, completed in 2006 by Inkeri Halkosaari, the effects of the Flying start have been very positive in improving students’ motivation to complete their stud-
ies. The annual number and standard of graduates at the Department remains high, while the common trend in many places has been declining. As indicated also by this thesis, tutoring had probably been the weakest link of the *Flying start* in the past years and improvements really needed.

A continuing challenge is to further develop the teaching practices of other courses to better correspond to the requirements of the physics profession in practice, also in line with the aims of the Bologna process. In this, promoting team work and taking advantage of the highly international profile of the Department are key elements. The Department has expanded its summer student program so that the number of paid students in summer 2006 was 45.

Other Education Activities

In addition to its regular teaching program, the Department has continued the co-operation with the Open University supplementary-education program for teacher qualification. The Department was active in the 16th Jyväskylä International Summer School. Physics was also strongly present and obtained very positive response in the Science fair of the University.

The Department has continued co-operation with schools in the Central Finland district. Physics students frequently visit high schools to increase interest in studies in natural sciences. The Department collaborates with schools within the CERN network by organizing training lectures prior to the CERN visits of student groups. The Accelerator laboratory and the Nanoscience center remain popular excursion destinations for school students.
Email addresses:
forename.surname@phys.jyu.fi
Note: ä=a, ö=o, å=a

Head of the Department
Jukka Maalampi, prof.

Vice-Head of the Department
Rauno Julin, prof.

Professors
Markus Ahlskog
Rauno Julin
Markku Kataja
Matti Leino
Jukka Maalampi
Matti Manninen
Vesa Ruuskainen
Jouni Suhonen
Jussi Timonen
Päivi Törmä (on leave)
Harry J. Whitlow
Juha Äystö (on leave 1.8.-)

Assistants
Vesa Apaja 1.8.-
Tommi Hakala (on leave 1.8.-)
Anu Kankainen (on leave 1.8.-)
Heikki Kettunen -31.7.
Samä Räsänen -31.7.
Jussi Toivanen
Kimmo Tuominen (JYFL/HIP)

Academy research fellows and scientists
Paul Greenlees
Ilari Maasilta
Gheorghe-Sorin Paraoanu
Heikki Penttilä
Juha Äystö 1.8.-

PhD scientists
Jaakko Akola
Vesa Apaja -31.7.
Mariana Bondila (HIP/JYFL) 1.9.-
Maxim Dvornikov 28.2.-
Shadyar Farhangfar
Lars Melwyn Fjelsted
Tuomas Grahn 1.6.-
Pauli Heikkinen
Karoliina Honkala -31.7.
Jari Hyväluoma 1.7.-

Senior assistants
Konstantin Arutyunov
Kari J. Eskola -30.9. (JYFL/hip)

Andreas Johansson
Ari Jokinen -30.9.
Pete Jones
Pekka Kekäläinen (part time)
Petteri Keränen -31.7.
Heikki Kettunen 1.8.-
DongJo Kim 1.6.-
Vesa Kolhinen (HIP/JYFL)
Markus Kortelainen 1.6.-
Matti Koskinen 1.3.-
Daniela Koudela 15.9.-
Olga Lopeza 1.8.-
Petro Moilanen 1.10.-
Iain Moore
Markko Myllys
Kari Peräjärvi -30.4. (HIP/JYFL)
Saidur Rahaman
Pasi Raiskimäki (part time) -31.5.
Thorsten Renk (HIP/JYFL)
Valery Rubtcheyn
Kari Rytkönen 1.11.-
Timo Sajavaara
Somjai Sanguyenongpipat 15.8.-
Catherine Scholey
Tetsu Sonoda
Pekka Suominen 1.7.-
Lasse Taskinen 1.7.-
Wladyslaw Trzaska
Vladimir Tuboltsev -30.6.
Juha Uusitalo
Michael Walter
Christine Weber 1.5.-
Ari Virtanen

