DEMO-(tutkimus)hankkeen seminaari: "Sustainable public transport" ja "Multi-objective robust optimization"

DEMO eli Decision analytics utilizing causal models and multiobjective optimization (DEMO) on Jyväskylän yliopiston profilointialue. DEMO:n tavoitteena on luoda keinoja, joilla datasta saadaan kaikki hyöty irti ja tuetaan tietoon perustuvaa päätöksentekoa.

DEMOn seminaarit ovat säännöllisiä tapahtumia, joissa vierailee puhujia tutkimusalan huipulta ja ajankohtaisiin asioihin paneutuen.
Tilaisuudet ovat useimmiten englanninkielisiä.

VAIHTUVA OSUUS:
30.5.2024 seminaarin puhuja on professori Anita Schöbel (Professor at the Department of Mathematics, University of Kaiserslautern-Landau and Director of Fraunhofer ITWM, Germany).

Tilaisuutta voi seurata suorana myös Zoomissa: https://jyufi.zoom.us/j/69643413385.

Lue lisää tapahtumasta englanniksi: (linkki englanninkieliseen tapahtumaan) / tapahtumaan pääsee myös sitten yläkulman EN-linkistä.

ja

Lue lisää DEMOsta: (Linkki: Decision Analytics utilizing Causal Models and Multiobjective Optimization (DEMO) | Jyväskylän yliopisto (jyu.fi))

Tapahtuman tiedot

Tapahtuma-aika
-
Tapahtumatyyppi
Yleisöluennot, seminaarit ja keskustelutilaisuudet
Tapahtuman kieli
Englanti
Tapahtuman esteettömyys ja saavutettavuus
Tapahtumatilaan on esteetön pääsy
Tapahtuman maksullisuus
Maksuton
Tapahtuman paikkakategoria
Mattilanniemi

The talk will be divided into two topics:

 

Topic 1: Sustainable public transport

Abstract: Moving travelers efficiently, with low costs, and respecting environmental goals like CO2 emissions is one of the challenging problems our society faces today. In this talk we sketch how optimization approaches can help to reach these goals. We start by sketching some bits of research on optimizing public transportation. Here we focus on line planning and delay management helping to design reliable and efficient public transport systems. Furthermore, we show that integrating the different planning stages may help in further improving public transport. Finally, we argue that for reaching the above mentioned goals, we need also look at other modes of transport besides regular bus or metro transportation. This might include demand-responsive transport, individual cars, sharing modes and active modes like walking and biking. We sketch a first model in which such different transport modes are considered simultaneously.

 

Topic 2: Multi-objective robust optimization: Concepts, Results and Algorithms

 Abstract: Multi-objective optimization deals with the optimization under multiple (maybe conflicting) criteria while robust optimization aims to find solutions which are best in the worst case. In this talk we combine both and consider robust multi-objective optimization. We start with robust single-objective optimization focusing on strict, regret, and light robustness. We then consider multi-objective robust optimization for which we introduce different robustness concepts: scenario-based approaches, set-based approaches and vector-based approaches. We show their properties and develop a method on how to compare them with each other. Finally, we sketch different algorithmic approaches. In more detail we develop two different approaches for combining a multi-objective algorithm (in our case Dichotomic search) with a cutting-plane approach known from robust optimization and present experimental results for their performances.

Lisää kalenteriin