Financial Intermediaries and Monitoring

David Martinez-Miera

Financial Intermediaries

- Financial intermediary: Agent that channels funds from those who want to save or lend to those who want to invest or borrow.
 - This activity typically involves the trading of financial assets either on the agent's own account or on the account of its customers.
- Bank (traditional): Financial intermediary that performs its function by receiving deposits and making loans.
 - Great quantitative importance (now and in the past)
 - Traditional banking business is well-defined
 - Actual boundaries of the business are blurred
 - Heavily regulated (now and in the past)
 - Intertwined with the transmission of monetary policy

Role of Financial Intermediaries

- Why do financial intermediaries exist?
- Do they create value for society?
- Should we regulate them? How?

David Martinez-Miera ()

Possible roles of Financial Intermediaries

- Method of payment
- Transforming assets (maturity, size, etc) from borrower to investor
- Monitoring or screening This chapter
- Providing liquidity to depositors Later in the course

David Martinez-Miera () Monitoring 4 / 21

Possible roles of Financial Intermediaries

- Focus on one explanation of existence of banks
 - Banks as monitors (Diamond 84, Holmström and Tirole 1997)
 - More references Leland-Pyle (JF, 77), Boyd-Prescott (JET, 86), Calomiris-Khan (AER, 91)]
- Bank is only one type of financial intermediary
 - Venture capitalists etc.

5 / 21

Banks as monitors

- Extended view of monitoring
- Banks can learn about the activities of a firm
 - Also about the actual returns a firm has
- Banks can sue a firm if it does not pay
 - Make that information available (credit register)
- They have the ability of making entrepreneurs behave
 - They can oversee the activities of the entrepreneurs
 - They can make their private benefits less attractive
 - Credible threats to take to court, they have the expertise
 - Not dispersion in monitoring (no free riding problems)
- Monitoring, in reality, can be a lot of things
 - Inspection of potential cash flow from the firm
 - Its balance sheet position
 - Its managerial activities
 - Firm complies with covenants (minimum solvency or liquidity ratio)
 - etc.

Diamond 1984 main idea: Delegated monitoring

- Diamond (1984)'s key idea:
 - intermediaries perform delegated monitoring
 - delegation to a single agent allows to save on monitoring costs
 - [associated with the imperfect observability of borrowers' cash flows (ex-post asymmetric information)]
- The idea can be extended to any informational asymmetry that can be reduced at some cost:
 - ex-ante asymmetries: reducible by prior assessment / screening
 - interim asymmetries: reducible by supervision / corrective actions
- Note: Originally Diamond considers a world with unverifiable cash flows and non-pecuniary penalties for the entrepreneurs who do not repay.
 - Instead, we develop his model in costly state verification setup.

David Martinez-Miera () Monitoring 7 / 21

Diamond 1984: main idea

- The savings come from avoiding:
 - duplicating monitoring/screening/supervision costs
 - free-riding among lenders
- BUT who monitors the monitor?
- Perhaps monitoring the monitor implies costs at least as high as the direct monitoring of the borrower by all lenders
 - In fact it does NOT, because there is a natural scale economy:
 - Diversification reduces the costs of monitoring the monitor (by washing away the impact of borrowers' idiosyncratic risk on the monitor's risk).

The model

- ullet Two dates (t=0,1), risk-neutrality, and a riskless rate r
- Many entrepreneurs and many savers
- Entrepreneurs, indexed by i = 1, 2, ..., are penniless and want to undertake a project

$$-1(\mathsf{at}\ t=0) o xi \in [0,\infty)(\mathsf{at}\ t=1)$$

- with xi iid F(x) and E(xi) > 1 + r
- ullet Savers, indexed by j=1,2,... have an initial wealth 1/m each,
 - with $m \in \{2, 3, ...\}$, and can invest at the riskless rate
- Information structure is as in Gale-Hellwig (1985) (Costly state verification):
- Each entrepreneur i costlessly observes the realization of xi
- ullet Any other agent has to incur a cost $\phi>0$ to verify xi

Allocation problem

- Allocation problem
 - Each project requires funds from $m \ge 2$ savers
 - ullet For some realizations of xi someone will have to incur ϕ
- Consider two possible arrangements (modes of financing) with symmetric contracts:
- Direct financing: m savers directly fund one of the entrepreneurs,
 - ullet incurring m arphi when verifying xi. of each of the n entrepreneurs
- Intermediated financing: nm savers delegate to a single "bank" the verification of the cash flows xi of n entrepreneurs.
- How to proceed:
 - we first characterize the optimal contracts for each financing mode
 - we then find which financing mode is cheaper/more efficient

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

10 / 21

Direct financing

- Gale-Hellwig (1985) show that the use of standard debt contracts is optimal in this setup.
- There would be a contract per each saver-entrepreneur pair.
- For an entrepreneur as a whole, we would have:
- A total repayment B promised to his lenders
 - if B is paid, xi is not verified
 - ullet otherwise, xi is verified oeach of his m lenders incurs ϕ
- The m lenders as a whole obtain $min\{B, xi\}$ verification costs
- On expectation

$$R_m(B) = \int_0^B (x - m\varphi) dF(x) + \int_B^\infty B dF(x)$$
$$= B - \int_0^B F(x) dx - m\varphi F(B)$$