MSc scientists
Asaf Avnon 1.9-
Mariana Bondila (HIP/JYFL) -31.8.
Khattiya Chalapat 1.4.-
Viki-Veikko Elomaa
Tommi Eronen
Sarah Eeckhaudt -31.7.
Pentti Frondelius 1.2.-
Sergey Gorelick
Tuomas Grahn -31.5.
Ulrike Hager
Jani Hakala
Heikki Heiskanen 1.9.-
Jussi Hellaakoski
Matti Herranen
Terhi Hongisto
Jari Hyvälämaa -30.6.
Pasi Jalkanen
Arto Javanainen
Janne Juntunen
Ari Jäsberg
Katarzyna Kaczynska (on leave 9.5.-)
Anu Kankainen -30.4.
Jenni Karvonen
Pasi Karvonen
Tomi Kemppinen
Thomas Kessler
Steffen Ketelhut 1.3.-
Jami Kinnunen
Kimmo Kinnunen
Viivi Koivu
Timo Koponen
Panu Koponen
Markus Kortelainen -31.5.
Jenni Kotila
Anton Kuzyk
Thomas Kühn
Topi Kähärä 1.8.-
Mikko Laitinen
Mikko Leskinen
Jian Li 1.9.-
Jarkko Lievonen 1.9.-
Tomasz Malkiewicz
Samu Malola 1.9.-
Keijo Mattila
Diego Meschini
Lasse Miettinen
Mika Mustonen
Minja Myyryläinen
Minna Nevala
Harri Niemi (HIP/JYFL)
Juha-Pekka Nikkarila 1.3.-
Markus Nyman
Hannu Paukkunen
Ari Peltola
Samu Peltonen
Johanna Piilonen
Otto Pulkkinen
Nitipon Puttaraksa 1.11.-
Panu Rahkila
Pyry Rahkila
Esa Rehn
Iiro Riihimäki
Janne Rittinen
Marcus Rinkö
Samu Rinta-Antila
Juho Rissanen
Janne Ronkainen
Tommi Ropponen
Mikko Rossi 1.9.-
Kari Rytkönen -31.10.
Antti Saastamoinen
Ananda Sagari A.R.
Jan Sarén
Juha Sorri
Daniel Sunhede
Pekka Suominen -30.6.
Olli Tarvainen -7.4.
Tuomas Tallinen
Lasse Taskinen -30.6.
Benjamin Tordoff -31.8.
Tuomas Torpeinen
Sampo Tuukkainen
Juha Vinnuruva
Jussi Virkajärvi
Mikko Voutilainen
Sergey Yamaletdinov
Maciej Zgirski

Computer systems
Nikola Ciprich 1.5.-
Vera Hansper
Janne Kulju
Hannu Laru

Laboratory engineers
Väinö Hänninen
Arto Lassila
Veikko Nieminen
Einar Peräläinen
Teuvo Poikolainen
Kimmo Ranttila
Antti Ranta-Järvi
Tarmo Suppula
Juha Ärje

Operators
Jani Hyvönen
Anssi Ikonen

Other technical staff
Martti Hytönen
Atte Kauppinen
Erkki Kosola -30.4.
Hannu Leinonen
Esa Liimatainen
Erkki Pesu
Hannu Pohjanheimo
Kai Porras
Marko Puskala
Raimo Seppälä
Yrjö Stenman
Markku Särkkä

Administration
Anna-Liisa Blå
Marjut Hilska
Soili Leskinen
Ritva Väyrynen

MSc students are listed in research reports.
Boards and Committees

Departmental Council

Jukka Maalampi, professor (chairman)
Markus Ahlskog, professor
Matti Leino, professor
Jouni Suhonen, professor
Jussi Timonen, professor
Hannu Laru, computer support
Juha Merikoski, lecturer
Kimmo Tuominen, assistant
Tero Mononen, student
Perttu Mäkinen, student
Jouko Perkkiö, student

Scientific Advisory Board of the Centre of Excellence
in Nuclear and Accelerator Based Physics

