24.8.2018: Uutta tietoa teoreettisen matematiikan perustutkimukseen (Debanjan)
Debanjan Nandi selvitti väitöstutkimuksessaan Sobolev-avaruuksien ominaisuuksia, jotka ovat tärkeitä useilla eri matematiikan osa-alueilla. Hänen saamiaan tuloksia voidaan hyödyntää mm. teoreettisen matematiikan tutkimuksessa.
Debanjan Nandi tarkasteli matematiikan alan väitöskirjatyössään, miten Euklidisen avaruuden osajoukon geometriset ominaisuudet liittyvät kyseisessä joukossa määriteltyjen Sobolev-avaruuksien ominaisuuksiin. Hän löysi työssään monia uusia tuloksia, joiden avulla voimme ymmärtää paremmin määrittelyalueen geometrian vaikutusta, sillä määriteltyyn Sobolev- avaruuteen.
- Löysimme myös uusia yhtäpitäviä ehtoja alueen geometrisille ominaisuuksille, joiden avulla voimme saada helpommin selville uusia tuloksia, kertoo Nandi.
Väitöskirjatyön tuloksien sovellukset ovat pääasiassa geometrisen analyysin ja osittaisdifferentiaaliyhtälöiden teorioiden kehittämisessä, mutta jälkimmäisen kautta ne liittyvät mahdollisesti myös reaalimaailman sovelluksiin.
Lisätietoa:
- Debanjan Nandi, s.nandi@jyu.fi
- Tiedottaja Elina Leskinen, viestinta@jyu.fi, 050 581 8351
Väitöskirja on julkaistu sarjassa University of Jyväskylä, Department of Mathematics and Statistics, Report 167, Jyväskylä 2018, ISBN: 978-951-39-7520-3 (nid.), ISBN 978-951-39-7521-0 (pdf). Linkki väitöskirjaan: https://jyx.jyu.fi/handle/123456789/59254