Direct finance

• Direct financing is feasible if and only if

$$\max_{B} R_m(B) \ge 1 + r$$

If feasible, competition between lenders implies

$$B^* = min\{B : R_m(B) = 1 + r\}$$

• The associated information costs are:

$$c_m = m\varphi F(B^*).$$

Intermediated financing

- No change in the information structure
 - Bank-entrepreneur relationships and savers-bank relationships are subject to informational problems of the same qualitative nature as those of savers-entrepreneur relationships under direct financing
- It is optimal to use debt contracts:
- Bank-entrepreneur relationships are based on loans
 - Loan conditions are set by banks, but...
 - Entrepreneurs only accept $B \leq B^*$
- Savers-bank relationships are based on deposits
 - Deposits impose the bank an obligation to repay D^*
 - Such a repayment must compensate the savers for
 - the opportunity cost of their funds + the expected verification costs

David Martinez-Miera () Monitoring 13 / 21

Intermediated financing

- Let s_n denote the marginal cost of funds for the bank
 - = the required rate of return per unit of deposits.
- Can the bank profit from offering loans with $B < B^*$?
 - Sufficient to verify whether the bank would get positive profits by charging B*

Intermediated financing

- Check if bank can make profits charging $B = B^*$
- Bank profits

$$\begin{split} \Pi_n(B^*) &= n[B^* - \int\limits_0^B F(x) dx - \varphi F(B^*) - (1+s_n)] \\ \text{given } 1 + r &= B^* - \int\limits_0^{B^*} F(x) dx - m\varphi F(B) \\ \Pi_n(B^*) &= n[r - s_n + (m-1)\varphi F(B^*)] \end{split}$$

Hence
$$\Pi_n(B^*) > 0 \Leftrightarrow s_n + \varphi F(B^*) < r + m\varphi F(B^*)$$
 in economic terms?

Diamond 1984 main result

Diamond showed that

$$\lim_{n\to\infty} s_n = r \to$$

$$\lim_{n\to\infty} \frac{\Pi_n(B^*)}{n} > 0 \text{ for } m \ge 2$$

- This result is due to diversification:
 - By the strong law of large numbers, for large n, the bank's loan portfolio becomes riskless
 - →the banks is solvent (almost surely) save on verification costs.

How to reach the result

ullet The gross returns of a portfolio of n loans with B^* are

$$Y_n = \sum_{i=1}^n y_i$$
 with $y_i = \min(B^*, x_i) - \varphi \Delta(x_i < B^*)$

• By the strong law of large numbers: when $n \to \infty$

$$Y_n \longrightarrow E(y_i) = B^* - \int_0^{B^*} F(x) dx - \varphi F(B^*)$$
$$= 1 + r + (m-1)\varphi F(B^*)$$

- The bank signs a contract with each saver. As a whole, this implies a promised repayment D such that
 - if D is paid, Y_n is not verified
 - ullet otherwise, Y_n is verified o each of the mn savers incurs ϕ
- Thus savers' net payments are $min\{D, Y_n\}$ verification costs.

How to reach the result

On expectations savers receive

$$P_{mn}(D) = \int_{0}^{D} [Y - \varphi mn] dG_{n}(Y) + \int_{D}^{\infty} DdG_{n}(Y)$$

$$= D - \int_{0}^{D} G_{n}(Y) dy - \varphi mnG_{n}(D)$$

$$G_{n}(Y) \text{ is the distribution of } Y$$

If feasible the optimal contract implies

$$D = \min\{D : P_{mn}(D) = (1+r)n\}$$

= 1+r+(m-1)\varphi F(B*)

• Hence $1 + s_n = 1 + r + \varphi m G_n(D)$

The main proposition

Proposition

$$\lim_{n\to\infty} s_n = r$$

Proof

$$G_n(D) = prob[Y_n < D] = prob[\frac{Y_n}{n} < \frac{D}{n}]$$

• Assume $D^* = (1+r)n$ then

$$\lim_{n\to\infty}\frac{G_n(D^*)}{n}=\lim_{n\to\infty}prob[\frac{Y_n}{n}<1+r]=0$$

which means

$$\lim_{n\to\infty}\frac{P_{mn}(D^*)}{n}=\lim_{n\to\infty}\frac{D^*}{n}=1+r$$

ullet And setting $D^*=(1+r)n$ is optimal and leads to the proposition

Some comments about Diamond 1984

- Institutional implementation
 - What is the objective function of the bank? Which agents manage this institution?
- There is a natural scale economy: diversification gains
 - Can a bank work as any other firm?
 - Is there a natural monopoly situation?
 - Is it compatible with perfect competition in banking?
 - Does it need to be regulated?
- Robustness
 - Will the presence of systematic risk change the conclusions?
 - Will a profit-maximizing bank diversify at a socially optimal level?
 - Can the model be extended to explain the co-existence of direct and intermediated finance?

David Martinez-Miera () Monitoring 20 / 21

A simple question

- For which of these entrepereneurs would bank finance exist
 - Perfectly safe entrepreneurs
 - Risky and very correlated entrepreneurs
 - Risky and not so correlated entrepreneurs