Witold Nazarewicz, professor, University of Tennessee, USA
William Gelletly, professor, University of Surrey, UK
Timo Tiihonen, vice-rector, University of Jyväskylä
Timo Jääskeläinen, professor, Academy of Finland
Pasi Sihvonen, secretary general, Academy of Finland

Programme Advisory Committee of the JYFL Accelerator Laboratory

Christian Beck, Dr., IReS, Stasbourg, France
Thomas Dossing, Dr., NBI, Copenhagen, Denmark
Zenon Janas, Dr., University of Warsaw, Poland
Juhani Keinonen, Prof., University of Helsinki, Finland
Juergen Kluge, Prof., GSI, Darmstadt, Germany
John Simpson, Prof., CCLRC, Daresbury, UK (chairman)

Yrast states and band crossings in the neutron-deficient platinum isotopes 174-177Pt

The JYFL Gas Filled Recoil Separator RITU

Nuclear isomers in superheavy elements as stepping stones towards the island of stability

Nuclear reactions

Stoichiometric analysis as a tool for spectroscopy of exotic nuclei

ALICE and Nuclear Reactions

G. V. Kryazhev, S. V. Khlebnikov, E. M. Kuzmin, T. E. Kuzmina, V. G. Lyapin, M. Mutterer and W. H. Trzaska

Energy losses of 238U in solid absorbers in broad energy range

Nuclear reactions

J. Perkowski, J. Andrzejewski, A. Climent-Font, G. Kryazhev, V. Lyapin, T. Malekiewicz, A. Munoz-Martín and W. H. Trzaska

Stopping power measurement of 238U in solid absorbers in broad energy range

Nuclear reactions

Energy losses of 238U in solid absorbers in broad energy range

Nuclear reactions

Light particle accompanied quasifission in superheavy composite systems

ALICE Collaboration

ALICE: Physics Performance Review

PHENIX Collaboration

Nuclear Modification of Single Electron Spectrum and Implications for Heavy Quark Energy Loss in Au + Au Collisions at \(s_{NN} = 200 \) GeV

Nanophysics and Nanotechnology

L. J. Taskinen and J. J. Maasilta

Improving the performance of hot-electron bolometers and solid state coolers with disordered alloys

D. V. Vodolazov, F. M. Peters, T. T. Hongisto and K. Yu. Arutyunov

Microscopic analysis of multiple flux transitions in mesoscopic superconducting loops

I. J. Maasilta, J. T. Karvonen and I. J. Maasilta

Electron-phonon interaction in a thin Al-Mn film

J. J. Maasilta

Optimizing the operating temperature of a transition edge sensor

T. Kühn and I. J. Maasilta

Ballistic phonon transport in dielectric membranes

G. S. Paraoanu

Interaction-free measurements with superconducting qubits

A. A. Shanenko, M. D. Croitru, M. Zgirski, F. M. Peters and K Arutyunov

Size dependent enhancement of superconductivity in nanowires

Computational Nanosciences

K. Manninen H. Häkkinen and M. Manninen

Ab initio simulation of Na-59(+) and Na-93(+)

Compt. Mat. Sci. 35 (2006) 158

H. Häkkinen and M. Moseler

55-atom clusters of silver and gold: Symmetry breaking by relativistic effects

B. Huber, H. Häkkinen, U. Landman and M. Moseler

Oxidation of small gas phase Pd clusters: A density functional study

H. Grönbeck, M. Walter and H. Häkkinen

Theoretical characterization of cyclic thiolated gold clusters

R. van Harrevelt, K. Honkala, J. K. Norskov and U. Manthe

The effect of surface relaxations on the N, dissociation rate on stepped Ru: transition state theory studies

Reactive and nonreactive scattering of N-2 from Ru(0001): A six-dimensional adiabatic study

J. Akola, K. Rytkönen and M. Manninen

Electronic properties of single-walled carbon nanotubes inside cyclic supermolecules

J. Akola and R.O. Jones

Density functional calculations of ATP systems I: Crystalline ATP hydrates and related molecules

