Nanofysiikan teoriaseminaari: Olivier Bleu (Monash University)

Tapahtuman tiedot

Tapahtuma-aika
-
Tapahtumatyyppi
Yleisöluennot, seminaarit ja keskustelutilaisuudet
Tapahtuman kieli
Englanti
Tapahtuman järjestäjä
Fysiikan laitos
Tapahtuman maksullisuus
Maksuton
Tapahtuman paikkakategoria
Ylistönrinne

Exciton-polaritons: interactions, correlations and polarons

Olivier Bleu

School of Physics and Astronomy, Monash University, Victoria 3800, Australia.

ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia.

Microcavity exciton-polaritons are neutral quasiparticles, hybrid between matter and light, that arise from the strong coupling between semiconductor excitons (bound electron-hole pairs) and cavity photons. The investigation of these systems has become a vast research field [1–3] which continues to grow nowadays with the appearance of novel two-dimensional semiconductor materials [4, 5].

In this talk, I shall present theoretical results related to the interactions of exciton-polariton in two-dimensional semiconductors. Using low-energy scattering theory going beyond the Born approximation, we derived analytical formula for the estimation of polariton-polariton interaction strengths. In doing so, we showed that the coupling to light modifies the low energy scattering and can enhance polariton-polariton interactions compared to the exciton-exciton ones [6]. The investigation of the correlations of confined polaritons [7] allowed us to highlight that recent polariton antibunching measurements [8, 9] are consistent with our analytical expressions for the polariton-polariton interaction strengths. In addition to the above, if the time permit, I plan to introduce a recent work on polaronic polariton quasiparticles in an incoherent dark excitonic medium.


[1] H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation, Rev. Mod. Phys. 82, 1489 (2010).
[2] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod. Phys. 85, 299 (2013).
[3] A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford university press, 2017).
[4] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 021001 (2018).
[5] C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, Two-dimensional semiconductors in the regime of strong light-matter coupling, Nature Communications 9, 2695 (2018).
[6] O. Bleu, G. Li, J. Levinsen, and M. M. Parish, Polariton interactions in microcavities with atomically thin semiconductor layers, Phys. Rev. Res. 2, 043185 (2020).
[7] O. Bleu, J. Levinsen, and M. M. Parish, Interplay between polarization and quantum correlations of confined polaritons, Phys. Rev. B 104, 035304 (2021).
[8] A. Delteil, T. Fink, A. Schade, S. Höfling, C. Schneider, and A. İmamoğlu, Towards polariton blockade of confined exciton-polaritons, Nature Materials 18, 219 (2019).
[9] G. Muñoz-Matutano, A. Wood, M. Johnsson, X. Vidal, B. Q. Baragiola, A. Reinhard, A. Lemaître, J. Bloch, A. Amo, G. Nogues, B. Besga, M. Richard, and T. Volz, Emergence of quantum correlations from interacting fibre-cavity polaritons, Nature Materials 18, 213 (2019).

Lisää kalenteriin