J. Akola and R.O. Jones

Density functional calculations of ATP systems II: ATP hydrolysis at the active site of actin

H. Häkkinen, M. Walter and H. Grönbeck

Divide and pProtect: Capping gold nanoclusters with molecular gold-thiolate rings

Predicting Catalysis: Understanding ammonia synthesis from first principles calculations

M. Toreblad, Y. Yu, S. M. Reimann, M. Kaskinen and M. Manninen

Finite boson and fermion systems under extreme rotation: Edge reconstruction and vortex formation

J. R. Götz, M. Walter and J. S. Briggs

Cross-sections for (e,3e) collisions on helium: the DSEF wavefunction

P. Singha Deo and M. Manninen

Importance of individual scattering matrix elements at Fano resonances

Soft Condensed Matter and Statistical Physics

Fracture processes studied in CRESST

Fracture processes observed with a cryogenic detector

J. Hyvärinen, P. Raiskinmäki, A. Jäsb erg, A. Koponen, M. Kataja and J. Timonen
Simulation of liquid penetration in paper

P. Moi lanen, P. H. F. Nicholson, V. Kilappa, S. Cheng and J. Timonen,
Measuring guided waves in long bones: modeling and experiments in free and immersed plates

Ultrarelativistic Heavy ion Collisions

P. Huovinen and P. V. Ruuskanen
Hydrodynamic models for heavy ion collisions

K. J. Eskola and H. Paukkunen
NuTeV sin^2(θ) anomaly and nuclear parton distributions revisited
JHEP 0606 (2006) 008

Transverse spectra of hadrons in central A collisions at RHIC and LHC from pQCD + energy losses

T. Renk, S. A. Bass and D. K. Srivastava
Dynamics of the Landau-Pomeranchuk-Migdal effect in Au + Au collisions at 200-AGeV

T. Renk and J. Ruppert
Mach cones in an evolving medium

J. Ruppert, Th. Renk and B. Muller
Mass and width of the ρ meson in a nuclear medium from Brown-Rho scaling and QCD sum rules

T. Renk
Through the blackness: High p(T) hadrons probing the central region of 200-AGeV Au - Au collisions

T. Renk
Towards jet tomography: gamma-hadron correlations

D. D. Dietrich, F. Sannino and K. Tuominen
Light composite Higgs and precision electroweak measurements on the Z resonance: An update

Theoretical Particle Physics and Cosmology

M. Dvornikov
Evolution of coupled fermions under the influence of an external axial-vector field.

D. Meschini and M. Lehto
Is empty spacetime a physical thing?
Foundations of Physics, 36 (2006) 1193

A. Peltola and J. Mäkelä
Radiation of the inner horizon of the Reissner-Nordström black hole

M. Dvornikov
Neutrino spin oscillations in gravitational fields

T.-F. Feng, X.-Q. Li and J. Maalampi
Mixing among the neutral Higgs bosons and rare B decays in the CP violating MSSM

K. Kainulainen and D. Sunhede
Dark energy from large extra dimensions

T.-F. Feng, X.-Q. Li, L. Lin, J. Maalampi and H.-S. Song
The two-loop supersymmetric corrections to lepton anomalous magnetic and electric dipole moments

Other Books and Reports

J. Maalampi
Maailmanviiva. Albert Einstein ja moderni fysiikka.
Ursa (2006), 221, ISBN 952-5329-51-8

In four decades of subatomic physics. Essays in Honour of Professor of Theoretical Physics Pentti Vesa Ruuskanen on the Occasion of His Retirement 21 December 2006
Theses

MSc Theses
(Alphabetical order)

Tuomas Airaksinen, Numeerista virtauslaskentaa hila-Boltzmann-simulointimenetelmällä

Tero Alakurtti, CSEM-sähkömagnetismitesti

Asaf Avnon, Dielectrophoretic trapping of carbon nanotubes and electropolymerization of conducting polypyrrole

Eric Blair, Solution phase fabrication of quantum dots: microfluidic methods

Lasse Elomaa, Akustisen sadeanturin tyyppikalibrointi laboratoriossa

Essi Förström, Metrinen geometria ja kosmologia

Mohamed Rabie Hassan, On-chip microwave generation and detection in Josephson circuits

Heikki Heiskanen, Beta minus decay of 96Zirkonium to 6, 5 and 4 states of niobium using the BCS and pnQRPA methods

Lasse Hirvinen, Hiilinanoputket elektrodeina dielektrikointiin

Otso Jarva, Avoimet laboratoriotyöt yliopisto-opetuksessa

Han Jie, Technical background, applications and implementation of quartz crystal microbalance systems

Jarmo Jääskeläinen, Luokanopettajiksi opiskelevien käsityksiä voimasta

Timo Kallinen, Teridian 71M6513-pohjaisen kWh-mittarin suunnittelu ja ja toteutus

Joonas Kivisto, 124Ag:n beetahajoaminen 124Cd:n viritys-tiloille

Topi Kähärä, Kahden kevyen kvarkkipaun kvanttivärima-dynamiikan termodynamika saj ne lineaarisesse sigmamallissa

Suvi Laitinen, Lumo-kvarkkituotto syvässä epäelämisessa elekroni-protoni-sironnassa vapaan sekä ytimeen sitoutuneen protonin gluonijaakunan tutkimisessa

Maarit Lappalainen, Kokeellisuus fysiikan ja kemian opetuksessa alaluokilla

Heli Lehtivuori, Nanometriluokan DNA-molekyylien kytentämyhän vaikutus elektrodi-DNA-elektrodi -raketteen sähköjohtavuuteen

Jani Leskinen, JUROGAM II pohjatyö: nelikiteinen Clover-germanium-ilmaisin gamma spektrometrina

Jarkko Lievonen, Moniseinäisten hiilinanoputkien elastisuus

Weilu Liu, Guiding macromolecules by using magnetic tweevers

Mikko Lommi, Stirling-perustaisen mikro-CHP-laitteiston prosessilaskenta ja lämmönvaihtimen mitoitus

Arto Lähteelä, Röntgenmikrotomografian käyttö päällyshennettelyyn paperin tutkimisessa

Ma Zhibin, Strategies of fault detection for power quality improvement – a project in Baotou Power Supply Bureau, China

Sami Malola, Kultapintojen kuvaaminen tiheysfunktio- ja isaliteoriaan perustuvan tiukan sidoksen menetelmän avulla

Pasi Nieminen, Esitysmuotojen hallinnan koherenssin arviointi

Harri Niiranen, Elektronien ja kaksiulotteisien fononien välisen energiasiirtotehon mitaaminen

Juha-Pekka Nikkarila, Kvanttipisteiden elektronien energiaspektrin tulkinta klassisten rotaatioden ja räätelyjen avulla

Maria Palomäki, Intensiitteetimuokattava sädehoitokenttä mittaavan ilmanisimen kehittäminen

Pilvi-Helmiä Kivelä, Puristinhuovan permeabiliteettimitaukset
Alexandre Pirojenko, RADEF-aseman ohjaus- ja tiedonkerrujärjestelmä
Suvi Päiviö, Radiometristen mittausmenetelmien soveltuvuus biopolttoaineen epäpuhtauksien havaitsemiseen
Erkki Sulkala, Kiinteiden biopolttoaineiden pyrolyysikasujen analyysi FTIR-menetelmällä
Ismo Talka, Pienpolton hiukkasten sähköinen suodattaminen
Tuomas Tallinen, Tomografiaan perustuvan paperin huokosrakenteen analyysi
Heidi Tarvainen, 83Kr-ytimen viritystilarakenne ja MQPM-malli
Topi Tikkala, Fixed sample magnetometer (FSM)
Outi Virtanen, Radioaktiivisuuden tuotto ydinreaktioissa
Lasse Väistö, Tunneliliitosten ominaisuuksien parantaminen lämpökäsittelyllä

PhLic Theses

Inkeri Kähärä, Physics education at JYFL: Improving interactions and research-oriented learning, JYFL Laboratory Report 1/2006

PhD Theses
(Chronological order)

Raimo Lohikoski, Dynamic modeling of DNA JYFL Research report 1/2006
Markus Kortelainen, Muon capture and its use as a probe of double beta decays JYFL Research report 2/2006
Tuomas Grahn, Lifetimes of intruder states in $^{186,188}\text{Pb}$ and ^{190}Po JYFL Research report 3/2006
Mariana Bondila, Detection of charged kaons using the decay topology in ALICE TPC JYFL Research report 4/2006
Lasse Taskinen, Thermal properties of mesoscopic wires and tunnel junctions JYFL Research report 5/2006
Pekka Suominen, Modified multipole structure for electron cyclotron resonance ion sources JYFL Research report 6/2006
Anu Kankainen, Studies of exotic nuclei of astrophysical interest near the N=Z line JYFL Research Report No 9/2006
Kari Rytkönen, Electronic and structural studies of free and supported metal clusters and molecules JYFL Research Report No 11/2006
Sampo Tuukkanen, Dielectrophoresis as a tool for on-chip positioning of DNA and electrical characterization of nanoscale DNA JYFL Research Report 13/2006
Sami Rinta-Antila, Development of trap-assisted spectroscopy and its application to beta decay of neutron-rich zirconium isotopes JYFL Research Report 14/2006

Degrees
(alphabetical order)

BSc Degrees
(main subject)

Heinonen, Henri (physics)
Jääskeläinen, Jarmo (physics)
Kärnä, Aarno (physics)
Mäkelä, Aaro (physics)
Pollari, Terhi (physics)

MSc Degrees
(main subject)

* = MSc includes teachers pedagogical studies

Airaksinen, Tuomas (physics)
Alakurtti, Tero (physics)*
Kivelä, Pilvi-Helinä (physics)
Avnon, Asaf (physics)
Blair, Eric (physics)
Elomaa, Lasse (electronics)
Laitinen, Suvi (theor. physics)
Han, Jie (electronics)
Hassan, Mohamed (physics)
Lievonen, Jarkko (appl. physics)
Heiskanen, Heikki (theor. physics)
Jarva, Otso (physics)*
Jääskeläinen, Jarmo (physics)*
Ketonen, Joonas (physics)*
Ketonen, Laura (physics)*
Koivisto, Antti (physics)
Kähärä, Topi (theor. physics)
Lappalainen, Maarit (physics)*
Lehtivuori, Heli (physics)
Leskinen, Jani (physics)
Liu, Weilu (electronics)
Lommi, Mikko (appl. physics)
Lähteela, Arto (physics)
Ma, Zhibin (electronics)
Malola, Sami (physics)
Nieminen, Pasi (physics)*
Niiranen, Harri (appl. physics)*
Nikkarila, Juha-Pekka (physics)
Palomäki, Maria (appl. physics)
Päiviö, Suvi (appl. physics)
Silokunnas (former Förström), Essi (theor. physics)
Sulkala, Juha (physics)
Talka, Ismo (appl. physics)
Tallinen, Tuomas (physics)
Hirviniemi, Lasse (electronics)
Tarvainen, Heidi (theor. physics)
Virtanen, Outi (physics)*
Väistö, Lasse (appl. physics)

PhLic Degrees
Kähärä, Inkeri (physics)

PhD Degrees
Bondila, Mariana (physics)
Eeckhautd, Sarah (physics)
Grahn, Tuomas (physics)
Hyväluoma, Jari (appl. physics)
Kankainen, Anu (physics)
Kinnunen, Jami (theor. physics)
Kortelainen, Erno (theor. physics)
Lohikoski, Raimo (physics)
Nurkka, Niina (physics)
Rinta-Anttila, Sami (physics)
Rytkönen, Kari (physics)
Suominen, Pekka (physics)
Taskinen, Lasse (appl. physics)
Tuukkanen, Sampo (appl. physics)